Uso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD

dc.contributor.advisorDussán Sarria, Saúl
dc.contributor.authorGarzón García, Alba Mery
dc.contributor.educationalvalidatorHleap Zapata, José Igor
dc.contributor.educationalvalidatorRuíz Cruz, Saúl
dc.contributor.researchgroupManejo y agroindustrialización de productos de origen biológicospa
dc.date.accessioned2022-08-25T22:14:34Z
dc.date.available2022-08-25T22:14:34Z
dc.date.issued2021
dc.descriptionIlustraciones, tablasspa
dc.description.abstractEl mango es una fruta de alto nivel nutricional y potencial para el procesamiento mínimo. Sin embargo, este proceso puede acelerar su de deterioro y contaminación microbiana. Por esto, es necesario aplicar una tecnología que ayude a preservar los atributos de calidad e inocuidad durante el almacenamiento. En el primer capítulo, se validó la dinámica de fluidos computacional (CFD) y el modelo de radiación de ordenadas discretas (DO) como herramienta para la simulación de una cámara de desinfección para el tratamiento con luz ultravioleta de onda corta (UV-C). Con la información obtenida de la simulación, se efectuó el modelamiento de las cinéticas de inactivación in vitro de suspensiones de los patógenos Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium y Listeria monocytogenes en términos de dosis de UV-C. En el segundo capítulo, se realizó la integración de CFD con los parámetros cinéticos con el fin de pronosticar dosis de UV-C para inactivar los patógenos inoculados en el mango ‘Tommy Atkins’ mínimamente procesado, y calcular una dosis óptima mediante el promedio de los tiempos de tratamiento. En el tercer capítulo, se evaluó el efecto de la dosis óptima de 6 kJ/m2 en los atributos de calidad del mango mínimamente procesado almacenado por 12 días a 5 °C. Los resultados mostraron que la aplicación de esta dosis permitió asegurar la inocuidad y preservar la mayoría de los atributos de calidad del mango ‘Tommy Atkins’ mínimamente procesado. Se concluyó que el uso de la CFD en integración con las cinéticas de inactivación es prometedor para la estimación de tratamientos con UV-C en mango mínimamente procesado y podría ser usado en otros productos hortofrutícolas. (Texto tomado de la fuente)spa
dc.description.abstractMango is a highly nutritional fruit with potential for minimal processing. However, this process can accelerate its deterioration and microbial contamination. Therefore, it is necessary to apply a technology that helps to preserve quality and safety attributes during storage. In the first chapter, the computational fluid dynamics (CFD) and the discrete ordinate (DO) radiation model were validated as a tool for the simulation of a disinfection chamber for treatment with short-wave ultraviolet light (UV-C). With the information obtained from the simulation, in vitro inactivation kinetics of suspensions of the pathogens Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were modeled in terms of UV-C dose. In the second chapter, the integration of CFD with the kinetic parameters was performed to predict UV-C doses to inactivate each of these pathogens inoculated in fresh-cut 'Tommy Atkins' mango and to calculate an optimal dose by averaging of treatment times. In the third chapter, the effect of the optimal dose of 6 kJ/m2 on the quality attributes of fresh-cut 'Tommy Atkins' mango stored for 12 days at 5 ° C was evaluated. The results showed that the application of this dose ensured safety and preserve most of the quality attributes of fresh-cut mango. It was concluded that the use of CFD in integration with inactivation kinetics is promising for estimating UV-C treatments in fresh-cut mango and could be used in other horticultural products.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencia y Tecnología de Alimentosspa
dc.description.methodsEn el primer capítulo, se validó la dinámica de fluidos computacional (CFD) y el modelo de radiación de ordenadas discretas (DO) como herramienta para la simulación de una cámara de desinfección para el tratamiento con luz ultravioleta de onda corta (UV-C). Con la información obtenida de la simulación, se efectuó el modelamiento de las cinéticas de inactivación in vitro de suspensiones de los patógenos Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium y Listeria monocytogenes en términos de dosis de UV-C. En el segundo capítulo, se realizó la integración de CFD con los parámetros cinéticos con el fin de pronosticar dosis de UV-C para inactivar los patógenos inoculados en el mango ‘Tommy Atkins’ mínimamente procesado, y calcular una dosis óptima mediante el promedio de los tiempos de tratamiento. En el tercer capítulo, se evaluó el efecto de la dosis óptima de 6 kJ/m2 en los atributos de calidad del mango mínimamente procesado almacenado por 12 días a 5 °C.spa
dc.description.researchareaIngeniería de Procesos Agroalimentariosspa
dc.format.extentxx, 186 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82125
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Administraciónspa
dc.publisher.placePalmira Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ingeniería y Administración - Doctorado en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAbdel-Fattah, A. ., Hegazy, E. A., & Ezz El-Din, H. (2000). Thymol-blue dyed poly(vinyl butyral) films for monitoring ultraviolet radiation. Journal of Photochemistry and Photobiology A: Chemistry, 137(1), 37–43. https://doi.org/10.1016/S1010-6030(00)00355-5spa
dc.relation.referencesAdhikari, A., Syamaladevi, R. M., Killinger, K., & Sablani, S. S. (2015). Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. International Journal of Food Microbiology, 210, 136–142. https://doi.org/10.1016/j.ijfoodmicro.2015.06.018spa
dc.relation.referencesAgronet. (2018). CORPOICA identifica los mejores mangos criollos para mercado interno y exportación. http://www.agronet.gov.co/Noticias/Paginas/Noticia171.aspxspa
dc.relation.referencesAlfano, O. M., Romero, R. L., & Cassano, A. E. (1986). Radiation field modelling in photoreactors-I. homogeneous media. Chemical Engineering Science, 41(3), 421–444. https://doi.org/10.1016/0009-2509(86)87025-7spa
dc.relation.referencesAli, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2018). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58(15), 2632–2649. https://doi.org/10.1080/10408398.2017.1339180spa
dc.relation.referencesAllende, A., Tomás-Barberán, F. A., & Gil, M. I. (2006). Minimal processing for healthy traditional foods. Trends in Food Science & Technology, 17(9), 513–519. https://doi.org/10.1016/J.TIFS.2006.04.005spa
dc.relation.referencesAlmeida-Miguel, A. C., Durigan, J. F., Marques, K. M., Ascari-Morgado, C. M., & Ferraudo, A. S. (2016). Prevention of chilling injury in “Tommy Atkins” mangoes previously stored at 5 °C, using heat tratment and radiation UV (UV-C). Revista Brasileira de Fruticultura, 38(1), 53–63. https://doi.org/10.1590/0100-2945-123/14spa
dc.relation.referencesAlothman, M., Bhat, R., & Karim, A. A. (2009). UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies, 10(4), 512–516. https://doi.org/10.1016/J.IFSET.2009.03.004spa
dc.relation.referencesAnandharamakrishnan, C. (2013). Computational fluid dynamics applications in food processing. Springer-Verlag. https://doi.org/10.1007/978-1-4614-7990-1_1spa
dc.relation.referencesANSYS Inc. (2006). 8.8.3 Refractive index. https://www.sharcnet.ca/Software/Fluent6/html/ug/node359.htmspa
dc.relation.referencesANSYS Inc. (2009a). 5.3.2 Radiative transfer equation. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node111.htmspa
dc.relation.referencesANSYS Inc. (2009b). 5.3.6 Discrete ordinates (DO) radiation model theory. http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node115.htmspa
dc.relation.referencesAOAC International. (2012). Official Methods of Analysis of AOAC International (G. W. Latimer (Ed.); 19th Edition). AOAC International.spa
dc.relation.referencesAres, G., Giménez, A., & Gámbaro, A. (2008). Sensory shelf life estimation of minimally processed lettuce considering two stages of consumers’ decision-making process. Appetite, 50(2–3), 529–535. https://doi.org/10.1016/J.APPET.2007.11.002spa
dc.relation.referencesArtés-Hernández, F., Escalona, V. H., Robles, P. A., Martínez-Hernández, G. B., & Artés, F. (2009). Effect of UV-C radiation on quality of minimally processed spinach leaves. Journal of the Science of Food and Agriculture, 89(3), 414–421. https://doi.org/10.1002/JSFA.3460spa
dc.relation.referencesArtés-Hernández, F., Martínez-Hernández, G. B., Aguayo, E., Gómez, P. A., & Artés, F. (2017). Fresh-cut fruit and vegetables: Emerging eco-friendly techniques for sanitation and preserving safety. In I. Kahramanoglu (Ed.), Postharvest handling. IntechOpen. https://doi.org/10.5772/INTECHOPEN.69476spa
dc.relation.referencesArtés-Hernández, F., Robles, P. A., Gómez, P. A., Tomás-Callejas, A., Artés, F., & Martínez-Hernández, G. B. (2021). Quality changes of fresh-cut watermelon during storage as affected by cut intensity and UV-C pre-treatment. Food and Bioprocess Technology, 14(3), 505–517. https://doi.org/10.1007/S11947-021-02587-1/TABLES/2spa
dc.relation.referencesArtés, F., & Allende, A. (2015). Minimal processing of fresh fruit, vegetables, and juices. In D. W. Sun (Ed.), Emerging technologies for food processing (pp. 583–597). Academic Press.spa
dc.relation.referencesArtés, Francisco, & Allende, A. (2014). Minimal processing of fresh fruit, vegetables, and juices. In D.-W. Sun (Ed.), Emerging technologies for food processing (Second Edition, pp. 583–597). Academic Press. https://doi.org/10.1016/B978-0-12-411479-1.00031-0spa
dc.relation.referencesAryal, s., baniya, m. k., danekhu, k., kunwar, p., gurung, r., & koirala, n. (2019). total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4). https://doi.org/10.3390/PLANTS8040096spa
dc.relation.referencesAsohofrucol. (2016a). Información Hortofrutícola. http://www.asohofrucol.com.co/interna.php?cat=3&scat=45&act=1spa
dc.relation.referencesAsohofrucol. (2016b). Principales líneas productivas 2016. http://www.asohofrucol.com.co/imagenes/Principales_lineas_productivas_2016.pdfspa
dc.relation.referencesAtilgan, M. R., Yildiz, S., Kaya, Z., & Unluturk, S. (2021). Kinetic and process modeling of uv-c irradiation of foods. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies: A Comprehensive Review (Vol. 2, pp. 227–255). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22972-7spa
dc.relation.referencesAzeredo, H. M. C. de. (2004). Fundamentos de estabilidade de alimentos. Embrapa Agroindústria Tropical.spa
dc.relation.referencesBachmann, R. (1978). Apparatus for automatic low-bacteria to aseptic filling and packing of foodstuffs (Patent No. 4,121,107). Oblon, Fisher, Spivak, McClelland & Maier. https://patentimages.storage.googleapis.com/1b/fa/e9/22350344d707cf/US4121107.pdfspa
dc.relation.referencesBachmann, R., & Sturm, W. (1979). Method for automatic low-bacteria to aseptic filling and packing of foodstuffs employing ultraviolet radiation (Patent No. 4,175,140). Oblon, Fisher, Spivak, McClelland & Maier. https://patentimages.storage.googleapis.com/cd/25/70/bc4d84f94eac0c/US4175140.pdfspa
dc.relation.referencesBaeza, A., Silveira, A. C., & Escalona, V. (2015). Empleo de radiación UV-C como método de desinfección para la elaboración de rúcula (Eruca sativa Mill.) mínimamente procesada. Agrociencia (Uruguay), 19(2), 26–35. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482015000200004spa
dc.relation.referencesBaka, M., Mercier, J., Corcuff, R., Castaigne, F., & Arul, J. (1999). Photochemical treatment to improve storability of fresh strawberries. Journal of Food Science, 64(6), 1068–1072. https://doi.org/10.1111/j.1365-2621.1999.tb12284.xspa
dc.relation.referencesBalaguera-López, H. E., & Arévalo, A. H. (2012). Estudio de algunos cambios bioquímicos durante el crecimiento y hasta la cosecha del fruto de champa (Campomanesia lineatifolia R. & P. familia myrtaceae). Revista Brasileira de Fruticultura, 34(2), 460–468. https://doi.org/10.1590/S0100-29452012000200019spa
dc.relation.referencesBarreto, C. F., Navroski, R., Duarte-Marques, L. O., dos Santos, R. F., Barbosa-Malgarim, M., & Martins, C. R. (2021). Influência da radiação ultravioleta e aditivos na conservação de kiwis minimamente processados. Brazilian Journal of Food Technology, 24, e2020024. https://doi.org/10.1590/1981-6723.02420spa
dc.relation.referencesBarreto, M., Castillo-Ruiz, M., & Retamal, P. (2016). Salmonella enterica: una revisión de la trilogía agente, hospedero y ambiente, y su trascendencia en Chile. Revista Chilena de Infectología, 33(5), 547–557. https://doi.org/10.4067/S0716-10182016000500010spa
dc.relation.referencesBeltrán, A., Ramos, M., & Alvarez, M. (2010). Estudio de la vida útil de fresas (Fragaria vesca) mediante tratamiento con radiación ultravioleta de onda corta (UV-C). Revista Tecnológica ESPOL, 23(2), 17–24. http://www.rte.espol.edu.ec/index.php/tecnologica/article/view/51/22spa
dc.relation.referencesBenjamin, B., Uba, A., Yusha’u, M., Maikaje, D. B., Nyakaat, N. N., & Daniel, A. M. (2018). Isolation of Escheria Coli from fruits and vegetables in Kaduna metropolis. International Journal of Engineering Science and Computing, 8(7), 18598–18601. http://ijesc.org/upload/938bc913555306cae8ae43345c8c1f23.Isolation of Escheria Coli from Fruits and Vegetables in Kaduna Metropolis.pdfspa
dc.relation.referencesBevilacqua, A., Speranza, B., Sinigaglia, M., & Corbo, M. R. (2015). A focus on the death kinetics in predictive microbiology: benefits and limits of the most important models and some tools dealing with their application in foods. Foods, 4(4), 565–580. https://doi.org/10.3390/foods4040565spa
dc.relation.referencesBhagat, B., & Chakraborty, S. (2022). Potential of pulsed light treatment to pasteurize pomegranate juice: Microbial safety, enzyme inactivation, and phytochemical retention. LWT, 159, 113215. https://doi.org/10.1016/J.LWT.2022.113215spa
dc.relation.referencesBrandl, M. T. (2006). Fitness of human enteric pathogens on plants and implications for food safety. Annual Review of Phytopathology, 44, 367–392. https://doi.org/10.1146/annurev.phyto.44.070505.143359spa
dc.relation.referencesBuosi, D. T. M., de Moraes, J. O., Cheng, Y., Cheng, R. A., Moraru, C. I., & Carciofi, B. A. M. (2022). Effective pulsed light treatments for inactivating Salmonella enterica serotypes. Food Control, 135, 108776. https://doi.org/10.1016/J.FOODCONT.2021.108776spa
dc.relation.referencesButson, E. T., Cheung, T., Yu, P. K. N., & Butson, M. J. (2010). Measuring solar UV radiation with EBT radiochromic film. Physics in Medicine and Biology, 55(20), N487–N493. https://doi.org/10.1088/0031-9155/55/20/N01spa
dc.relation.referencesButson, M. J., Yu, P. K. N., Cheung, T., & Metcalfe, P. (2003). Radiochromic film for medical radiation dosimetry. Materials Science and Engineering: R: Reports, 41(3–5), 61–120. https://doi.org/10.1016/S0927-796X(03)00034-2spa
dc.relation.referencesCao, M., Wang, D., Qiu, L., Ren, X., & Ma, H. (2021). Shelf life prediction of ‘royal gala’ apples based on quality attributes and storage temperature. Horticultural Science and Technology, 39(3), 343–355. https://doi.org/10.7235/HORT.20210031spa
dc.relation.referencesCardelli, C., & Labuza, T. P. (2001). Application of Weibull hazard analysis to the determination of the shelf life of roasted and ground coffee. LWT, 34(5), 273–278. https://doi.org/10.1006/FSTL.2000.0732spa
dc.relation.referencesCastañeda-Ruelas, G., Eslava-Campos, C., Castro-del Campo, N., León-Félix, J., & Chaidez-Quiroz, C. (2014). Listeriosis en México: importancia clínica y epidemiológica. Salud Pública de México, 56(6), 654–659. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342014000600016spa
dc.relation.referencesCastillejo, N., Martínez-Zamora, L., & Artés-Hernández, F. (2022). Postharvest UV radiation enhanced biosynthesis of flavonoids and carotenes in bell peppers. Postharvest Biology and Technology, 184, 111774. https://doi.org/10.1016/J.POSTHARVBIO.2021.111774spa
dc.relation.referencesChang, J. C. H., Ossoff, S. F., Lobe, D. C., Dorfman, M. H., Dumais, C. M., Qualls, R. G., & Johnson, J. D. (1985). UV inactivation of pathogenic and indicator microorganisms. Applied and Environmental Microbiology, 49(6), 1361–1365.spa
dc.relation.referencesCharles, F., Vidal, V., Olive, F., Filgueiras, H., & Sallanon, H. (2013). Pulsed light treatment as new method to maintain physical and nutritional quality of fresh-cut mangoes. Innovative Food Science & Emerging Technologies, 18, 190–195. https://doi.org/10.1016/J.IFSET.2013.02.004spa
dc.relation.referencesChisari, M., Barbagallo, R. N., Spagna, G., & Artes, F. (2011). Improving the quality of fresh-cut melon through inactivation of degradative oxidase and pectinase enzymatic activities by UV-C treatment. International Journal of Food Science & Technology, 46(3), 463–468. https://doi.org/10.1111/j.1365-2621.2010.02466.xspa
dc.relation.referencesChlebicz, A., & Śliżewska, K. (2018). Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. International Journal of Environmental Research and Public Health, 15(5), 863. https://doi.org/10.3390/ijerph15050863spa
dc.relation.referencesChun, H. H., Kim, H. J., Won, M., Chung, K. S., & Song, K. Bin. (2010). A comparison of kinetic models of foodborne pathogen inactivation by aqueous chlorine dioxide, fumaric acid, and ultraviolet-C. Journal of Applied Biological Chemistry, 53(2), 243–248. https://doi.org/10.3839/jksabc.2010.038spa
dc.relation.referencesCoello-Torres, A., Fernández-Galván, D., & Galán-Saúco, V. (1997). Guía Descriptiva de Cultivares de Mango (P. y A. Consejería de Agricultura (Ed.)). Litografía Gráficas Sabater. https://www.icia.es/icia/download/fruticulturatropical/Guia descriptiva de cultivares de mango_optimized.pdfspa
dc.relation.referencesCorpas-Iguarán, E. J., & Tapasco-Alzate, O. A. (2014). Hallazgos de la biosíntesis del etileno en frutas climatéricas y de los factores que afectan la ruta metabólica. Alimentos Hoy, 22(31), 46–63. http://www.alimentoshoy.acta.org.co/index.php/hoy/article/view/255/239spa
dc.relation.referencesCossart, P., & Sansonetti, P. J. (2004). Bacterial invasion: The paradigms of enteroinvasive pathogens. Science, 304(5668), 242–248. https://doi.org/10.1126/science.1090124spa
dc.relation.referencesCosta, L., Vicente, A. R., Civello, P. M., Chaves, A. R., & Martínez, G. A. (2006). UV-C treatment delays postharvest senescence in broccoli florets. Postharvest Biology and Technology, 39(2), 204–210. https://doi.org/10.1016/J.POSTHARVBIO.2005.10.012spa
dc.relation.referencesCourraud, J., Berger, J., Cristol, J., & Avallone, S. (2013). Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chemistry, 136(2), 871–877. https://doi.org/10.1016/J.FOODCHEM.2012.08.076spa
dc.relation.referencesDandekar, T., Fieselmann, A., Fischer, E., Popp, J., Hensel, M., & Noster, J. (2015). Salmonella-how a metabolic generalist adopts an intracellular lifestyle during infection. Frontiers in Cellular and Infection Microbiology, 4, 191. https://doi.org/10.3389/fcimb.2014.00191spa
dc.relation.referencesde Almeida-Lopes, M. M., de Lucena, H. H., Souza da Silveira, M. R., dos Santos Garruti, D., Feitosa Machado, T., Souza de Aragão, F. A., & de Oliveira Silva, E. (2021). The use of electrolyzed water as a disinfectant for fresh cut mango. Scientia Horticulturae, 287, 110227. https://doi.org/10.1016/J.SCIENTA.2021.110227spa
dc.relation.referencesDe Almeida-Melo, E., & Rodrigues De Araújo, C. (2011). Mangas das variedades espada, rosa e tommy atkins : compostos bioativos e potencial antioxidante. CIÊNCIAS AGRÁRIAS, 32(4), 1451–1460. https://doi.org/10.5433/1679-0359.2011v32n4p1451spa
dc.relation.referencesDe Corato, U. (2020). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60(6), 940–975. https://doi.org/10.1080/10408398.2018.1553025spa
dc.relation.referencesde Curtis, M. L., Franceschi, O., & De Castro, N. (2002). Listeria monocytogenes en vegetales mínimamente procesados. Archivos Latinoamericanos de Nutrición, 52(3), 282–288. http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0004-06222002000300009spa
dc.relation.referencesde Morais, P. L. D., Filgueiras, H. A., de Pinho, J. L. N., Alves, R. E., & de Assis, J. S. (2003). Vida útil de mangos cv. Tommy atkins recolectados en el estadio de maduración comercial. Revista Iberoamericana de Tecnología Postcosecha, 5(1), 26–32. http://www.redalyc.org/html/813/81350104/spa
dc.relation.referencesde Siqueira-Oliveira, L., Eça, K. S., de Aquino, A. C., & Vasconcelos, L. B. (2018). Hydrogen peroxide (H2O2) for postharvest fruit and vegetable disinfection. In M. Wasim-Siddiqui (Ed.), Postharvest disinfection of fruits and vegetables (First Edition, pp. 91–99). Academic Press. https://doi.org/10.1016/b978-0-12-812698-1.00004-2spa
dc.relation.referencesDevic, S. (2011). Radiochromic film dosimetry: Past, present, and future. Physica Medica, 27(3), 122–134. https://doi.org/10.1016/j.ejmp.2010.10.001spa
dc.relation.referencesDíaz-Sobac, R., & Vernon-Carter, J. (2009). Inocuidad microbiológica de frutas frescas y mínimamente procesadas. CYTA-Journal of Food, 2(3), 133–136. https://doi.org/10.1080/11358129909487594spa
dc.relation.referencesDjioua, T., Charles, F., Freire, M., Filgueiras, H., Ducamp-Collin, M. N., & Sallanon, H. (2010). Combined effects of postharvest heat treatment and chitosan coating on quality of fresh-cut mangoes (Mangifera indica L.). International Journal of Food Science & Technology, 45(4), 849–855. https://doi.org/10.1111/J.1365-2621.2010.02209.Xspa
dc.relation.referencesDussán-Sarria, S., Perea-Camayo, M. A., & Hleap-Zapata, J. I. (2019). Efecto de diferentes antioxidantes y envases en atributos físico-químicos y sensoriales de orellana refrigerada. Información Tecnológica, 30(6), 55–62. https://doi.org/10.4067/S0718-07642019000600055spa
dc.relation.referencesDussán-Sarria, S., Ramírez-Yela, J. I., & Hleap-Zapata, J. I. (2017). Conservación de mango mínimamente procesado usando un recubrimiento comestible a base de aceite de aguacate. Información Tecnológica, 28(3), 67–74. https://doi.org/10.4067/S0718-07642017000300008spa
dc.relation.referencesDussán-Sarria, S., Torres-León, C., & Hleap-Zapata, J. I. (2014). Efecto de un recubrimiento comestible y de diferentes empaques durante el almacenamiento refrigerado de mango Tommy Atkins mínimamente procesado. Información Tecnológica, 25(4), 123–130. https://doi.org/10.4067/S0718-07642014000400014spa
dc.relation.referencesDussán-Sarria, S., Torres-León, C., & Reyes-Calvache, P. M. (2014). Efecto del recubrimiento comestible sobre los atributos físicoquímicos de mango “Tommy Atkins” mínimamente procesado y refrigerado. Acta Agronómica, 63(3), 212–221. https://doi.org/10.15446/acag.v63n3.40973spa
dc.relation.referencesEdiriweera, M. K., Tennekoon, K. H., & Samarakoon, S. R. (2017). A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mangifera indica (Mango). Evidence-Based Complementary and Alternative Medicine, 2017. https://doi.org/10.1155/2017/6949835spa
dc.relation.referencesEscobar-Hernández, A., Márquez-Cardozo, C. J., Restrepo-Florez, C. E., & Cordoba-Pérez, L. J. (2014). Aplicación de tecnología de barreras para la conservación de mezclas de vegetales mínimamente procesados. Revista Facultad Nacional de Agronomía Medellín, 67(1), 7237–7245. https://doi.org/10.15446/rfnam.v67n1.42652spa
dc.relation.referencesFalguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2012). Inactivation of polyphenol oxidase by ultraviolet irradiation: Protective effect of melanins. Journal of Food Engineering, 110(2), 305–309. https://doi.org/10.1016/J.JFOODENG.2011.04.005spa
dc.relation.referencesFeliziani, E., Lichter, A., Smilanick, J. L., & Ippolito, A. (2016). Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biology and Technology, 122, 53–69. https://doi.org/10.1016/J.POSTHARVBIO.2016.04.016spa
dc.relation.referencesFenoglio, D., Ferrario, M., Schenk, M., & Guerrero, S. (2020). Effect of pilot-scale UV-C light treatment assisted by mild heat on E. coli, L. plantarum and S. cerevisiae inactivation in clear and turbid fruit juices. Storage study of surviving populations. International Journal of Food Microbiology, 332, 108767. https://doi.org/10.1016/J.IJFOODMICRO.2020.108767spa
dc.relation.referencesFranco-Vega, A., Reyes-Jurado, F., González-Albarrán, D., Ramírez-Corona, N., Palou, E., & López-Malo, A. (2021). Developments and advances of high intensity pulsed light and its combination with other treatments for microbial inactivation in food products. Food Engineering Reviews, 13(4), 741–768. https://doi.org/10.1007/S12393-021-09280-1spa
dc.relation.referencesFratianni, A., Adiletta, G., Matteo, M. Di, Panfili, G., Niro, S., Gentile, C., Farina, V., Cinquanta, L., & Corona, O. (2020). Evolution of carotenoid content, antioxidant activity and volatiles compounds in dried mango fruits (Mangifera Indica L.). Foods 2020, 9(10), 1424. https://doi.org/10.3390/FOODS9101424spa
dc.relation.referencesGarcía-Mogollón, C., Cury-Regno, K. I., & Dussán-Sarria, S. (2010). Evaluación poscosecha y estimación de vida útil de guayaba fresca utilizando el modelo de Weibull. Acta Agronómica, 59(3), 347–355. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/17664/18534spa
dc.relation.referencesGardner, D. W. M., & Shama, G. (1998). The kinetics of Bacillus subtilis spore inactivation on filter paper by u.v. light and u.v. light in combination with hydrogen peroxide. Journal of Applied Microbiology, 84(4), 633–641. https://doi.org/10.1046/j.1365-2672.1998.00391.xspa
dc.relation.referencesGardner, D. W. M., & Shama, G. (1999). UV intensity measurement and modelling and disinfection performance prediction for irradiation of solid surfaces with UV light. Food and Bioproducts Processing, 77(3), 232–242. https://doi.org/10.1205/096030899532510spa
dc.relation.referencesGardner, D. W. M., & Shama, G. (2000). Modeling UV-Induced Inactivation of Microorganisms on Surfaces. Journal of Food Protection, 63(1), 63–70. https://doi.org/10.4315/0362-028X-63.1.63spa
dc.relation.referencesGarzón-García, A. M., Ruiz-Cruz, S., Márquez-Ríos, E., Dussán-Sarria, S., Hleap-Zapata, J. I., & Lobatón, H. F. (2020). Computational fluid dynamics as a technique for the UV-C light dose determination in horticultural products. Biotecnia, 22(1), 84–92. https://doi.org/10.18633/BIOTECNIA.V22I1.1128spa
dc.relation.referencesGeeraerd, A. H., Valdramidis, V. P., & Van Impe, J. F. (2005). GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102(1), 95–105. https://doi.org/10.1016/j.ijfoodmicro.2004.11.038spa
dc.relation.referencesGeorge, D. S., Razali, Z., Santhirasegaram, V., & Somasundram, C. (2015). Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut Chokanan mango and Josephine pineapple. Journal of Food Science, 80(2), S426–S434. https://doi.org/10.1111/1750-3841.12762spa
dc.relation.referencesGeorge, D. S., Razali, Z., Santhirasegaram, V., & Somasundram, C. (2016). Effect of postharvest ultraviolet-C treatment on the proteome changes in fresh cut mango (Mangifera indica L. cv. Chokanan). Journal of the Science of Food and Agriculture, 96(8), 2851–2860. https://doi.org/10.1002/JSFA.7454spa
dc.relation.referencesGil, M. I., Gómez-López, V. M., Hung, Y. C., & Allende, A. (2015). Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food and Bioprocess Technology, 8(6), 1336–1348. https://doi.org/10.1007/s11947-014-1444-1spa
dc.relation.referencesGil, M. I., Selma, M. V., López-Gálvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology, 134(1–2), 37–45. https://doi.org/10.1016/j.ijfoodmicro.2009.05.021spa
dc.relation.referencesGiménez, A., Ares, F., & Ares, G. (2012). Sensory shelf-life estimation: A review of current methodological approaches. Food Research International, 49(1), 311–325. https://doi.org/10.1016/J.FOODRES.2012.07.008spa
dc.relation.referencesGiménez, A., & Ares, G. (2019). Sensory shelf life estimation. In C. M. Galanakis (Ed.), Food Quality and Shelf Life (pp. 333–357). Academic Press. https://doi.org/10.1016/B978-0-12-817190-5.00011-2spa
dc.relation.referencesGómez, P. L., Alzamora, S. M., Castro, M. A., & Salvatori, D. M. (2010). Effect of ultraviolet-C light dose on quality of cut-apple: Microorganism, color and compression behavior. Journal of Food Engineering, 98(1), 60–70. https://doi.org/10.1016/J.JFOODENG.2009.12.008spa
dc.relation.referencesGonzález-Aguilar, G. A., Villegas-Ochoa, M. A., Martínez-Téllez, M. A., Gardea, A. A., & Ayala-Zavala, J. F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72(3), S197–S202. https://doi.org/10.1111/j.1750-3841.2007.00295.xspa
dc.relation.referencesGonzález-Aguilar, G. A., Zavaleta-Gatica, R., & Tiznado-Hernández, M. E. (2007). Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biology and Technology, 45(1), 108–116. https://doi.org/10.1016/J.POSTHARVBIO.2007.01.012spa
dc.relation.referencesGonzález-Mendoza, D., Torrentera-Olivera, N. G., Ceceña Duran, C., & Grimaldo-Juarez, O. (2017). Water as contamination source of Salmonella and Escherichia coli in vegetable production in Mexico: A review. Revista Bio Ciencias, 3(3), 156–162. https://doi.org/10.15741/revbio.edit.04.06spa
dc.relation.referencesGonzález-Vega, R. I., Cárdenas-López, J. L., López-Elías, J. A., Ruiz-Cruz, S., Reyes-Díaz, A., Perez-Perez, L. M., Cinco-Moroyoqui, F. J., Robles-Zepeda, R. E., Borboa-Flores, J., & Del-Toro-Sánchez, C. L. (2021). Optimization of growing conditions for pigments production from microalga Navicula incerta using response surface methodology and its antioxidant capacity. Saudi Journal of Biological Sciences, 28(2), 1401–1416. https://doi.org/10.1016/J.SJBS.2020.11.076spa
dc.relation.referencesGraça, A., Santo, D., Quintas, C., & Nunes, C. (2017). Growth of Escherichia coli, Salmonella enterica and Listeria spp., and their inactivation using ultraviolet energy and electrolyzed water, on ‘Rocha’ fresh-cut pears. Food Control, 77, 41–49. https://doi.org/10.1016/j.foodcont.2017.01.017spa
dc.relation.referencesGrasso, C., Forniti, R., & Botondi, R. (2022). Post-harvest quality evaluation of “Soreli” kiwifruit at two ripening °Brix values from vineyards of different age under hail nets. Foods, 11(3), 431. https://doi.org/10.3390/FOODS11030431spa
dc.relation.referencesGuerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10(3), 137–147. https://doi.org/10.1177/1082013204044359spa
dc.relation.referencesGüler, S. K., Bostan, S. Z., & Çon, A. H. (2017). Effects of gamma irradiation on chemical and sensory characteristics of natural hazelnut kernels. Postharvest Biology and Technology, 123, 12–21. https://doi.org/10.1016/J.POSTHARVBIO.2016.08.007spa
dc.relation.referencesGutiérrez, D., Ruiz-López, G., Sgroppo, S., & Rodríguez, S. (2016). Uso de la radiación UV-C en el proceso de elaboración de hortalizas de IV gama. Agrociencia Uruguay, 20(2), 7–13. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482016000200002spa
dc.relation.referencesHan, R.-M., Zhang, J.-P., & Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 17(2), 2140. https://doi.org/10.3390/MOLECULES17022140spa
dc.relation.referencesHarris, L. J., Zagory, D., & Gorny, J. R. (2011). Factores de seguridad. In A. A. Kader (Ed.), Tecnología postcosecha de cultivos hortofrutícolas (pp. 342–345). Universidad de California. Centro de Información e Investigación en Tecnología Postcosecha.spa
dc.relation.referencesHashemabadi, S. H., Ghaderzadeh, F., & Taghipour, F. (2014). CFD simulation of UV disinfection reactor for applesauce with a low UV absorption coefficient. Journal of Chemical and Petroleum Engineering, 48(2), 103–116. https://doi.org/10.22059/JCHPE.2014.7561spa
dc.relation.referencesHe, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J., & Shu, S. (2018). Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149, 16–25. https://doi.org/10.1016/j.compag.2017.10.001spa
dc.relation.referencesHinojosa, A., Silveira, A. C., Ospina, M., Char, C., Sáenz, C., & Escalona, V. H. (2013). Safety of ready-to-eat watercress using environmentally friendly sanitization methods. Journal of Food Quality, 36(1), 66–76. https://doi.org/10.1111/jfq.12016spa
dc.relation.referencesHo, C. K. (2009). Evaluation of reflection and refraction in simulations of ultraviolet disinfection using the discrete ordinates radiation model. Water Science and Technology, 59(12), 2421–2428. https://doi.org/10.2166/wst.2009.260spa
dc.relation.referencesHough, G., Langohr, K., Gomez, G., & Curia, A. (2003). Survival analysis applied to sensory shelf life of foods. Journal of Food Science, 68(1), 359–362. https://doi.org/10.1111/j.1365-2621.2003.tb14165.xspa
dc.relation.referencesHough, Guillermo, & Garitta, L. (2012). Methodology for sensory shelf-life estimation: a review. Journal of Sensory Studies, 27(3), 137–147. https://doi.org/10.1111/J.1745-459X.2012.00383.Xspa
dc.relation.referencesHough, Guillermo, Puglieso, M. L., Sanchez, R., & da Silva, O. M. (1999). Sensory and microbiological shelf-life of a commercial Ricotta cheese. Journal of Dairy Science, 82(3), 454–459. https://doi.org/10.3168/JDS.S0022-0302(99)75253-7spa
dc.relation.referencesHu, H. H. (2012). Computational fluid dynamics. In P. K. Kundu, C. I. M., & D. R. Dowling (Eds.), Fluid mechanics (pp. 421–472). Academic Press. https://doi.org/10.1016/B978-0-12-382100-3.10010-1spa
dc.relation.referencesHuang, H., Ge, Z., Limwachiranon, J., Li, L., Li, W., & Luo, Z. (2017). UV-C treatment affects browning and starch metabolism of minimally processed lily bulb. Postharvest Biology and Technology, 128, 105–111. https://doi.org/10.1016/J.POSTHARVBIO.2017.02.010spa
dc.relation.referencesImaizumi, T., Yamauchi, M., Sekiya, M., Shimonishi, Y., & Tanaka, F. (2018). Responses of phytonutrients and tissue condition in persimmon and cucumber to postharvest UV-C irradiation. Postharvest Biology and Technology, 145, 33–40. https://doi.org/10.1016/J.POSTHARVBIO.2018.06.003spa
dc.relation.referencesIncropera, F. P., & De Witt, D. P. (1999). Fundamentos de transferencia de calor. Prentice Hall.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación. (2013). NTC 6005: Alimentos Mínimamente Procesados (pp. 1–13).spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación. (2018). Nueva edicion de la norma ISO 22000. http://www.icontec.org/Paginas/Nueva-edicion-de-la-norma-ISO-22000.aspxspa
dc.relation.referencesInstituto Nacional de Vigilancia de Medicamentos y Alimentos. (1997). Decreto 3075 de 1997. https://www.invima.gov.co/images/stories/aliementos/decreto_3075_1997.pdfspa
dc.relation.referencesInstituto Nacional de Vigilancia de Medicamentos y Alimentos. (2013). Resolución 2674 de 2013. https://www.invima.gov.co/resoluciones-en-alimentos/resolucion-2674-2013-pdf/detail.htmlspa
dc.relation.referencesInstituto Tecnológico del Plástico. (2012). Guía del usuario del envase plástico. https://www.sena-sa.com/wp-content/uploads/2020/04/elenvaseplastico.pdfspa
dc.relation.referencesJaimez-Suarez, S., & Gómez-Álvarez, L. M. (2013). Evaluación de un producto a base de ácidos orgánicos frente a E. coli y Salmonella spp. en la desinfección de lechuga fresca. Alimentos Hoy, 22(29), 20–32. https://alimentoshoy.acta.org.co/index.php/hoy/article/view/229/222spa
dc.relation.referencesJeon, M.-J., & Ha, J.-W. (2018). Efficacy of UV-A, UV-B, and UV-C irradiation on inactivation of foodborne pathogens in different neutralizing buffer solutions. LWT, 98(14), 591–597. https://doi.org/10.1016/j.lwt.2018.09.030spa
dc.relation.referencesJohn, D., & Ramaswamy, H. S. (2020). Comparison of pulsed light inactivation kinetics and modeling of Escherichia coli (ATCC-29055), Clostridium sporogenes (ATCC-7955) and Geobacillus stearothermophilus (ATCC-10149). Current Research in Food Science, 3, 82–91. https://doi.org/10.1016/J.CRFS.2020.03.005spa
dc.relation.referencesKader, A. A. (2008). Parámetros de calidad y estándares de clasificación en mango. Revisión de información disponible y futuras necesidades de investigación. https://www.mango.org/wp-content/uploads/2018/03/Mango_Grade_Standards_Final_Report_Spn.pdfspa
dc.relation.referencesKan, J., Hui, Y., Lin, X., Liu, Y., & Jin, C. (2021). Postharvest ultraviolet-C treatment of peach fruit: Changes in transcriptome profile focusing on genes involved in softening and senescence. Journal of Food Processing and Preservation, 45(10), e15813. https://doi.org/10.1111/JFPP.15813spa
dc.relation.referencesKarpiński, T. M., & Adamczak, A. (2019). Fucoxanthin-an antibacterial carotenoid. antioxidants, 8, 239. https://doi.org/10.3390/ANTIOX8080239spa
dc.relation.referencesKaushal, P., & Sharma, H. K. (2011). Concept of computational fluid dynamics (CFD) and its applications in food processing equipment design. Journal of Food Processing & Technology, 3(1), 1–7. https://doi.org/10.4172/2157-7110.1000138spa
dc.relation.referencesKavakli, I. H., Ozturk, N., & Gul, S. (2019). DNA repair by photolyases. Advances in Protein Chemistry and Structural Biology, 115, 1–19. https://doi.org/10.1016/BS.APCSB.2018.10.003spa
dc.relation.referencesKaya, Z., Unluturk, S., Martin-Belloso, O., & Soliva-Fortuny, R. (2020). Effectiveness of pulsed light treatments assisted by mild heat on Saccharomyces cerevisiae inactivation in verjuice and evaluation of its quality during storage. Innovative Food Science & Emerging Technologies, 66, 102517. https://doi.org/10.1016/J.IFSET.2020.102517spa
dc.relation.referencesKhubone, L. W., & Mditshwa, A. (2018). The effects of UV-C irradiation on postharvest quality of tomatoes (Solanum lycopersicum). Acta Horticulturae, 1201, 75–82. https://doi.org/10.17660/ACTAHORTIC.2018.1201.11spa
dc.relation.referencesKim, H. G., & Song, K. Bin. (2017). Combined treatment with chlorine dioxide gas, fumaric acid, and ultraviolet-C light for inactivating Escherichia coli O157:H7 and Listeria monocytogenes inoculated on plums. Food Control, 71, 371–375. https://doi.org/10.1016/j.foodcont.2016.07.022spa
dc.relation.referencesKingwascharapong, P., Iida, Y., Tanaka, F., & Tanaka, F. (2020). Simulation of a UV-C conveyor system using computational fluid dynamics techniques on the uniformity of the incident UV-C dose distribution to strawberry. Journal of the Faculty of Agriculture, Kyushu University, 65(2), 371–378. https://doi.org/10.5109/4103903spa
dc.relation.referencesKoutchma, T., Forney, L., & Moraru, C. (2009). Ultraviolet light in food technology: principles and applications (T. Koutchma (Ed.)). CRC Press. https://doi.org/10.1201/9781420059519.ch4spa
dc.relation.referencesKumar, M., Saurabh, V., Tomar, M., Hasan, M., Changan, S., Sasi, M., Maheshwari, C., Prajapati, U., Singh, S., Prajapat, R. K., Dhumal, S., Punia, S., Amarowicz, R., & Mekhemar, M. (2021). Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants, 10(2), 299. https://doi.org/10.3390/ANTIOX10020299spa
dc.relation.referencesLamikanra, O., Kueneman, D., Ukuku, D., & Bett-Garber, K. L. (2005). Effect of processing under ultraviolet light on the shelf life of fresh-cut cantaloupe melon. Journal of Food Science, 70(9), C534–C539. https://doi.org/10.1111/j.1365-2621.2005.tb08301.xspa
dc.relation.referencesLasagabaster, A., & Martínez de Marañón, I. (2017). Comparative study on the inactivation and photoreactivation response of Listeria monocytogenes seafood isolates and a Listeria innocua surrogate after pulsed light treatment. Food and Bioprocess Technology, 10, 1931–1935. https://doi.org/10.1007/S11947-017-1972-6spa
dc.relation.referencesLaw, J. W.-F., Ab Mutalib, N.-S., Chan, K.-G., & Lee, L.-H. (2015). An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Frontiers in Microbiology, 6, 1227. https://doi.org/10.3389/fmicb.2015.01227spa
dc.relation.referencesLázaro, A., & Lorenzo, C. de. (2015). Texture analysis in melon landraces through instrumental and sensory methods. International Journal of Food Properties, 18(7), 1575–1583. https://doi.org/10.1080/10942912.2014.923441spa
dc.relation.referencesLi, P., Yu, X., & Xu, B. (2017). Effects of UV-C light exposure and refrigeration on phenolic and antioxidant profiles of subtropical fruits (litchi, longan, and rambutan) in different fruit forms. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/8785121spa
dc.relation.referencesLiu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of postharvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit. Scientia Horticulturae, 241, 107–114. https://doi.org/10.1016/J.SCIENTA.2018.06.075spa
dc.relation.referencesLiu, J., Stevens, C., Khan, V. A., Lu, J. Y., Wilson, C. L., Adeyeye’, O., Kabwe’, M. K., Pusey, P. L., Chalutz, E., Sultana, T., & Droby, S. (1993). Application of ultraviolet-C light on storage rots and ripening of tomatoes. Journal of Food Protection, 56(10), 868–872. https://doi.org/10.4315/0362-028X-56.10.868spa
dc.relation.referencesLiu, Z., Hu, S., Soteyome, T., Bai, C., Liu, J., Wang, Z., Kjellerup, B. V., & Xu, Z. (2021). Intense pulsed light for inactivation of foodborne gram-positive bacteria in planktonic cultures and bacterial biofilms. LWT, 152, 112374. https://doi.org/10.1016/J.LWT.2021.112374spa
dc.relation.referencesLondoño-Londoño, J. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. In Desarrollo y transversalidad (pp. 129–162). Corporación Universitaria Lasallista. http://repository.lasallista.edu.co/dspace/handle/10567/133spa
dc.relation.referencesLuna-Guevara, J. J., Arenas-Hernandez, M. M. P., Martínez De La Peña, C., Silva, J. L., & Luna-Guevara, M. L. (2019). The role of pathogenic E. coli in fresh vegetables: behavior, contamination factors, and preventive measures. International Journal of Microbiology, 2019, 1–10. https://doi.org/10.1155/2019/2894328spa
dc.relation.referencesMa, X., Zheng, B., Ma, Y., Xu, W., Wu, H., & Wang, S. (2018). Carotenoid accumulation and expression of carotenoid biosynthesis genes in mango flesh during fruit development and ripening. Scientia Horticulturae, 237, 201–206. https://doi.org/10.1016/J.SCIENTA.2018.04.009spa
dc.relation.referencesMahecha, G., De Civetta, L. A., & Rodríguez, C. (1991). Normas de calidad para las variedades de mango “Tommy Atkins” y “común” (hilacha). Revista Colombiana de Química, 20(2), 10–17. https://doi.org/10.15446/rev.colomb.quimspa
dc.relation.referencesMaherani, B., Hossain, F., Criado, P., Ben-Fadhel, Y., Salmieri, S., & Lacroix, M. (2016). World market development and consumer acceptance of irradiation technology. Foods, 5(4), 79. https://doi.org/10.3390/FOODS5040079spa
dc.relation.referencesMaldonado-Celis, M. E., Yahia, E. M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., Restrepo, B., & Guerrero Ospina, J. C. (2019). Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Frontiers in Plant Science, 10, 1073. https://doi.org/10.3389/fpls.2019.01073spa
dc.relation.referencesMarques, A., Chicaybam, G., Araujo, M. T., Manhães, L. R. T., & Sabaa-Srur, A. U. O. (2010). Composição centesimal e de minerais de casca e polpa de manga (Mangifera indica L.) cv. Tommy Atkins. Revista Brasileira de Fruticultura, 32(4), 1206–1210. https://doi.org/10.1590/S0100-29452010005000117spa
dc.relation.referencesMárquez-Villacorta, L., Pretell-Vásquez, C., & Minchón-Medina, C. (2011). Efecto del tratamiento desinfectante y tiempo de almacenamiento sobre las características fisicoquímicas, microbiológicas y sensoriales de rebanadas de mango (Mangifera indica) Kent mínimamente procesado. Pueblo Continente, 22(2), 385–403. http://journal.upao.edu.pe/PuebloContinente/article/view/432spa
dc.relation.referencesMárquez-Villacorta, L., & Pretell-Vásquez, C. P. (2013). Irradiación UV-C en frutas tropicales mínimamente procesadas. Scientia Agropecuaria, 4(3), 147–161. https://www.redalyc.org/articulo.oa?id=357633706001spa
dc.relation.referencesMartínez-González, M. E., Balois-Morales, R., Alia-Tejacal, I., Cortes-Cruz, M. A., Palomino-Hermosillo, Y. A., & López-Gúzman, G. G. (2010). Poscosecha de frutos: maduración y cambios bioquímicos. Revista Mexicana de Ciencias Agrícolas, Extra 19, 4075–4087. https://doi.org/10.29312/remexca.v0i19.674spa
dc.relation.referencesMartínez-Hernández, G. B., Artés-Hernández, F., Gómez, P. A., Formica, A. C., & Artés, F. (2013). Combination of electrolysed water, UV-C and superatmospheric O2 packaging for improving fresh-cut broccoli quality. Postharvest Biology and Technology, 76, 125–134. https://doi.org/10.1016/J.POSTHARVBIO.2012.09.013spa
dc.relation.referencesMathew, E. N., Muyyarikkandy, M. S., Kuttappan, D., & Amalaradjou, M. A. (2018). Attachment of Salmonella enterica on mangoes and survival under conditions simulating commercial mango packing house and importer facility. Frontiers in Microbiology, 9, 1519. https://doi.org/10.3389/fmicb.2018.01519spa
dc.relation.referencesMaurer, L. H., Bersch, A. M., Santos, R. O., Trindade, S. C., Costa, E. L., Peres, M. M., Malmann, C. A., Schneider, M., Bochi, V. C., Sautter, C. K., & Emanuelli, T. (2017). Postharvest UV-C irradiation stimulates the non-enzymatic and enzymatic antioxidant system of ‘Isabel’ hybrid grapes (Vitis labrusca × Vitis vinifera L.). Food Research International, 102, 738–747. https://doi.org/10.1016/j.foodres.2017.09.053spa
dc.relation.referencesMichailidis, M., Karagiannis, E., Polychroniadou, C., Tanou, G., Karamanoli, K., & Molassiotis, A. (2019). Metabolic features underlying the response of sweet cherry fruit to postharvest UV-C irradiation. Plant Physiology and Biochemistry, 144, 49–57. https://doi.org/10.1016/J.PLAPHY.2019.09.030spa
dc.relation.referencesMillán-Villarroel, D., Romero-González, L., Brito, M., & Ramos-Villarroel, A. Y. (2015). Luz ultravioleta: inactivación microbiana en frutas. Saber, 27(3), 454–469. http://www.ojs.udo.edu.ve/index.php/saber/article/view/1897spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2013a). La inocuidad de alimentos y su importancia en la cadena agroalimentaria. https://www.minsalud.gov.co/Documents/Archivos-temporal-jd/alimentos-temporal.pdfspa
dc.relation.referencesMinisterio de Salud y Protección Social. (2013b). Resolución 3929 de 2013. https://www.invima.gov.co/images/pdf/normatividad/alimentos/resoluciones/resoluciones/2013/Resolucion-3929-2013.pdfspa
dc.relation.referencesModest, M. F. (2013). The radiative transfer equation in participating media (RTE). In M. F. Modest (Ed.), Radiative Heat Transfer (pp. 279–302). Academic Press. https://doi.org/10.1016/B978-0-12-386944-9.50010-8spa
dc.relation.referencesMohamed, N. T. S., Ding, P., Kadir, J., & Ghazali, H. M. (2017). Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA “Berangan” during fruit ripening. Food Science & Nutrition, 5, 967–980. https://doi.org/10.1002/FSN3.482spa
dc.relation.referencesMoharram, H. A., & Youssef, M. M. (2014). Methods for determining the antioxidant activity: A review. Alexandria Journal of Food Science and Technology, 11(1), 31–42.spa
dc.relation.referencesMonroy, C. A., Marin-Arango, Z. T., & Giraldo, G. A. (2017). Efecto de diferentes cortes en lechuga Batavia (Lactuca sativa L). Alimentos Hoy, 25(40), 77–86. https://alimentoshoy.acta.org.co/index.php/hoy/article/view/434/358spa
dc.relation.referencesMorales, M., Soledad Hernández-, M., Cabezas, M., Barrera, J., & Martínez, O. (2001). Caracterización de la maduración del fruto de pina nativa (Ananas comosus L. Merrill) CV. India. Agronomía Colombiana, 18(1–3), 63–69. https://revistas.unal.edu.co/index.php/agrocol/article/view/21706spa
dc.relation.referencesMoreno, B. L., & Deaquiz-Oyola, Y. A. (2015). Caracterización de parámetros fisicoquímicos en frutos de mora (Rubus alpinus Macfad). Acta Agronómica, 65(2), 130–136. https://doi.org/10.15446/acag.v65n2.45587spa
dc.relation.referencesMoreno, C., Andrade-Cuvi, M. J., Zaro, M. J., Darre, M., Vicente, A. R., & Concellón, A. (2017). Short UV-C treatment prevents browning and extends the shelf-life of fresh-cut carambola. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/2548791spa
dc.relation.referencesMukherjee, S. K., & Litz, R. E. (2009). 1 Introduction: Botany and importance. In R. E. Litz (Ed.), The mango: Botany, production and uses (pp. 1–18). CAB International.spa
dc.relation.referencesMuoki, P. N., Makokha, A. O., Onyango, C. A., & Ojijo, N. K. O. (2009). Potential contribution of mangoes to reduction of vitamin A deficiency in Kenya. Ecology of Food and Nutrition, 48(6), 482–498. https://doi.org/10.1080/03670240903308604spa
dc.relation.referencesNigro, F., & Ippolito, A. (2016). UV-C light to reduce decay and improve quality of stored fruit and vegetables: a short review. Acta Horticulturae, 1144, 293–298. https://doi.org/10.17660/ActaHortic.2016.1144.43spa
dc.relation.referencesNigro, F., Ippolito, A., & Lima, G. (1998). Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13(3), 171–181. https://doi.org/10.1016/S0925-5214(98)00009-Xspa
dc.relation.referencesNorton, T., & Sun, D.-W. (2006). Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science and Technology, 17(11), 600–620. https://doi.org/10.1016/j.tifs.2006.05.004spa
dc.relation.referencesNorton, T., & Sun, D.-W. (2007). An overview of CFD applications in the food industry. In D.-W. Sun (Ed.), Computational fluids dynamics in food processing (pp. 1–41). CRC Press. https://doi.org/10.1201/9781420009217.ch1spa
dc.relation.referencesNorton, T., & Sun, D.-W. (2010). CFD: An innovative and effective design tool for the food industry. In J. Aguilera, R. Simpson, J. Welti-Chanes, D. Bermudez-Aguirre, & G. Barbosa-Canovas (Eds.), Food Engineering Interfaces (pp. 45–68). Springer. https://doi.org/10.1007/978-1-4419-7475-4_3spa
dc.relation.referencesNtsoane, M. L., Zude-Sasse, M., Mahajan, P., & Sivakumar, D. (2019). Quality assesment and postharvest technology of mango: A review of its current status and future perspectives. Scientia Horticulturae, 249, 77–85. https://doi.org/10.1016/J.SCIENTA.2019.01.033spa
dc.relation.referencesObande, M. A., & Shama, G. (2011). The use of biodosimetry to measure the UV-C dose delivered to a sphere, and implications for the commercial treatment of fruit. Journal of Food Engineering, 104(1), 1–5. https://doi.org/10.1016/J.JFOODENG.2010.11.017spa
dc.relation.referencesObande, M. A., Tucker, G. A., & Shama, G. (2011). Effect of preharvest UV-C treatment of tomatoes (Solanum lycopersicon Mill.) on ripening and pathogen resistance. Postharvest Biology and Technology, 62(2), 188–192. https://doi.org/10.1016/J.POSTHARVBIO.2011.06.001spa
dc.relation.referencesOrdoñez-Santos, L. E., Martínez-Girón, J., Villamizar-Vargas, R. H., & Villamizar-Vargas, R. H. (2018). Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA, 85(206), 128–134. https://doi.org/10.15446/dyna.v85n206.68089spa
dc.relation.referencesOrtega, V. G., Ramírez, J. A., Velázquez, G., Tovar, B., Mata, M., & Montalvo, E. (2013). Effect of high hydrostatic pressure on antioxidant content of “Ataulfo” mango during postharvest maturation. Food Science and Technology, 33(3), 561–568. https://doi.org/10.1590/S0101-20612013005000062spa
dc.relation.referencesOstos, S. L., Díaz, A. C., & Suarez, H. (2012). Evaluación de diferentes condiciones de proceso en la fortificación de mango (Tommy Atkins) con calcio mediante impregnación a vacío. Revista Chilena de Nutrición, 39(2), 181–190. https://doi.org/10.4067/S0717-75182012000200007spa
dc.relation.referencesPan, Y.-G., & Zu, H. (2012). Effect of UV-C Radiation on the Quality of Fresh-cut Pineapples. Procedia Engineering, 37, 113–119. https://doi.org/10.1016/J.PROENG.2012.04.212spa
dc.relation.referencesParish, M. E., Beuchat, L. R., Suslow, T. V., Harris, L. J., Garrett, E. H., Farber, J. N., & Busta, F. F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety, 2(s1), 161–173. https://doi.org/10.1111/j.1541-4337.2003.tb00033.xspa
dc.relation.referencesPark, M.-H., & Kim, J.-G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109–112. https://doi.org/10.1016/J.POSTHARVBIO.2014.09.013spa
dc.relation.referencesPataro, G., Sinik, M., Capitoli, M. M., Donsì, G., & Ferrari, G. (2015). The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science & Emerging Technologies, 30, 103–111. https://doi.org/10.1016/J.IFSET.2015.06.003spa
dc.relation.referencesPathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9spa
dc.relation.referencesPenteado, A. L., de Castro, M. F. P. M., & Rezende, A. C. B. (2014). Salmonella enterica serovar Enteritidis and Listeria monocytogenes in mango (Mangifera indica L.) pulp: growth, survival and cross‐contamination. Journal of the Science of Food and Agriculture, 94(13), 2746–2751. https://doi.org/10.1002/jsfa.6619spa
dc.relation.referencesPérez-Gálvez, A., Viera, I., & Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 1–39. https://doi.org/10.3390/ANTIOX9060505spa
dc.relation.referencesPérez-Pérez, E. P., & López-Malo, A. (2011). Tecnologías involucradas en el procesamiento mínimo de frutas y hortalizas. Temas Selectos de Ingeniería de Alimentos, 5(2), 13–27. https://www.udlap.mx/WP/tsia/files/No5-Vol-2/TSIA-5(2)-Pérez-Perez-et-al-2011.pdfspa
dc.relation.referencesPérez-Perez, L. M., Del-Toro-Sánchez, C. L., Sánchez-Chavez, E., González-Vega, R. I., Reyes-Díaz, A., Borboa-Flores, J., Soto-Parra, J. M., & Flores-Cordova, M. A. (2020). Bioaccesibilidad de compuestos antioxidantes de diferentes variedades de frijol (Phaseolus vulgaris L.) en México, mediante un sistema gastrointestinal in vitro. Biotecnia, 22(1), 117–125. https://doi.org/10.18633/BIOTECNIA.V22I1.1159spa
dc.relation.referencesPinela, J., & Ferreira, I. C. F. R. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547spa
dc.relation.referencesPinzón, I. M. del P., Fischer, G., & Corredor, G. (2007). Determinación de los estados de madurez del fruto de la gulupa (Passiflora edulis Sims.). Agronomía Colombiana, 25(1), 83–95. http://www.scielo.org.co/pdf/agc/v25n1/v25n1a10.pdfspa
dc.relation.referencesPrajapati, U., Asrey, R., Varghese, E., Singh, A. K., & Pal Singh, M. (2021). Effects of postharvest ultraviolet-C treatment on shelf-life and quality of bitter gourd fruit during storage. Food Packaging and Shelf Life, 28, 100665. https://doi.org/10.1016/J.FPSL.2021.100665spa
dc.relation.referencesPrasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena–an overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841spa
dc.relation.referencesPreetha, P., Pandiselvam, R., Varadharaju, N., Kennedy, Z. J., Balakrishnan, M., & Kothakota, A. (2021). Effect of pulsed light treatment on inactivation kinetics of Escherichia coli (MTCC 433) in fruit juices. Food Control, 121, 107547. https://doi.org/10.1016/J.FOODCONT.2020.107547spa
dc.relation.referencesPretell-Vásquez, C., Márquez-Villacorta, L., Siche, R., & Hayayumi-Valdivia, M. (2020). Efecto del ozono y tiempo de almacenamiento sobre las características fisicoquímicas de espárrago verde (Asparagus officinalis L.) mínimamente procesado. Ciencia & Tecnología Agropecuaria, 21(3), 2–16. https://doi.org/10.21930/RCTA.VOL21_NUM3_ART:1506spa
dc.relation.referencesPristijono, P., Bowyer, M. C., Papoutsis, K., Scarlett, C. J., Vuong, Q. V., Stathopoulos, C. E., & Golding, J. B. (2019). Improving the storage quality of Tahitian limes (Citrus latifolia) by pre-storage UV-C irradiation. Journal of Food Science and Technology, 56, 1–7. https://doi.org/10.1007/s13197-019-03623-xspa
dc.relation.referencesPristijono, P., Golding, J. B., & Bowyer, M. C. (2019). Postharvest UV-C treatment, followed by storage in a continuous low-level ethylene atmosphere, maintains the quality of ‘Kensington pride’ mango fruit stored at 20 °C. Horticulturae, 5(1), 1–12. https://doi.org/10.3390/horticulturae5010001spa
dc.relation.referencesPuig-Peña, Y., Leyva-Castillo, V., Rodríguez-Suárez, A., Carrera-Vara, J., Molejón, P. L., Pérez-Muñoz, Y., & Dueñas-Moreira, O. (2002). Calidad microbiológica de las hortalizas y factores asociados a la contaminación en áreas de cultivo en La Habana. Revista Habanera de Ciencias Médicas, 13(1), 111–119. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2014000100013spa
dc.relation.referencesQuek, P. H., & Hu, J. (2008a). Influence of photoreactivating light intensity and incubation temperature on photoreactivation of Escherichia coli following LP and MP UV disinfection. Journal of Applied Microbiology, 105(1), 124–133. https://doi.org/10.1111/J.1365-2672.2008.03723.Xspa
dc.relation.referencesQuek, P. H., & Hu, J. (2008b). Indicators for photoreactivation and dark repair studies following ultraviolet disinfection. Journal of Industrial Microbiology and Biotechnology, 35(6), 533–533. https://doi.org/10.1007/S10295-008-0314-0spa
dc.relation.referencesQuintero-Cerón, J. P., Bohorquez-Pérez, Y., Valenzuela-Real, C., & Solanilla-Duque, J. F. (2013). Avances en la aplicación de luz ultravioleta de onda corta (UVC) en frutas y vegetales enteros y mínimamente procesados: revisión. Revista Tumbaga, 1(8), 29–60. http://revistas.ut.edu.co/index.php/tumbaga/article/view/294/349spa
dc.relation.referencesRamírez-Méndez, R., Quijada, O., Castellano, G., Burgos, M. E., Camacho, R., & Marin R., C. (2010). Características físicas y químicas de frutos de trece cultivares de mango (Mangifera indica L) en el municipio Mara en la planicie de Maracaibo. Revista Iberoamericana de Tecnología Postcosecha, 10(2), 65–72. http://www.redalyc.org/html/813/81315091002/spa
dc.relation.referencesRangel-Marrón, M., & López-Malo, A. (2012). Cambios en frutas tropicales frescas, cortadas y empacadas en atmósfera modificada durante su almacenamiento en refrigeración. Temas Selectos de Ingeniería de Alimentos, 6(2), 94–109. http://web.udlap.mx/tsia/files/2013/12/TSIA-62Rangel-Marron-et-al-2012.pdfspa
dc.relation.referencesRani, K., Manasa, C. B., Jagadeesh, S., & Thammaiah, N. (2019). Colour measurement of ripening mango fruits as influenced by pre-harvest treatments using L* a* b* coordinates. Journal of Pharmacognosy and Phytochemistry, 8(1), 2466–2470.spa
dc.relation.referencesRaybaudi-Massilia, R., Calderón-Gabaldón, M. I., Mosqueda-Melgar, J., & Tapia, M. S. (2013). Inactivation of Salmonella enterica ser. Poona and Listeria monocytogenes on fresh-cut “Maradol” red papaya (Carica papaya L) treated with UV-C light and malic acid. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 8(1–2), 37–44. https://doi.org/10.1007/s00003-013-0808-1spa
dc.relation.referencesRazali, Z., Somasundram, C., Nurulain, S. Z., Kunasekaran, W., & Alias, M. R. (2021). Postharvest quality of cherry tomatoes coated with mucilage from dragon fruit and irradiated with UV-C. Polymers, 13(17), 2919. https://doi.org/10.3390/POLYM13172919spa
dc.relation.referencesRees, C. E. D., Doyle, L., & Taylor, C. M. (2017). Listeria monocytogenes. In C. E. R. Dodd, T. Aldsworth, R. A. Stein, D. O. Cliver, & H. P. Riemann (Eds.), Foodborne diseases (pp. 253–276). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-385007-2.00012-7spa
dc.relation.referencesRen, H. W., & Zhang, Y. (2011). Applications of computational fluid dynamics (CFD) in the Food Industry. Advanced Materials Research, 236–238, 2273–2278. https://doi.org/10.4028/www.scientific.net/AMR.236-238.2273spa
dc.relation.referencesRibeiro, S. M. R., Queiroz, J. H., Lopes de Queiroz, M. E., Campos, F. M., & Sant’Ana, H. M. P. (2007). Antioxidant in mango (Mangifera indica L.) pulp. Plant Foods for Human Nutrition, 62(1), 13–17. https://doi.org/10.1007/s11130-006-0035-3spa
dc.relation.referencesRivera-Pastrana, D. M., Gardea, A. A., Yahia, E. M., Martínez-Téllez, M. A., & González-Aguilar, G. A. (2014). Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit. Journal of Food Science and Technology, 51(12), 3821–3829. https://doi.org/10.1007/S13197-013-0942-Xspa
dc.relation.referencesRivera-Pastrana, Dulce M., Béjar, A. A. G., Martínez-Téllez, M. Á., Rivera-Domínguez, M., & González-Aguilar, G. A. (2007). Efectos bioquímicos postcosecha de la irradiación UV-C en frutas y hortalizas. Revista Fitotecnia Mexicana, 30(4), 361–372. http://www.redalyc.org/articulo.oa?id=61030403spa
dc.relation.referencesRobles-Sánchez, R. M., Rojas-Graü, M. A., Odriozola-Serrano, I., González-Aguilar, G. A., & Martín-Belloso, O. (2009). Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut ‘Kent’ mango (Mangifera indica L.). Postharvest Biology and Technology, 51(3), 384–390. https://doi.org/10.1016/J.POSTHARVBIO.2008.09.003spa
dc.relation.referencesRodriguez-Amaya, D. B. (2019). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 124, 200–205. https://doi.org/10.1016/J.FOODRES.2018.05.028spa
dc.relation.referencesRodríguez-Mijangos, R., Gonzalez-Boué, G., Barffuson-Dominguez, F., López-Vargas, J. M., & Gómez-Yépiz, M. S. (2014). Cámara de irradiación UV-C económica y sus potenciales aplicaciones en la desinfección de alimentos. EPISTEMUS, 16, 72–78. https://biblat.unam.mx/hevila/EpistemusCienciatecnologiaysalud/2014/no16/10.pdfspa
dc.relation.referencesRomero, L., Colivet, J., Aron, N. M., & Ramos-Villarroel, A. (2017). Impact of ultraviolet light on quality attributes of stored fresh-cut mango. The Annals of the University Dunarea de Jos of Galati Fascicle VI – Food Technology, 41(1), 62–80. http://eds.a.ebscohost.com/eds/detail/detail?vid=0&sid=7221daa0-c4ff-44c6-aa97-f4f0446caa61%40sessionmgr4008&bdata=Jmxhbmc9ZXMmc2l0ZT1lZHMtbGl2ZQ%3D%3D#AN=125098472&db=fsrspa
dc.relation.referencesRosalie, R., Léchaudel, M., Dhuique-Mayer, C., Dufossé, L., & Joas, J. (2018). Antioxidant and enzymatic responses to oxidative stress induced by cold temperature storage and ripening in mango (Mangifera indica L. cv. ‘Cogshall’) in relation to carotenoid content. Journal of Plant Physiology, 224–225, 75–85. https://doi.org/10.1016/J.JPLPH.2018.03.011spa
dc.relation.referencesRuales, J., Baenas, N., Moreno, D. A., Stinco, C. M., Meléndez-Martínez, A. J., & García-Ruiz, A. (2018). Biological Active Ecuadorian Mango ‘Tommy Atkins’ Ingredients—An Opportunity to Reduce Agrowaste. Nutrients, 10(9). https://doi.org/10.3390/nu10091138spa
dc.relation.referencesRuelas-Chacón, X., De La, M., Reyes-Vega, L., Valdivia-Urdiales, B., Carlos Contreras-Esquivel, J., César Montañez-Saenz, J., Aguilera-Carbó, A. F., & Darío Peralta-Rodríguez, R. (2013). Conservación de Frutas y Hortalizas Frescas y Mínimamente Procesadas con Recubrimientos Comestibles. Revista Científica de La Universidad Autónoma de Coahuila, 5(9), 31–37.spa
dc.relation.referencesRuiz-Cruz, S., Acedo-Félix, E., Díaz-Cinco, M., Islas-Osuna, M. A., & González-Aguilar, G. A. (2007). Efficacy of sanitizers in reducing Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes populations on fresh-cut carrots. Food Control, 18(11), 1383–1390. https://doi.org/10.1016/j.foodcont.2006.09.008spa
dc.relation.referencesRuiz-Cruz, S., Alvarez-Parrilla, E., de la Rosa, L. A., Martinez-Gonzalez, A. I., de Jesus Ornelas-Paz, J., Mendoza-Wilson, A. M., & Gonzalez-Aguilar, G. A. (2010). Effect of different sanitizers on microbial, sensory and nutritional quality of fresh-cut jalapeno peppers. American Journal of Agricultural and Biological Science, 5(3), 331–341. https://doi.org/10.3844/ajabssp.2010.331.341spa
dc.relation.referencesRybak, K., Wiktor, A., Pobiega, K., Witrowa-Rajchert, D., & Nowacka, M. (2021). Impact of pulsed light treatment on the quality properties and microbiological aspects of red bell pepper fresh-cuts. LWT, 149, 111906. https://doi.org/10.1016/J.LWT.2021.111906spa
dc.relation.referencesSaini, R. K., & Keum, Y. S. (2018). Significance of genetic, environmental, and pre- and postharvest factors affecting carotenoid contents in crops: A review. Journal of Agricultural and Food Chemistry, 66(21), 5310–5325. https://doi.org/10.1021/ACS.JAFC.8B01613/ASSET/IMAGES/ACS.JAFC.8B01613.SOCIAL.JPEG_V03spa
dc.relation.referencesSalinas-Roca, B., Guerreiro, A., Welti-Chanes, J., Antunes, M. D. C., & Martín-Belloso, O. (2018). Improving quality of fresh-cut mango using polysaccharide-based edible coatings. International Journal of Food Science & Technology, 53(4), 938–945. https://doi.org/10.1111/IJFS.13666spa
dc.relation.referencesSandia National Laboratories. (2007). UV disinfection. https://www.sandia.gov/cfd-water/uvdisinfection.htmspa
dc.relation.referencesSanto, D., Graça, A., Nunes, C., & Quintas, C. (2018). Escherichia coli and Cronobacter sakazakii in ‘Tommy Atkins’ minimally processed mangos: Survival, growth and effect of UV-C and electrolyzed water. Food Microbiology, 70, 49–54. https://doi.org/10.1016/j.fm.2017.09.008spa
dc.relation.referencesSastry, S. K., Datta, A. K., & Worobo, R. W. (2000). Ultraviolet light. Journal of Food Science, 65, 90–92. https://doi.org/10.1111/j.1750-3841.2000.tb00623.xspa
dc.relation.referencesScott, G., & Richardson, P. (1997). The application of computational fluid dynamics in the food industry. Trends in Food Science & Technology, 8(4), 119–124. https://doi.org/10.1016/S0924-2244(97)01028-5spa
dc.relation.referencesSgroppo, S. C., & Sosa, C. A. (2009). Zapallo anco (Cucurbita moschata D.) fresco cortado tratado con luz UV-C. FACENA, 25, 7–19. https://revistas.unne.edu.ar/index.php/fce/article/view/5474spa
dc.relation.referencesShama, G. (2005). Ultraviolet Light. In Y. H. Hui (Ed.), Handbook of Food Science, Technology, and Engineering (pp. 122-1–122–14). CRC Press.spa
dc.relation.referencesShama, G. (2007). Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biology and Technology, 44(1), 1–8. https://doi.org/10.1016/J.POSTHARVBIO.2006.11.004spa
dc.relation.referencesSharifi-Yazdi, M. K., & Darghahi, H. (2006). Inactivation of pathogenic bacteria using pulsed UV-light and its application in water disinfection and quality control. Acta Medica Iranica, 44(5), 305–308. https://acta.tums.ac.ir/index.php/acta/article/view/3205spa
dc.relation.referencesShehata, S. A., Abdeldaym, E. A., Ali, M. R., Mohamed, R. M., Bob, R. I., & Abdelgawad, K. F. (2020). Effect of some citrus essential oils on post-harvest shelf life and physicochemical quality of strawberries during cold storage. Agronomy, 10(10), 1466. https://doi.org/10.3390/AGRONOMY10101466spa
dc.relation.referencesShen, Y., Sun, Y., Qiao, L., Chen, J., Liu, D., & Ye, X. (2013). Effect of UV-C treatments on phenolic compounds and antioxidant capacity of minimally processed Satsuma mandarin during refrigerated storage. Postharvest Biology and Technology, 76, 50–57. https://doi.org/10.1016/J.POSTHARVBIO.2012.09.006spa
dc.relation.referencesSilveira, A. C., Conesa, A., Aguayo, E., & Artés, F. (2008). Alternative sanitizers to chlorine for use on fresh‐cut “Galia” (Cucumis melo var. catalupensis) melon. Journal of Food Science, 73(9), M405–M411. https://doi.org/10.1111/j.1750-3841.2008.00939.xspa
dc.relation.referencesSivapalasingam, S., Barrett, E., Kimura, A., Van Duyne, S., De Witt, W., Ying, M., Frisch, A., Phan, Q., Gould, E., Shillam, P., Reddy, V., Cooper, T., Hoekstra, M., Higgins, C., Sanders, J. P., Tauxe, R. V., & Slutsker, L. (2003). A multistate outbreak of Salmonella enterica Serotype Newport infection linked to mango consumption: Impact of water-dip disinfestation technology. Clinical Infectious Diseases, 37(12), 1585–1590. https://doi.org/10.1086/379710spa
dc.relation.referencesSoto-Varela, Z., Pérez-Lavalle, L., & Estrada-Alvarado, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: una mirada en Colombia. Salud Uninorte, 32(1), 105–122. http://www.scielo.org.co/pdf/sun/v32n1/v32n1a10.pdfspa
dc.relation.referencesSripong, K., Jitareerat, P., & Uthairatanakij, A. (2019). UV irradiation induces resistance against fruit rot disease and improves the quality of harvested mangosteen. Postharvest Biology and Technology, 149, 187–194. https://doi.org/10.1016/J.POSTHARVBIO.2018.12.001spa
dc.relation.referencesStannard, C. J., Abbiss, J. S., & Wood, J. M. (1983). Combined Treatment with hydrogen peroxide and ultraviolet irradiation to reduce microbial contamination levels in pre-formed food packaging cartons. Journal of Food Protection, 46(12), 1060–1064. https://doi.org/10.4315/0362-028X-46.12.1060spa
dc.relation.referencesStannard, C. J., Abbiss, J. S., & Wood, J. M. (1985). Efficiency of treatments involving ultraviolet irradiation for decontaminating packaging board of different surface compositions. Journal of Food Protection, 48(9), 786–789. https://doi.org/10.4315/0362-028X-48.9.786spa
dc.relation.referencesStevens, C., Khan, V. A., Tang, A. Y., & Lu, J. Y. (1990). The effect of ultraviolet radiation on mold rots and nutrients of stored sweet potatoes. Journal of Food Protection, 53(3), 223–226. https://doi.org/10.4315/0362-028X-53.3.223spa
dc.relation.referencesStevens, C., Khan, V. A., Wilson, C. L., Lu, J. Y., Chalutz, E., & Droby, S. (2005). The effect of fruit orientation of postharvest commodities following low dose ultraviolet light-C treatment on host induced resistance to decay. Crop Protection, 24(8), 756–759. https://doi.org/10.1016/J.CROPRO.2004.12.008spa
dc.relation.referencesStrawn, L. K., & Danyluk, M. D. (2010). Fate of Escherichia coli O157:H7 and Salmonella spp. on fresh and frozen cut mangoes and papayas. International Journal of Food Microbiology, 138(1–2), 78–84. https://doi.org/10.1016/J.IJFOODMICRO.2009.12.002spa
dc.relation.referencesSultan, T. (2016). Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor. Chemosphere, 155, 170–179. https://doi.org/10.1016/j.chemosphere.2016.04.050spa
dc.relation.referencesSyamaladevi, R. M., Lu, X., Sablani, S. S., Insan, S. K., Adhikari, A., Killinger, K., Rasco, B., Dhingra, A., Bandyopadhyay, A., & Annapure, U. (2013). Inactivation of Escherichia coli population on fruit surfaces using ultraviolet-C light: Influence of fruit surface characteristics. Food and Bioprocess Technology, 6(11), 2959–2973. https://doi.org/10.1007/s11947-012-0989-0spa
dc.relation.referencesTafur-Garzón, M. allister. (2009). La inocuidad de alimentos y el comercio internacional. Revista Colombiana de Ciencias Pecuarias, 22(3), 330–338. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902009000300009spa
dc.relation.referencesTanaka, F., Nashiro, K., Trivittayasil, V., & Uchino, T. (2016). Simulation of UV-C dose distribution and inactivation of mold spore on strawberries in a conveyor system. Food Science and Technology Research, 22(4), 461–466. https://doi.org/10.3136/fstr.22.461spa
dc.relation.referencesTaze, B. H., & Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233, 370–377. https://doi.org/10.1016/J.SCIENTA.2018.02.012spa
dc.relation.referencesTerry, L. A., & Joyce, D. C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biology and Technology, 32(1), 1–13. https://doi.org/10.1016/J.POSTHARVBIO.2003.09.016spa
dc.relation.referencesTharanathan, R. N., Yashoda, H. M., & Prabha, T. N. (2006). Mango (Mangifera indica L.), “the king of fruits”—an overview. Food Reviews International, 22(2), 95–123. https://doi.org/10.1080/87559120600574493spa
dc.relation.referencesThompson, C. L., & Sancar, A. (2002). Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogene, 21(58), 9043–9056. https://doi.org/10.1038/sj.onc.1205958spa
dc.relation.referencesTrivittayasil, V., Nashiro, K., Tanaka, F., Hamanaka, D., & Uchino, T. (2015). Inactivation characteristics and modeling of mold spores by UV-C radiation based on irradiation dose. Food Science and Technology Research, 21(3), 365–370. https://doi.org/10.3136/fstr.21.365spa
dc.relation.referencesTrivittayasil, V., Tanaka, F., & Uchino, T. (2016). Simulation of UV-C intensity distribution and inactivation of mold spores on strawberries. Food Science and Technology Research, 22(2), 185–192. https://doi.org/10.3136/fstr.22.185spa
dc.relation.referencesU.S. Food and Drugs Administration. (2020, October 3). Country fresh expands voluntary recall. https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/country-fresh-expands-voluntary-recallspa
dc.relation.referencesvan Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1–2), 139–159. https://doi.org/10.1016/S0168-1605(01)00742-5spa
dc.relation.referencesvan Boekel, M. A. J. S. (2008). Kinetic modeling of food quality: A critical review. comprehensive reviews in food science and food safety, 7(1), 144–158. https://doi.org/10.1111/j.1541-4337.2007.00036.xspa
dc.relation.referencesVelderrain-Rodríguez, G. R., Salmerón-Ruiz, M. L., González-Aguilar, G. A., Martín-Belloso, O., & Soliva-Fortuny, R. (2021). Ultraviolet/visible intense pulsed light irradiation of fresh-cut avocado enhances its phytochemicals content and preserves quality attributes. Journal of Food Processing and Preservation, 45(3), e15289. https://doi.org/10.1111/JFPP.15289spa
dc.relation.referencesVillamizar-Vargas, R., Quiceno-Gómez, C., & Giraldo-Giraldo, G. (2019). Cambios fisicoquímicos durante la maduración del mango Tommy Atkins en la poscosecha. Revista U.D.C.A Actualidad & Divulgación Científica, 22(1). https://doi.org/10.31910/RUDCA.V22.N1.2019.1159spa
dc.relation.referencesVirto, R., Sanz, D., Álvarez, I., Condón, S., & Raso, J. (2006). Application of the Weibull model to describe inactivation of Listeria monocytogenes and Escherichia coli by citric and lactic acid at different temperatures. Journal of the Science of Food and Agriculture, 86(6), 865–870. https://doi.org/10.1002/jsfa.2424spa
dc.relation.referencesWang, C. Y., Chen, C.-T., & Wang, S. Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117(3), 426–431. https://doi.org/10.1016/J.FOODCHEM.2009.04.037spa
dc.relation.referencesWang, D., Chen, L., Ma, Y., Zhang, M., Zhao, Y., & Zhao, X. (2019). Effect of UV-C treatment on the quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root. Food Chemistry, 278, 659–664. https://doi.org/10.1016/J.FOODCHEM.2018.11.102spa
dc.relation.referencesWHO. (2018a). E. coli. http://www.who.int/es/news-room/fact-sheets/detail/e-colispa
dc.relation.referencesWHO. (2018b). Inocuidad de los alimentos. http://www.who.int/es/news-room/fact-sheets/detail/food-safetyspa
dc.relation.referencesWHO. (2018c). Listeriosis. World Health Organization. https://www.who.int/mediacentre/factsheets/listeriosis/es/spa
dc.relation.referencesWHO. (2018d). Salmonella (no tifoidea). http://www.who.int/es/news-room/fact-sheets/detail/salmonella-(non-typhoidal)spa
dc.relation.referencesWHO. (2020). Foodborne diseases. https://www.who.int/health-topics/foodborne-diseases#tab=tab_1spa
dc.relation.referencesWiley, R. C., & Yildiz, F. (2017). Introduction to minimally processed refrigerated (MPR) fruits and vegetables. In R. C. Wiley & F. Yildiz (Eds.), Minimally processed refrigerated fruits and vegetables (Second Edition, pp. 3–15). Springer Science+Business Media LLC. https://doi.org/https://doi.org/10.1007/978-1-4939-7018-6spa
dc.relation.referencesWilson, C. L., Upchurch, B., El Ghaouth, A., Stevens, C., Khan, V., Droby, S., & Chalutz, E. (1997). Using an on-line UV-C apparatus to treat harvested fruit for controlling postharvest decay. HortTechnology, 7(3), 278–282. http://horttech.ashspublications.org/content/7/3/278.abstractspa
dc.relation.referencesWu, J., Liu, W., Yuan, L., Guan, W.-Q., Brennan, C. S., Zhang, Y.-Y., Zhang, J., & Wang, Z.-D. (2017). The influence of postharvest UV-C treatment on anthocyanin biosynthesis in fresh-cut red cabbage. Scientific Reports, 7(1), 5232. https://doi.org/10.1038/s41598-017-04778-3spa
dc.relation.referencesXia, B., & Sun, D.-W. (2002). Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture, 34(1–3), 5–24. https://doi.org/10.1016/S0168-1699(01)00177-6spa
dc.relation.referencesXiang, Q., Fan, L., Zhang, R., Ma, Y., Liu, S., & Bai, Y. (2020). Effect of UVC light-emitting diodes on apple juice: Inactivation of Zygosaccharomyces rouxii and determination of quality. Food Control, 111, 107082. https://doi.org/10.1016/J.FOODCONT.2019.107082spa
dc.relation.referencesXu, L., Tian, C., Lu, X., Ling, L., Lv, J., Wu, M., & Zhu, G. (2015). Photoreactivation of Escherichia coli is impaired at high growth temperatures. Journal of Photochemistry and Photobiology B: Biology, 147, 37–46. https://doi.org/10.1016/J.JPHOTOBIOL.2015.03.012spa
dc.relation.referencesYan, R., Yun, J., Gurtler, J., & Fan, X. (2017). Radiochromic film dosimetry for UV-C treatments of apple fruit. Postharvest Biology and Technology, 127, 14–20. https://doi.org/10.1016/J.POSTHARVBIO.2017.01.003spa
dc.relation.referencesYang, X., Wu, Q., Huang, J., Wu, S., Zhang, J., Chen, L., Wei, X., Ye, Y., Li, Y., Wang, J., Lei, T., Xue, L., Pang, R., & Zhang, Y. (2020). Prevalence and characterization of Salmonella isolated from raw vegetables in China. Food Control, 109, 106915. https://doi.org/10.1016/J.FOODCONT.2019.106915spa
dc.relation.referencesYoon, J. H., Han, A., Paek, J., & Lee, S. Y. (2019). Evaluation of non-isothermal inactivation on survivals of pathogenic bacteria by predictive models. LWT, 101, 366–373. https://doi.org/10.1016/J.LWT.2018.11.023spa
dc.relation.referencesZafar, T. A., & Sidhu, J. S. (2017). Composition and Nutritional Properties of Mangoes. In M. Siddiq, J. K. Brecht, & J. S. Sidhu (Eds.), Handbook of Mango Fruit: Production, Postharvest Science, Processing Technology and Nutrition (pp. 217–236). Wiley-Blackwell.spa
dc.relation.referencesZambrano-Zaragoza, M. L., Quintanar-Guerrero, D., González-Reza, R. M., Cornejo-Villegas, M. A., Leyva-Gómez, G., & Urbán-Morlán, Z. (2021). Effects of UV-C and edible nano-coating as a combined strategy to preserve fresh-cut cucumber. Polymers, 13(21), 3705. https://doi.org/10.3390/POLYM13213705spa
dc.relation.referencesZambrano, J., Valera, A., Maffei, M., Materano, W., Quintero, I., & Graterol, K. (2017). Efecto de un recubrimiento comestible formulado con mucílago del cactus (Opuntia elatior Mill.) sobre la calidad de frutos de piña mínimamente procesados. Bioagro, 29(2), 129–136. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612017000200007&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesZeng, J. K., Jiang, Z. T., Li, W., Zhang, L. B., & Shao, Y. Z. (2020). Effects of UV-C irradiation on postharvest quality and antioxidant properties of wampee fruit [Clausena lansium [Lour.) Skeels) during cold storage. Fruits, 75(1), 36–43. https://doi.org/10.17660/TH2020/75.1.4spa
dc.relation.referencesZhou, X., Li, Z., Lan, J., Yan, Y., & Zhu, N. (2017). Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection. Ultrasonics Sonochemistry, 35, 471–477. https://doi.org/10.1016/J.ULTSONCH.2016.10.028spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocInocuidad alimentaria
dc.subject.agrovocProcesamiento de alimentos
dc.subject.agrovocFood processing
dc.subject.agrovocEscherichia coli
dc.subject.agrovocTommy Atkins
dc.subject.agrovocMango
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalDinámica de fluidos computacionalspa
dc.subject.proposalMicrobiología predictivaspa
dc.subject.proposalParámetros cinéticosspa
dc.subject.proposalProcesamiento mínimospa
dc.subject.proposalAtributos de calidadspa
dc.subject.proposalComputational fluid dynamicseng
dc.subject.proposalPredictive microbiologyeng
dc.subject.proposalKinetic parameterseng
dc.subject.proposalQuality attributeseng
dc.subject.proposalFresh-cuteng
dc.titleUso de luz UV-C en mango “Tommy Atkins” y su efecto en los atributos de calidad e inocuidad: Estudio matemático basado en CFD
dc.title.translatedUse of UV-C light on “Tommy Atkins” mango and its effect on quality and safety attributes: Mathematical study based on CFDeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación de alternativas tecnológicas agroindustriales y ambientales en el procesamiento mínimo y conservación de mango 'Tommy Atkins'spa
oaire.fundernameUniversidad Nacional de Colombia - Sede Palmiraspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1118305527.2022.pdf
Tamaño:
3.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: