Nonbreeding ecology of the Blackpoll Warbler (Setophaga striata) in Colombia

dc.contributor.advisorColorado Zuluaga, Gabriel Jaime
dc.contributor.authorMorales Rozo, Andrea
dc.contributor.educationalvalidatorBayly Nicholas
dc.contributor.orcidMorales Rozo, Andrea [0000-0002-6920-8438]spa
dc.contributor.researchgroupEcología y Conservación de Fauna y Flora Silvestrespa
dc.date.accessioned2024-07-12T14:15:20Z
dc.date.available2024-07-12T14:15:20Z
dc.date.issued2024
dc.descriptionMapas, Fotografías, Graficasspa
dc.description.abstractLa reinita rayada (Setophaga striata) es un ave migratoria Neártica-Neotropical que está declinando rápidamente, que se reproduce en el bosque boreal de Norte América y migra a Sur América durante su época no reproductiva. Similar a otras especies de migratorias, diferentes factores contribuyen a la disminución de sus poblaciones, como la pérdida de hábitat en los sitios no reproductivos. Actualmente, la información sobre la ecología de S. striata en los sitios no reproductivos es escasa, no hay información demográfica, ni de uso para diferentes hábitats en los sitios no reproductivos. En este estudio, queremos contribuir al conocimiento del nicho ecológico y ecología no reproductiva de S. striata en Colombia a través de las siguientes preguntas: 1) ¿Cómo varían las tasas de ocupación de S. striata a escala regional y local a través del rango no reproductivo en Colombia? 2) ¿Cuáles son las características de la vegetación (estructura del hábitat a escala fina) asociadas con la ocupación de S. striata en sistemas agroforestales (cítricos, cacao y silvopastoril y bosque? 3) ¿Cuál paisaje (exurbano vs rural) y hábitat (cítricos vs cacao con sombrío) tiene mejor calidad usando fidelidad al sitio, supervivencia y uso de hábitat para S. striata en la región del Orinoco? Es la primera investigación a escala múltiple sobre S. striata en las regiones de la Orinoquia y la Amazonia de Colombia, y que podría contribuir a posibles acciones de conservación.spa
dc.description.abstractThe Blackpoll Warbler (Setophaga striata) is a rapidly declining Nearctic-Neotropical migratory bird that breeds across the boreal forest of North America and migrates to South America during its non-breeding period. Similar to other migratory species, several factors may be contributing to population declines, including habitat loss and degradation on the non-breeding grounds. Currently, information about the ecology of Blackpoll Warblers on their non-breeding grounds is scarce and no demographic information for different non-breeding habitats exists to date. In this study, we will contribute to the knowledge of the ecological niche and non-breeding ecology of the Blackpoll Warbler in Colombia, by addressing the following questions: 1) How do occupancy rates and abundance vary at multiple scales (i.e., regional, landscape, and local) across the Blackpoll Warblers over-wintering range in Colombia?, 2) How does space use and home range size of Blackpoll Warblers vary across different scales?, 3) Do exurban or rural landscapes represent habitats of higher quality for Blackpoll Warblers based on estimations of apparent survival in the Orinoco region? This is the first multi-scale investigation of Blackpoll Warbler in Colombia's Orinoco and Northern Amazon regions, and that could contribute to potential conservation actions.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Estudios Amazónicosspa
dc.description.researchareaEcosistemas, Biodiversidad y Conservaciónspa
dc.description.sponsorshipFunding was provided by Environment and Climate Change Canada through an operating grant by Keith.A.Hobson., from Western University, London, Canada, and Phil.Taylor from Acadia University. Project and fieldwork was carried out under an agreement between SELVA and Universidad de Los Llanos (no. 053, 2017 and no.29, 2021)spa
dc.format.extent137 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86437
dc.language.isoengspa
dc.publisherUniversiad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Amazonasspa
dc.publisher.departmentInstituto Amazónico de Investigacionesspa
dc.publisher.facultyFacultad Amazoníaspa
dc.publisher.placeLeticia, Amazonasspa
dc.publisher.programAmazonía - Amazonía - Doctorado en Estudios Amazónicosspa
dc.relation.referencesAlbert, S., Wolfe, J. D., Kellerman, J., Sherry, T., Stutchbury, B. J. M., Bayly, N. J., & Ruiz-Sánchez, A. (2020). Habitat ecology of Nearctic Neotropical migratory landbirds on the nonbreeding grounds. Condor, 122(4), 1–18. https://doi.org/10.1093/condor/duaa055spa
dc.relation.referencesAlvarez-Alvarez, E. A., Almazán-Núñez, R. C., Corcuera, P., González-García, F., Brito-Millán, M., & Alvarado-Castro, V. M. (2022). Land use cover changes the bird distribution and functional groups at the local and landscape level in a Mexican shaded-coffee agroforestry system. Agriculture, Ecosystems and Environment, 330(February). https://doi.org/10.1016/j.agee.2022.107882spa
dc.relation.referencesBakermans, M. H., Rodewald, A. D., Vitz, A. C., & Rengifo, C. (2012). Migratory bird use of shade coffee: The role of structural and floristic features. Agroforestry Systems, 85(1), 85–94. https://doi.org/10.1007/s10457-011-9389-0spa
dc.relation.referencesBakermans, M. H., Vitz, A. C., Rodewald, A. D., & Rengifo, C. G. (2009). Migratory songbird use of shade coffee in the Venezuelan Andes with implications for conservation of cerulean warbler. Biological Conservation, 142(11), 2476–2483. https://doi.org/10.1016/j.biocon.2009.05.018spa
dc.relation.referencesBayly, N. J., Rosenberg, K. V., Easton, W. E., Gómez, C., Carlisle, J., Drake, A., Ewert, D. N., & Goodrich, L. (2018). Major stopover regions and migratory bottlenecks for Nearctic-Neotropical landbirds within the Neotropics: a review. Bird Conservation International, 28(01), 1–26. https://doi.org/10.1017/s0959270917000296spa
dc.relation.referencesBayly, N. J., Rosenberg, K. V., Ryan Norris, D., Taylor, P. D., & Hobson, K. A. (2021). Rapid recovery by fat- and muscle-depleted Blackpoll Warblers following trans-oceanic migration is driven by time-minimization. Ornithology, 138(4), 1–15. https://doi.org/10.1093/ornithology/ukab055spa
dc.relation.referencesBoal, C. W. (2014). Age-ratios and condition of en route migrant blackpoll warblers in the British Virgin Islands. The Wilson Journal of Ornithology, 126(3), 568-574.spa
dc.relation.referencesBöhning-Gaese, K., Taper, M. L., & Brown, J. H. (1993). Are Declines in North American Insectivorous Songbirds Due to Causes on the Breeding Range? Conservation Biology, 7(1), 76–86. https://doi.org/10.1046/j.1523-1739.1993.07010076.xspa
dc.relation.referencesBrown, D. R., & Sherry, T. W. (2006). Food supply controls the body condition of a migrant bird wintering in the tropics. Oecologia, 149(1), 22–32. https://doi.org/10.1007/s00442-006-0418-zspa
dc.relation.referencesBrunner, A. R., Marra, P. P., & Tonra, C. M. (2022). Vulnerable Neotropical migratory songbird demonstrates flexibility in space use in response to rainfall change. Ornithology, 139(2), 1–14. https://doi.org/10.1093/ornithology/ukac005spa
dc.relation.referencesCéspedes, L., & Bayly, N. J. (2018). Over-winter ecology of the Canada Warbler (Cardellina canadensis) in Colombia: the basis for defining conservation priorities for a sharply declining long-distance migrant. Bird Conservation International, 1–17. https://doi.org/10.1017/S0959270918000229spa
dc.relation.referencesColorado, G., Mehlman, D., & Valencia-C, G. (2018). Effects of floristic and structural features of shade agroforestry plantations on the migratory bird community in Colombia. Agroforestry Systems, 92(3), 677–691. https://doi.org/10.1007/s10457-016-0034-9spa
dc.relation.referencesColorado, G., & Rodewald, A. D. (2017). Patterns of change in body condition in wintering Neotropical-Nearctic migratory birds in shaded plantations in the Andes. Agroforestry Systems, 91(6), 1129–1137. https://doi.org/10.1007/s10457-016-9989-9spa
dc.relation.referencesCooper, N. W., Sherry, T. W., Marra, P. P., & Inouye, B. D. (2015). Experimental reduction of winter food decreases body condition and delays migration in a long-distance migratory bird. Ecology, 96(7), 1933–1942. https://doi.org/10.1890/14-1365.1spa
dc.relation.referencesDe Beenhouwer, M., Aerts, R., & Honnay, O. (2013). A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystems and Environment, 175, 1–7. https://doi.org/10.1016/j.agee.2013.05.003spa
dc.relation.referencesDíaz-Bohórquez, A. M., Bayly, N. J., Botero, J. E., & Gómez, C. (2014). Aves migratorias en agroecosistemas del norte de Latinoamérica, con énfasis en Colombia: Migratory birds in northern Latin American agroecosystems with emphasis on Colombia. Ornitología Colombiana, (14), 3-27spa
dc.relation.referencesFahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112.spa
dc.relation.referencesFink, D., T. Auer, A. Johnston, M. Strimas-Mackey, S. Ligocki, O. Robinson, W. Hochachka, L. Jaromczyk, A. Rodewald, C. Wood, I. Davies, A. Spencer. 2022. eBird Estado y tendencias, Versión de datos: 2021; Disponible: 2022. Cornell Lab of Ornithology, Ithaca, New York. https://doi.org/10.2173/ebirdst.2021spa
dc.relation.referencesFreckleton, R. P., & Jetz, W. (2009). Space versus phylogeny: Disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society B: Biological Sciences, 276(1654), 21–30. https://doi.org/10.1098/rspb.2008.0905spa
dc.relation.referencesGómez, C., Hobson, K. A., Bayly, N. J., Rosenberg, K. V., Morales-Rozo, A., Cardozo, P., & Cadena, C. D. (2021). Migratory connectivity then and now: A northward shift in breeding origins of a long-distance migratory bird wintering in the tropics. Proceedings of the Royal Society B: Biological Sciences, 288(1948). https://doi.org/10.1098/rspb.2021.0188spa
dc.relation.referencesGómez, C., Tenorio, E. A., Montoya, P., & Cadena, C. D. (2016). Niche-tracking migrants and nicheswitching residents: Evolution of climatic niches in new world warblers (Parulidae). Proceedings of the Royal Society B: Biological Sciences, 283(1824), 1–9. https://doi.org/10.1098/rspb.2015.2458spa
dc.relation.referencesGonzález, A. M., Wilson, S., Bayly, N. J., & Hobson, K. A. (2020). Contrasting the suitability of shade coffee agriculture and native forest as overwinter habitat for Canada Warbler (Cardellina canadensis) in the Colombian Andes. Condor, 122(2), 1–12. https://doi.org/10.1093/condor/duaa011spa
dc.relation.referencesGonzález, A. M. (2018). Conservation of nearctic neotropical migrants: The coffee connection revisited. Avian Conservation and Ecology, 13(1). https://doi.org/10.5751/ACE-01223-130119spa
dc.relation.referencesGreenberg, R., & Marra, P. (2005). Birds of two worlds: the ecology and evolution of migration. Johns Hopkins University Press.spa
dc.relation.referencesGrinnell, J. (1917). The niche-relationships of California Thrasher. The Auk, 34(4), 427–433. https://doi.org/10.1152/ajplegacy.1972.222.5.1121spa
dc.relation.referencesHarrison, X. A., Inger, R., Norris, D. R., Bearhop, S., & Blount, J. D. (2011). Carry-over effects as drivers of fitness differences in animals. Journal of Animal Ecology, 80(1), 4–18. https://doi.org/10.1111/j.1365-2656.2010.01740.xspa
dc.relation.referencesHobson, K. A., & Kardynal, K. J. (2015). Western Veeries use an eastern shortest-distance pathway: New insights to migration routes and phenology using light-level geolocators. The Auk, 132(3), 540–550. https://doi.org/10.1642/auk-14-260.1spa
dc.relation.referencesHobson, K. A., & Wassenaar, L. I. (1996). Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia, 109(1), 142–148.spa
dc.relation.referencesHolmes, R. T. (2007). Understanding population change in migratory songbirds: Long-term and experimental studies of Neotropical migrants in breeding and wintering areas. Ibis, 149, 2.spa
dc.relation.referencesHolt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. PNAS, 106, 19659–19665. https://doi.org/10.1073/pnas.0905137106spa
dc.relation.referencesHutchinson, G. E. (1991). Population studies: Animal ecology and demography. Bulletin of Mathematical Biology, 53(1–2), 193–213. https://doi.org/10.1007/BF02464429spa
dc.relation.referencesIUCN 2023. The IUCN Red List of Threatened Species. Version 2022-2. <https://www.iucnredlist.org>spa
dc.relation.referencesJohnson, M. D., Sherry, T. W., Holmes, R. T., & Marra, P. P. (2006). Assessing habitat quality for a migratory songbird wintering in natural and agricultural habitats. Conservation Biology, 20(5), 1433–1444. https://doi.org/10.1111/j.1523-1739.2006.00490.xspa
dc.relation.referencesJohnson, M. D. (2007). Measuring habitat quality: a review. The Condor, 109(3), 489-504.spa
dc.relation.referencesKhaliq, I., Fritz, S. A., Böhning-Gaese, K., Hof, C., Prinzinger, R., & Pfenninger, M. (2015). Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics. Journal of Biogeography, 42(11), 2187–2196. https://doi.org/10.1111/jbi.12573spa
dc.relation.referencesMacArthur, R. H. (1984). Geographical ecology: patterns in the distribution of species. Princeton University Press.spa
dc.relation.referencesMarra, P. P., Hobson, K. a, Holmes, R. T., Dallos, P., Geister, C. D., & David, C. (1998). Linking Winter and Summer Events in a Migratory Bird by Using Stable-Carbon Isotopes. 282(5395), 1884–1886.spa
dc.relation.referencesMcDermott, M. E., & Rodewald, A. D. (2014). Conservation value of silvopastures to neotropical migrants in andean forest flocks. Biological Conservation, 175, 140–147. https://doi.org/10.1016/j.biocon.2014.04.027spa
dc.relation.referencesNakazawa, Y. (2013). Niche breadth, environmental landscape, and physical barriers: Their importance as determinants of species distributions. Biological Journal of the Linnean Society, 108(2), 241–250. https://doi.org/10.1111/j.1095-8312.2012.02018.xspa
dc.relation.referencesNewton, I. (2007). Population Limitation in Birds: the last 100 years. British Birds, 518–539.spa
dc.relation.referencesNorris, D. R., & Marra, P. P. (2007). Seasonal Interactions, Habitat Quality, and Population Dynamics in Migratory Birds. The Condor, 109(3), 535. https://doi.org/10.1650/8350.1spa
dc.relation.referencesNorris, D. R., Marra, P. P., Kyser, T. K., Sherry, T. W., & Ratcliffe, L. M. (2004). Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proceedings of the Royal Society B: Biological Sciences, 271(1534), 59–64. https://doi.org/10.1098/rspb.2003.2569spa
dc.relation.referencesNorth American Bird Conservation Initiative Canada (2012). The state of Canada's birds 2012. Environment Canada. Ottawa – Ontario. 35pspa
dc.relation.referencesPausas, J. G., & Bond, W. J. (2021). Alternative biome states challenge the modelling of species’ niche shifts under climate change. Journal of Ecology, 109(12), 3962–3971. https://doi.org/10.1111/1365-2745.13781spa
dc.relation.referencesPeterson, A. T. (2001). Predicting Species’ Geographic Distributions Based on Ecological Niche Modeling. The Condor, 103(3), 599. https://doi.org/10.1650/0010-5422(2001)103[0599:psgdbo]2.0.co;2spa
dc.relation.referencesQiao, H., Peterson, A. T., Campbell, L. P., Soberón, J., Ji, L., & Escobar, L. E. (2016). NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39(8), 805–813. https://doi.org/10.1111/ecog.01961spa
dc.relation.referencesRalston, J., King, D. I., DeLuca, W. V., Niemi, G. J., Glennon, M. J., Scarl, J. C., & Lambert, J. D. (2015). Analysis of combined data sets yields trend estimates for vulnerable spruce-fir birds in northern United States. Biological Conservation, 187, 270–278. https://doi.org/10.1016/j.biocon.2015.04.029spa
dc.relation.referencesRobbins, C. S., Sauer, J. R., Greenberg, R. S., & Droege, S. (1989). Population declines in North American birds that migrate to the neotropics. Proceedings of the National Academy of Sciences, 86(19), 7658–7662. https://doi.org/10.1073/pnas.86.19.7658spa
dc.relation.referencesRockwell, S. M., Bocetti, C. I., & Marra, P. P. (2012). Carry-over effects of winter climate on spring arrival date and reproductive success in an endangered migratory bird, Kirtland’s Warbler ( Setophaga kirtlandii ) . The Auk, 129(4), 744–752. https://doi.org/10.1525/auk.2012.12003spa
dc.relation.referencesRosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., Stanton, J. C., Panjabi, A., Helft, L., Parr, M., & Marra, P. P. (2019). Decline of the North American avifauna. Science, 366(6461), 120–124. https://doi.org/10.1126/science.aaw1313spa
dc.relation.referencesRosenberg, K. V, Kennedy, J. A., Dettmers, R., Ford, R. P., Reynolds, D., Alexander, J., Beardmore, C. J., Blancher, P. J., Bogart, R. E., Butcher, G. S., Camfield, A. F., Couturier, A., Demarest, D. W., Easton, W. E., Giocomo, J., Keller, R., Mini, A. E., Panjabi, A. O., Pashley, D. N., … Stanton, J. (2016). Partners in Flight Landbird Conservation Plan: 2016 Revision for Canada and Continental United States. Partners in Flight Science Committee, 119. www.partnersinflight.orgspa
dc.relation.referencesRuiz-Sánchez, A., Renton, K., & Rueda-Hernández, R. (2017). Winter habitat disturbance influences density and territory size of a Neotropical migratory warbler. Journal of Ornithology, 158(1), 63–73. https://doi.org/10.1007/s10336-016-1368-9spa
dc.relation.referencesRushing, C. S., Hostetler, J. A., Sillett, T. S., Marra, P. P., Rotenberg, J. A., & Ryder, T. B. (2017). Spatial and temporal drivers of avian population dynamics across the annual cycle. Ecology, 98(11), 2837–2850. https://doi.org/10.1002/ecy.1967spa
dc.relation.referencesSánchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232(September 2018), 8–27. https://doi.org/10.1016/j.biocon.2019.01.020spa
dc.relation.referencesSauer, J. R., Pardieck, K. L., Ziolkowski Jr, D. J., Smith, A. C., Hudson, M. A. R., Rodriguez, V., ... & Link, W. A. (2017). The first 50 years of the North American breeding bird survey. The Condor: Ornithological Applications, 119(3), 576-593.spa
dc.relation.referencesScheele, B. C., Foster, C. N., Banks, S. C., & Lindenmayer, D. B. (2017). Niche contractions in declining species: mechanisms and consequences. Trends in Ecology & Evolution, 32(5), 346–355.spa
dc.relation.referencesSherry, T. W., & Holmes, R. T. (1996). Winter habitat quality, population limitation, and conservation of neotropical-nearctic migrant birds. Ecology, 77(1), 36–48. https://doi.org/10.2307/2265652spa
dc.relation.referencesSoberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1–9. https://doi.org/10.111/j.1461-0248.2007.01107.xspa
dc.relation.referencesSoberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species´ distributional areas. Biodiversity Informatics, 2, 1–10. https://doi.org/10.1093/wber/lhm022spa
dc.relation.referencesStanley, C. Q., Dudash, M. R., Ryder, T. B., Shriver, W. G., Serno, K., Adalsteinsson, S., & Marra, P. P. (2021). Seasonal variation in habitat selection for a Neotropical migratory songbird using high‐resolution GPS tracking. Ecosphere, 12(3), e03421.spa
dc.relation.referencesValdez-Juárez, S. O., Drake, A., Hobson, K. A., Kardynal, K. J., Krebs, E. A., & Green, D. J. (2018). Use of natural and anthropogenic land cover by wintering Yellow Warblers: The influence of sex and breeding origin. The Condor, 120(2), 427–438. https://doi.org/10.1650/condor-17-180.1spa
dc.relation.referencesvan der Sluijs, J. P. (2020). Insect decline, an emerging global environmental risk. Current Opinion in Environmental Sustainability, 46, 39–42. https://doi.org/10.1016/j.cosust.2020.08.012spa
dc.relation.referencesVergara, P. M., Soto, G. E., Rodewald, A. D., & Quiroz, M. (2019). Behavioral switching in Magellanic woodpeckers reveals perception of habitat quality at different spatial scales. Landscape Ecology, 34(1), 79–92. https://doi.org/10.1007/s10980-018-0746-5spa
dc.relation.referencesWiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431spa
dc.relation.referencesWilson, S., LaDeau, S. L., Tøttrup, A. P., & Marra, P. P. (2011). Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird. Ecology, 92(9), 1789–1798. https://doi.org/10.1890/10-1757.1spa
dc.relation.referencesWunderle, J. M., & Latta, S. C. (2000). Winter Site Fidelity of Nearctic Migrants in Shade Coffee Plantations of Different Sizes in the Dominican Republic. The Auk, 117(3), 596–614. https://doi.org/10.2307/4089586spa
dc.relation.referencesBennett, R. E., Sillett, T. S., Rice, R. A., & Marra, P. P. (2022). Impact of cocoa agricultural intensification on bird diversity and community composition. Conservation Biology, 36(1), 1–10. https://doi.org/10.1111/cobi.13779spa
dc.relation.referencesBennett, R. E. (2018). Nonbreeding ecology and conservation of migratory landbirds with a focus on the Golden-winged Warbler (Vermivora chrysoptera) (Doctoral dissertation, Cornell University).spa
dc.relation.referencesBennett, R. E., A. Rothman, K. V. Rosenberg, and F. Rodriguez (2016). Golden-winged warbler non-breeding season conservation plan. Golden-winged Warbler Status and Conservation Plan. [Online.] Available at www.gwwa.orgspa
dc.relation.referencesBibby, C. J., Burgess, N., Hill, D., & Mustoe, S. (2000). Bird census techniques. Elsevier.spa
dc.relation.referencesBlount, J. D., Horns, J. J., Kittelberger, K. D., Neate-Clegg, M. H. C., & Şekercioğlu, Ç. H. (2021). Avian Use of Agricultural Areas as Migration Stopover Sites: A Review of Crop Management Practices and Ecological Correlates. Frontiers in Ecology and Evolution, 9(May), 1–13. https://doi.org/10.3389/fevo.2021.650641spa
dc.relation.referencesBoyle, W. A., Shogren, E. H., & Brawn, J. D. (2020). Hygric Niches for Tropical Endotherms. Trends in Ecology and Evolution, 35(10), 938–952. https://doi.org/10.1016/j.tree.2020.06.011spa
dc.relation.referencesBulluck, L., Ames, E., Bayly, N., Reese, J., Viverette, C., Wright, J., Caguazango, A., & Tonra, C. (2019). Habitat-dependent occupancy and movement in a migrant songbird highlights the importance of mangroves and forested lagoons in Panama and Colombia. Ecology and Evolution, 9(19), 11064–11077. https://doi.org/10.1002/ece3.5610spa
dc.relation.referencesCéspedes, L., Wilson, S., & Bayly, N. J. (2021). Community modeling reveals the importance of elevation and land cover in shaping migratory bird abundance in the Andes. Ecological Applications, 32(1). https://doi.org/10.1002/eap.2481spa
dc.relation.referencesColorado, G., Hamel, P. B., Rodewald, A., & Mehlman, D. (2012). Advancing our understanding of the non-breeding distribution of Cerulean Warbler (Setophaga cerulea) in the Andes. 307–315. http://www.treesearch.fs.fed.us/pubs/45155spa
dc.relation.referencesCooper, N. W., & Marra, P. P. (2020). Hidden Long-Distance Movements by a Migratory Bird. Current Biology, 30(20), 4056-4062.e3. https://doi.org/10.1016/j.cub.2020.07.056spa
dc.relation.referencesDennis, B., Ponciano, J. M., Taper, M. L., & Lele, S. R. (2019). Errors in Statistical Inference Under Model Misspecification: Evidence, Hypothesis Testing, and AIC. Frontiers in Ecology and Evolution, 7(October). https://doi.org/10.3389/fevo.2019.00372spa
dc.relation.referencesDossman, B. C., Studds, C. E., LaDeau, S. L., Sillett, T. S., & Marra, P. P. (2023). The role of tropical rainfall in driving range dynamics for a long-distance migratory bird. Proceedings of the National Academy of Sciences, 120(52), e2301055120.spa
dc.relation.referencesFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086spa
dc.relation.referencesFiske, I., & Chandler, R. (2011). unmarked : An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance. Journal of Statistical Software, 43(10). https://doi.org/10.18637/jss.v043.i10spa
dc.relation.referencesFlather, C., and J. R. Sauer (1996). Using landscape ecology to test hypotheses about large-scale abudance patterns in migratory birds. Ecology 77:28–35. doi: 10.2307/2265651spa
dc.relation.referencesGómez, C., Gómez-Bahamón, V., Cárdenas-Ortíz, L., & Bayly, N. J. (2015). Distribution of nearctic-neotropical migratory birds along a South American elevation gradient during spring migration. Wilson Journal of Ornithology, 127(1), 72–86. https://doi.org/10.1676/14-017.1spa
dc.relation.referencesGonzález, A. M., Bayly, N. J., Wilson, S., & Hobson, K. A. (2021). Shade coffee or native forest? Indicators of winter habitat quality for a long-distance migratory bird in the Colombian Andes. Ecological Indicators, 131. https://doi.org/10.1016/j.ecolind.2021.108115spa
dc.relation.referencesIDEAM (2019). Décimo séptimo Boletín de Detecciones Tempranas de Deforestación. [Online.] Available at http://www.ideam.gov.co/documents/24277/84382637/Detecciones+Tempranas+de+Deforestación/96e81976-195e-4d0f-8aaf-24c05c7312f8.spa
dc.relation.referencesIDEAM (2020). Boletín de Detección Temprana de Deforestación-25. [Online.] Available at http://documentacion.ideam.gov.co/openbiblio/bvirtual/023902/25Boletin.pdf.spa
dc.relation.referencesJames, F. C., & Shugart, H. H. J. (1970). A quantitative method of habitat description. In Audubon Field Notes (Vol. 24, Issue 6, pp. 727–736). https://doi.org/10.7550/rmb.26780spa
dc.relation.referencesJha, S., Bacon, C. M., Philpott, S. M., MÉndez, V. E., LÄderach, P., & Rice, R. A. (2014). Shade coffee: Update on a disappearing refuge for biodiversity. BioScience, 64(5), 416–428. https://doi.org/10.1093/biosci/biu038spa
dc.relation.referencesJose, S. (2012). Agroforestry for conserving and enhancing biodiversity. Agroforestry Systems 85:1–8. doi: 10.1007/s10457-012-9517-5spa
dc.relation.referencesKéry, M., Guillera-Arroita, G., & Lahoz-Monfort, J. J. (2013). Analysing and mapping species range dynamics using occupancy models. Journal of Biogeography, 40(8), 1463–1474. https://doi.org/10.1111/jbi.12087spa
dc.relation.referencesLentijo, G. M., Velásquez Valencia, A., Murgueitio, E., Zuluaga, A. F., & Gómez, M. (2022). Ganadería para las aves: un canto a la sostenibilidad. Puntoaparte Editores.spa
dc.relation.referencesLewis, W., Hamilton, S., Lasi, M., Rodríguez, M., & Saunders, J. (2000). Ecological Determinism on the Orinoco Floodplain. BioScience, 50(8), 681–692.spa
dc.relation.referencesLozano Rodríguez, M. A. (2020). El Desarrollo Sostenible en Colombia y su aplicación en el sector agropecuario. El caso de la región de la Orinoquía Colombiana. Observatorio Medioambiental, 23, 131–148. https://doi.org/10.5209/obmd.73173spa
dc.relation.referencesMacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, A. A., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8), 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2spa
dc.relation.referencesMarra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E., & Tonra, C. M. (2015). A call for full annual cycle research in animal ecology. Biology letters, 11(8), 20150552.spa
dc.relation.referencesMcNeely, J. A., and G. Schroth (2006). Agroforestry and biodiversity conservation - Traditional practices, present dynamics, and lessons for the future. Biodiversity and Conservation 15:549–554. doi: 10.1007/s10531-005-2087-3spa
dc.relation.referencesMills, E. D., & Rogers, D. T. (1992). Ratios of Neotropical Migrant and Neotropical Resident Birds in Winter in a Citrus Plantation in Central Belize. Journal of Field Ornithology, 63(2), 109–116.spa
dc.relation.referencesMontoya, J. V., Castillo, M. M., & Sánchez, L. (2011). La importancia de las inundaciones periódicas para el funcionamiento y conservación de los ecosistemas inundables de grandes ríos tropicales: estudios en la cuenca del Orinoco. Interciencia, 36(12), 900–907.spa
dc.relation.referencesMorales-Rozo, A., Lizcano, D. J., Montoya-Arango, S., Velásquez-Suarez, Á., Álvarez-Daza, E., & Acevedo-Charry, O. (2021). Differences in soundscapes of silvopastoral systems and traditional paddocks of the piedmont plain, Meta, Colombia. Biota Colombiana, 22(1), 74–95. https://doi.org/10.21068/C2021.V22N01A05spa
dc.relation.referencesNájera, A., & Simonetti, J. A. (2010). Enhancing avifauna in commercial plantations: Research note. Conservation Biology, 24(1), 319–324. https://doi.org/10.1111/j.1523-1739.2009.01350.xspa
dc.relation.referencesNational Aeronautics and Space Administration’s Earth Observatory (2020). National Aeronautics and Space Administration’s Earth Observatory.spa
dc.relation.referencesNg, W. H., Fink, D., La Sorte, F. A., Auer, T., Hochachka, W. M., Johnston, A., & Dokter, A. M. (2022). Continental-scale biomass redistribution by migratory birds in response to seasonal variation in productivity. Global Ecology and Biogeography, 31(4), 727–739. https://doi.org/10.1111/geb.13460spa
dc.relation.referencesOrtega-Álvarez, R., Zúñiga-Vega, J. J., Ruiz-Gutiérrez, V., Berrones Benítez, E., Medina Mena, I., & Ramírez Felipe, F. (2018). Improving the sustainability of working landscapes in Latin America: An application of community-based monitoring data on bird populations to inform management guidelines. Forest Ecology and Management, 409(May 2017), 56–66. https://doi.org/10.1016/j.foreco.2017.09.033spa
dc.relation.referencesPonti, R., Arcones, A., Ferrer, X., & Vieites, D. R. (2018). Productivity as the main factor correlating with migratory behaviour in the evolutionary history of warblers. Journal of Zoology, 306(3), 197–206. https://doi.org/10.1111/jzo.12598spa
dc.relation.referencesRockwell, S. M., Wunderle, J. M., Sillett, T. S., Bocetti, C. I., Ewert, D. N., Currie, D., White, J. D., & Marra, P. P. (2017). Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation. Oecologia, 183(3), 715–726. https://doi.org/10.1007/s00442-016-3788-xspa
dc.relation.referencesSamarawickrama, U., Piyaratne, D., & Ranagalage, M. (2017). Relationship between NDVI with Tasseled cap Indices : A Remote Sensing based Analysis. International Journal of Innovative Research in Technology, 3(12), 13–19.spa
dc.relation.referencesSekercioglu, C. H. (2012). Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. Journal of Ornithology, 153(SUPPL. 1), 153–161. https://doi.org/10.1007/s10336-012-0869-4spa
dc.relation.referencesSomveille, M., Rodrigues, A. S. L., & Manica, A. (2015). Why do birds migrate? A macroecological perspective. Global Ecology and Biogeography, 24(6), 664–674. https://doi.org/10.1111/geb.12298spa
dc.relation.referencesSomveille, M., Rodrigues, A. S. L., & Manica, A. (2018). Energy efficiency drives the global seasonal distribution of birds. Nature Ecology and Evolution, 2(6), 962–969. https://doi.org/10.1038/s41559-018-0556-9spa
dc.relation.referencesTarbox, B. C., Robinson, S. K., Loiselle, B., & Flory, S. L. (2018). Foraging ecology and flocking behavior of insectivorous forest birds inform management of Andean silvopastures for conservation. The Condor, 120(4), 787–802. https://doi.org/10.1650/condor-18-1.1spa
dc.relation.referencesThorup, K., Tøttrup, A. P., Willemoes, M., Klaassen, R. H. G., Strandberg, R., Vega, M. L., Dasari, H. P., Araújo, M. B., Wikelski, M., & Rahbek, C. (2017). Resource tracking within and across continents in long-distance bird migrants. Science Advances, 3(1), 1–11. https://doi.org/10.1126/sciadv.1601360spa
dc.relation.referencesTillé, Y., Dickson, M. M., Espa, G., & Giuliani, D. (2018). Measuring the spatial balance of a sample: A new measure based on Moran’s I index. Spatial Statistics, 23, 182–192. https://doi.org/10.1016/j.spasta.2018.02.001spa
dc.relation.referencesValdez-Juarez, S. O., Krebs, E. A., Drake, A. E., & Green, D. J. (2019). Assessing the effect of seasonal agriculture on the condition and winter survival of a migratory songbird in Mexico. Conservation Science and Practice, 1(4), 1–11. https://doi.org/10.1111/csp2.19spa
dc.relation.referencesVrieling, A., Meroni, M., Darvishzadeh, R., Skidmore, A. K., Wang, T., Zurita-Milla, R., Oosterbeek, K., O’Connor, B., & Paganini, M. (2018). Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sensing of Environment, 215(March 2018), 517–529. https://doi.org/10.1016/j.rse.2018.03.014spa
dc.relation.referencesYates, L. A., Richards, S. A., & Brook, B. W. (2021). Parsimonious model selection using information theory: a modified selection rule. Ecology, 102(10), 1–9. https://doi.org/10.1002/ecy.3475spa
dc.relation.referencesÁlvarez, S. J., Arciniegas, N., Yang, S., Salazar, F., & Forero, G. (2023). Uso del suelo en la Orinoquia: cambios recientes y escenario futuro tendencial. En L. A. Moreno & G. Andrade (Eds.), Biodiversidad: umbrales de transformación. Estado y tendencias de la biodiversidad continental de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.spa
dc.relation.referencesAnich, N. M., Benson, T. J., & Bednarz, J. C. (2010). Factors Influencing Home-Range Size of Swainson’s Warblers in Eastern Arkansas. The Condor, 112(1), 149–158. https://doi.org/10.1525/cond.2010.080103spa
dc.relation.referencesAvendaño, J. E., Morales-Rozo, A., Díaz-Cárdenas, J., Amaya-Burgos, J. J., Aponte, A. F., Gamboa, N., ... & Velásquez-Suárez, Á. J. (2018). Birds of Universidad de los Llanos (Villavicencio, Colombia): a rich community at the Andean foothills-savanna transition. Boletín Científico. Centro de Museos. Museo de Historia Natural, 22(2), 51-75.spa
dc.relation.referencesBanks-Leite, C., Ewers, R. M., Folkard-Tapp, H., & Fraser, A. (2020). Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth, 3(6), 672–676. https://doi.org/10.1016/j.oneear.2020.11.016spa
dc.relation.referencesBarg, J. J., Jones, J., & Robertson, R. J. (2005). Describing breeding territories of migratory passerines: Suggestions for sampling, choice of estimator, and delineation of core areas. Journal of Animal Ecology, 74(1), 139–149. https://doi.org/10.1111/j.1365-2656.2004.00906.xspa
dc.relation.referencesBates D, Mächler M, Bolker B, Walker S (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01spa
dc.relation.referencesBenavides, J. (2008.) El desarrollo económico de la Orinoquia como aprendizaje y construcción de instituciones. Corporación Andina de Fomento (CAF). [Archivo PDF]. https://ceo.uniandes.edu.co/images/Documentos/El%20desarrollo%20econ%C3%B3mico%20de%20la%20Orinoquia.pdfspa
dc.relation.referencesBivand R, Rundel C (2021). rgeos: Interface to Geometry Engine - Open Source ('GEOS'). https://r-forge.r-project.org/projects/rgeos/ https://libgeos.org http://rgeos.r-forge.r-project.org/index.html.spa
dc.relation.referencesBoves, T. J., Buehler, D. A., Sheehan, J., Wood, P. B., Rodewald, A. D., Larkin, J. L., Keyser, P. D., Newell, F. L., George, G. A., Bakermans, M. H., Evans, A., Beachy, T. A., McDermott, M. E., Perkins, K. A., White, M., & Wigley, T. B. (2013). Emulating Natural Disturbances for Declining Late-Successional Species: A Case Study of the Consequences for Cerulean Warblers (Setophaga cerulea). PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0052107spa
dc.relation.referencesBrown, D. R., & Sherry, T. W. (2008a). Alternative strategies of space use and response to resource change in a wintering migrant songbird. Behavioral Ecology, 19(6), 1314–1325. https://doi.org/10.1093/beheco/arn073spa
dc.relation.referencesBrunner, A. R., Marra, P. P., & Tonra, C. M. (2022). Vulnerable Neotropical migratory songbird demonstrates flexibility in space use in response to rainfall change. Ornithology, 139(2), 1–14. https://doi.org/10.1093/ornithology/ukac005spa
dc.relation.referencesBurnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods and Research, 33(2), 261–304. https://doi.org/10.1177/0049124104268644spa
dc.relation.referencesCalenge, C. (2006). The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197(3–4), 516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017spa
dc.relation.referencesCastaño, M. I., Cadena, C. D., & Avendaño, J. E. (2019). Home-range size of an Andean bird: Assessing the role of physical condition. Biotropica, 51(4), 591–599. https://doi.org/10.1111/btp.12673spa
dc.relation.referencesChandler, R. B., Tolfree, S., Gerwin, J., Smalling, C., Chavarría-duriaux, L., Duriaux, G., & King, D. I. (2016). Conservation Implications of Golden-Winged Warbler Social and Foraging Behaviors During the Nonbreeding Season. Studies in Avian Biology, 49, 175–192. https://doi.org/10.1201/9781315372945-21spa
dc.relation.referencesCooper, N. W., Hallworth, M. T., & Marra, P. P. (2017). Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird. Journal of Avian Biology, 48(2), 209–219. https://doi.org/10.1111/jav.01096spa
dc.relation.referencesDeppe, J. L., & Rotenberry, J. T. (2008). Scale‐dependent habitat use by fall migratory birds: vegetation structure, floristics, and geography. Ecological monographs, 78(3), 461-487.spa
dc.relation.referencesDeSante, D. F., Kaschube, D. R., & Saracco, J. F. (2018). Population changes and their demographic drivers in landbirds of western North America: An assessment from the Monitoring Avian Productivity and Survivorship program. Trends and Traditions: Avifaunal Change in Western North America, 269–293. https://doi.org/10.21199/swb3.15spa
dc.relation.referencesFaaborg, J., Holmes, R. T., Anders, A. D., Bildstein, K. L., Dugger, K. M., Gauthreaux Jr, S. A., ... & Warnock, N. (2010). Conserving migratory land birds in the New World: Do we know enough?. Ecological applications, 20(2), 398-418.spa
dc.relation.referencesFaria, D., Paciencia, M. L. B., Dixo, M., Laps, R. R., & Baumgarten, J. (2007). Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting landscapes in the Atlantic forest, Brazil. Biodiversity and Conservation, 16(8), 2335–2357. https://doi.org/10.1007/s10531-007-9189-zspa
dc.relation.referencesFieberg, J., & Kochanny, C. O. (2005). Quantifying home‐range overlap: the importance of the utilization distribution. The Journal of Wildlife Management, 69(4), 1346–1359.spa
dc.relation.referencesGauthreaux, S. . (1982). The ecology and evolution of avian migration systems. In D. S. Farner & J. R. King (Eds.), Avian biology (pp. 93–168). Academic press.spa
dc.relation.referencesGolden Gate Weather. (2023). Golden Gate Weather Services. https://ggweather.com/enso/oni.htmspa
dc.relation.referencesGreenberg, R., Bichier, P., & Angón, A. C. (2000). The conservation value for birds of cacao plantations with diverse planted shade in Tabasco, Mexico. Animal Conservation, 3(2), 105–112. https://doi.org/10.1017/S1367943000000809spa
dc.relation.referencesGreenberg, R., & Ortiz, J. S. (1994). Interspecific of Pasture Trees By Yellow Warblers. The Auk, 111(3), 672–682.spa
dc.relation.referencesHolmes, R. T., Sherry, T. W., & Reitsma, L. (1989). Population Structure Territoriality and Overwinter Survival of Two Migrant Warbler Species in Jamaica. The Condor, 91(3), 545–561. https://doi.org/10.2307/1368105spa
dc.relation.referencesHowell, D. L., & Chapman, B. R. (1997). Home range and habitat use of Red-shouldered Hawks in Georgia. Wilson Bulletin, 109(1), 131–144.spa
dc.relation.referencesIDEAM. 2017. Ficha Climátologica. Atlas climatológico de Colombia. Disponible en: <http:// http://www.ideam.gov.co/>spa
dc.relation.referencesJanzen, D. H., & Hallwachs, W. (2019). Perspective: Where might be many tropical insects? Biological Conservation, 233, 102–108. https://doi.org/10.1016/j.biocon.2019.02.030spa
dc.relation.referencesJohnson, E. I., Wolfe, J. D., Brandt Ryder, T., & Pyle, P. (2011). Modifications to a molt-based ageing system proposed by Wolfe et al. (2010). Journal of Field Ornithology, 82(4), 422–424. https://doi.org/10.1111/j.1557-9263.2011.00345.xspa
dc.relation.referencesJohnson, M. D. (2000). Effects of shade-tree species and crop structure on the winter arthropod and bird communities in a Jamaican shade coffee plantation. Biotropica, 32(1), 133–145. https://doi.org/10.1111/j.1744-7429.2000.tb00456.xspa
dc.relation.referencesJohnson, M. D., & Sherry, T. W. (2001). Effects of food availability on the distribution of migratory warblers among habitats in Jamaica. Journal of Animal Ecology, 70(4), 546–560. https://doi.org/10.1046/j.1365-2656.2001.00522.xspa
dc.relation.referencesJones, H., McRae, E., Meadows, M., & Howell, S. (2000). Status updates for selected bird species in Belize, including several species previously undocumented from the country. Cotinga, 13, 17–31. http://www.bafrenz.com/birds/BelizeBook/Documents/Jones McRae Meadows Howell (2000) Cotinga 13 17-31.pdfspa
dc.relation.referencesKramer, G. R., Andersen, D. E., Buehler, D. A., Wood, P. B., Peterson, S. M., Lehman, J. A., Aldinger, K. R., Bulluck, L. P., Harding, S., Jones, J. A., Loegering, J. P., Smalling, C., Vallender, R., & Streby, H. M. (2018). Population trends in Vermivora warblers are linked to strong migratory connectivity. Proceedings of the National Academy of Sciences of the United States of America, 115(14), E3192–E3200. https://doi.org/10.1073/pnas.1718985115spa
dc.relation.referencesLatta, S. C., & Faaborg, J. (2001). Winter site fidelity of Prairie Warblers in the Dominican Republic. The Condor, 103(3), 455–468. https://doi.org/10.1650/0010-5422(2001)103[0455:WSFOPW]2.0.CO;2spa
dc.relation.referencesLefebvre, G., Poulin, B., & Mcneil, R. (1992). Abundance, feeding behavior, and body condition of Nearctic warblers wintering in Venezuelan mangroves. The Wilson Bulletin, 104(3), 400–412.spa
dc.relation.referencesLeonard, T. D., Taylor, P. D., & Warkentin, I. G. (2008). Landscape Structure and Spatial Scale Affect Space Use By Songbirds in Naturally Patchy and Harvested Boreal Forests. The Condor, 110(3), 467–481. https://doi.org/10.1525/cond.2008.8512spa
dc.relation.referencesMarra, P. P., & Holmes, R. T. (2001). Consequences of Dominance-Mediated Habitat Segregation in American Redstarts During the Nonbreeding Season. The Auk,spa
dc.relation.referencesMarzluff, J. M., Millspaugh, J. J., Hurvitz, P., & Handcock, M. S. (2004). Relating resources to a probabilistic measure of space use: Forest fragments and Steller’s Jays. Ecology, 85(5), 1411–1427. https://doi.org/10.1890/03-0114spa
dc.relation.referencesMateus, D. C., Pulido, X., Gutiérrez, A., & Orduz-Rodríguez, J. O. (2010). Evaluación económica de la producción de cítricos cultivados en el Piedemonte del Departamento del Meta durante 12 años. Orinoquia, 14(1), 16–26. http://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/122/217spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo rural. 2021. Cadena de Cacaco. Dirección de Cadenas Agrícolas y Forestales https://sioc.minagricultura.gov.co/Cacao/Documentos/2021-03-31%20Cifras%20Sectoriales.pdfspa
dc.relation.referencesMinisterio de Agricultura y Desarrollo rural. 2023. Clima. https://www.minagricultura.gov.co/atentos-clima/Paginas/default.aspxspa
dc.relation.referencesOliveira, S. L., Flaspohler, D. J., & Wolfe, J. D. (2022). Winter Territoriality of the American Redstart in Oil Palm Plantations. Diversity, 14(12). https://doi.org/10.3390/d14121079spa
dc.relation.referencesPetit, D. R., Lynch, J. F., Hutto, R. L., & Blake, J. G. (1995). Habitat use and conservation of migratory landbirds wintering in the Neotropics. Ecology and Management of Neotropical Migratory Birds: A Synthesis and Review of Critical Issues, 145.spa
dc.relation.referencesRappole, J. H. (2013). The avian migrant: the biology of bird migration. Columbia University Press.spa
dc.relation.referencesRappole, J. H. (1995). The ecology of migrant birds: a neotropical perspective. Smithsonian Institution Scholarly Press.spa
dc.relation.referencesRappole, J. H., & Tipton, A. R. (1991). New Harness Design for Attachment of Radio Transmitters to Small Passerines ( Nuevo Diseño de Published by : Wiley on behalf of Association of Field Ornithologists Stable URL : http://www.jstor.org/stable/20065798 NEW HARNESS DESIGN FOR ATTACHMENT OF RADI. Journal of Field Ornithology, 62(3), 335–337.spa
dc.relation.referencesRobertson, B. A., Rehage, J. S., & Sih, A. (2013). Ecological novelty and the emergence of evolutionary traps. Trends in Ecology and Evolution, 28(9), 552–560. https://doi.org/10.1016/j.tree.2013.04.004spa
dc.relation.referencesRushing, C. S., Ryder, T. B., & Marra, P. P. (2016). Quantifying drivers of population dynamics for a migratory bird throughout the annual cycle. Proceedings of the Royal Society B: Biological Sciences, 283(1823). https://doi.org/10.1098/rspb.2015.2846spa
dc.relation.referencesRyder, T. B., & Wolfe, J. D. (2009). The current state of knowledge on molt and plumage sequences in selected Neotropical bird families: A review. Ornithologica Neotropical, 20(1), 1-18.spa
dc.relation.referencesSchlaepfer, M. A., Runge, M. C., & Sherman, P. W. (2002). Ecological and evolutionary traps. Trends in Ecology & Evolution, 17(10), 474–480.spa
dc.relation.referencesSmith, T. M., & Shugart, H. H. (1987). Territory size variation in the ovenbird: the role of habitat structure. Ecology, 68(3), 695–704.spa
dc.relation.referencesStudds, C. E., & Marra, P. P. (2007). Linking fluctuations in rainfall to nonbreeding season performance in a long-distance migratory bird, Setophaga ruticilla. Climate Research, 35(1–2), 115–122. https://doi.org/10.3354/cr00718spa
dc.relation.referencesTaylor, P. D., & Krawchuk, M. A. (2005). Scale and Sensitivity of Songbird Occurrence to Landscape Structure in a Harvested Boreal Forest. Avian Conservation and Ecology, 1(1). https://doi.org/10.5751/ace-00034-010105spa
dc.relation.referencesTownsend, J. M., Rimmer, C. C., & McFarland, K. P. (2010). Winter territoriality and spatial behavior of bicknell’s thrush (Catharus bicknelli) at two ecologically distinct sites in the dominican republic. Auk, 127(3), 514–522. https://doi.org/10.1525/auk.2010.09160spa
dc.relation.referencesWalker, J., & Taylor, P. D. (2017). Using eBird data to model population change of migratory bird species. Avian Conservation and Ecology, 12(1), art4. https://doi.org/10.5751/ACE-00960-120104spa
dc.relation.referencesWarkentin, I. G., & Hernández, D. (1996). The conservation implications of site fidelity: A case study involving nearctic-neotropical migrant songbirds wintering in a Costa Rican mangrove. Biological Conservation, 77(2–3), 143–150. https://doi.org/10.1016/0006-3207(95)00146-8spa
dc.relation.referencesWilson, S., Saracco, J. F., Krikun, R., Flockhart, D. T. T., Godwin, C. M., & Foster, K. R. (2018). Drivers of demographic decline across the annual cycle of a threatened migratory bird. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-25633-zspa
dc.relation.referencesWinker, K., Rappole, J. H., & Ramos, M. A. (1995). The use of movement data as an assay of habitat quality. Oecologia, 211–216.spa
dc.relation.referencesWolfe, J. D., & Johnson, E. I. (2015). Geolocator reveals migratory and winter movements of a Prothonotary Warbler. Journal of Field Ornithology, 86(3), 238–243. https://doi.org/10.1111/jofo.12107spa
dc.relation.referencesWolfe, J. D., Ryder, T. B., & Pyle, P. (2010). Using molt cycles to categorize the age of tropical birds: An integrative new system. Journal of Field Ornithology, 81(2), 186–194. https://doi.org/10.1111/j.1557-9263.2010.00276.xspa
dc.relation.referencesWorton, B. J. (1989). Kernel methods for estimating the utilization distribution in home‐range studies. Ecology, 70(1), 164–168.spa
dc.relation.referencesWunderle, J. M., Lebow, P. K., White, J. D., Currie, D., & Ewert, D. N. (2014). Sex and age differences in site fidelity, food resource tracking, and body condition of wintering Kirtland’s warblers (Setophaga kirtlandii) in the Bahamas. Ornithological Monographs, 2014(80), 1–62.spa
dc.relation.referencesYantén, A. V., Cruz-Roa, A., & Sánchez, F. A. (2022). Traffic noise affects foraging behavior and echolocation in the Lesser Bulldog Bat, Noctilio albiventris (Chiroptera: Noctilionidae). Behavioural Processes, 203, 104775.spa
dc.relation.referencesBayne, E. M., & Hobson, K. A. (2002). Apparent survival of male ovenbirds in fragmented and forested boreal landscapes. Ecology, 83(5), 1307–1316. https://doi.org/10.1890/0012-9658(2002)083[1307:ASOMOI]2.0.CO;2spa
dc.relation.referencesBuechley, E. R., Oppel, S., Efrat, R., Phipps, W. L., Carbonell Alanís, I., Álvarez, E., Andreotti, A., Arkumarev, V., Berger-Tal, O., Bermejo Bermejo, A., Bounas, A., Ceccolini, G., Cenerini, A., Dobrev, V., Duriez, O., García, J., García-Ripollés, C., Galán, M., Gil, A., … Marra, P. P. (2021). Differential survival throughout the full annual cycle of a migratory bird presents a life-history trade-off. Journal of Animal Ecology, 90(5), 1228–1238. https://doi.org/10.1111/1365-2656.13449spa
dc.relation.referencesChandler, R. B., & King, D. I. (2011). Habitat quality and habitat selection of golden-winged warblers in Costa Rica: An application of hierarchical models for open populations. Journal of Applied Ecology, 48(4), 1038–1047. https://doi.org/10.1111/j.1365-2664.2011.02001.xspa
dc.relation.referencesCormack, R. M. (1964). Estimates of survival from the sighting of marked animals. Biometrika, 51(3/4), 429–438.spa
dc.relation.referencesCulp, L. A., Cohen, E. B., Scarpignato, A. L., Thogmartin, W. E., & Marra, P. P. (2017). Full annual cycle climate change vulnerability assessment for migratory birds. Ecosphere, 8(3), 1–22. https://doi.org/10.1002/ecs2.1565spa
dc.relation.referencesDeSante, D. F., D. R. Kaschube, and J. F. Saracco. 2015. Vital Rates of North American Landbirds. www.VitalRatesOfNorthAmericanLandbirds.org: The Institute for Bird Populations.spa
dc.relation.referencesFinch, T., Butler, S. J., Franco, A. M. A., & Cresswell, W. (2017). Low migratory connectivity is common in long-distance migrant birds. Journal of Animal Ecology, 86(3), 662–673. https://doi.org/10.1111/1365-2656.12635spa
dc.relation.referencesHeath, S. K., Soykan, C. U., Velas, K. L., Kelsey, R., & Kross, S. M. (2017). A bustle in the hedgerow: Woody field margins boost on farm avian diversity and abundance in an intensive agricultural landscape. Biological Conservation, 212(May), 153–161. https://doi.org/10.1016/j.biocon.2017.05.031spa
dc.relation.referencesHill, J. M., Lloyd, J. D., McFarland, K. P., & Rimmer, C. C. (2019). Apparent survival of a range-restricted montane forest bird species is influenced by weather throughout the annual cycle. Avian Conservation and Ecology, 14(2). https://doi.org/10.5751/ACE-01462-140216spa
dc.relation.referencesHostetler, J. A., Sillett, T. S., & Marra, P. P. (2015). Full-annual-cycle population models for migratory birds. Auk, 132(2), 433–449. https://doi.org/10.1642/AUK-14-211.1spa
dc.relation.referencesJolly, G. M. (1965). Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika, 52(1/2), 225–247.spa
dc.relation.referencesLaake J (2013). “RMark: An R Interface for Analysis of Capture-Recapture Data with MARK.” AFSC Processed Rep. 2013-01, Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., Seattle, WA. https://apps-afsc.fisheries.noaa.gov/Publications/ProcRpt/PR2013-01.pdf.spa
dc.relation.referencesLamanna, J. A., George, T. L., Saracco, J. F., Nott, M. P., & DeSante, D. F. (2012). El Niño—Southern Oscillation influences annual survival of a migratory songbird at a regional scale. The Auk, 129(4), 734-743.spa
dc.relation.referencesLa Sorte, F. A., Fink, D., Blancher, P. J., Rodewald, A. D., Ruiz-Gutierrez, V., Rosenberg, K. V., Hochachka, W. M., Verburg, P. H., & Kelling, S. (2017). Global change and the distributional dynamics of migratory bird populations wintering in Central America. Global Change Biology, 23(12), 5284–5296. https://doi.org/10.1111/gcb.13794spa
dc.relation.referencesLebreton, J. D., Burnham, K. P., Clobert, J., & Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs, 62(1), 67–118. https://doi.org/10.2307/2937171spa
dc.relation.referencesMarra, P. P. (2000). The role of behavioral dominance in structuring patterns of habitat occupancy in a migrant bird during the nonbreeding season. Behavioral Ecology, 11(3), 299–308. https://doi.org/10.1093/beheco/11.3.299spa
dc.relation.referencesMarra, P. P., Studds, C. E., Wilson, S., Scott Sillett, T., Sherry, T. W., & Holmes, R. T. (2015). Non-breeding season habitat quality mediates the strength of densitydependence for a migratory bird. Proceedings of the Royal Society B: Biological Sciences, 282(1811), 1–8. https://doi.org/10.1098/rspb.2015.0624spa
dc.relation.referencesPyle, P., McAndrews, A., Veléz, P., Wilkerson, R. L., Siegel, R. B., & DeSante, D. F. (2004). Molt patterns and age and sex determination of selected southeastern Cuban landbirds. Journal of Field Ornithology, 75(2), 136-145.spa
dc.relation.referencesRappole, J. H., & McDonald, M. V. (1994). Cause and effect in population declines of migratory birds. The Auk, 111(3), 652–660.spa
dc.relation.referencesRitterson, J. D., King, D. I., & Chandler, R. B. (2021). Habitat-specific survival of golden-winged warblers Vermivora chrysoptera during the non-breeding season in an agricultural landscape. Journal of Avian Biology, 52(3), 1–9. https://doi.org/10.1111/jav.02442spa
dc.relation.referencesRuiz-Gutierrez, V., Kendall, W. L., Saracco, J. F., & White, G. C. (2016). Overwintering strategies of migratory birds: a novel approach for estimating seasonal movement patterns of residents and transients. Journal of Applied Ecology, 53(4), 1035–1045. https://doi.org/10.1111/1365-2664.12655spa
dc.relation.referencesRunge, M. C., & Marra, P. P. (2005). Modeling seasonal interactions in the population dynamics of migratory birds. Birds of Two Worlds: The Ecology and Evolution of Migration.spa
dc.relation.referencesSeber, G. A. F. (1965). A note on the multiple-recapture census. Biometrika, 52(1/2), 249–259.spa
dc.relation.referencesSillett, T. S., & Holmes, R. T. (2002). Variation in survivorship of a migratory songbird throughout its annual cycle. Journal of Animal Ecology, 71(2), 296–308. https://doi.org/10.1046/j.1365-2656.2002.00599.xspa
dc.relation.referencesSomveille, M., Bay, R. A., Smith, T. B., Marra, P. P., & Ruegg, K. C. (2021). A general theory of avian migratory connectivity. Ecology Letters, 24(9), 1848–1858. https://doi.org/10.1111/ele.13817spa
dc.relation.referencesStralberg, D., Bayne, E. M., Cumming, S. G., Sólymos, P., Song, S. J., & Schmiegelow, F. K. A. (2015). Conservation of future boreal forest bird communities considering lags in vegetation response to climate change: A modified refugia approach. Diversity and Distributions, 21(9), 1112–1128. https://doi.org/10.1111/ddi.12356spa
dc.relation.referencesStudds, C. E., & Marra, P. P. (2005). Nonbreeding Habitat Occupancy and Population Processes : An Upgrade Experiment with a Migratory Bird. Ecology, 86(9), 2380–2385.spa
dc.relation.referencesSwift, R. J., Rodewald, A. D., Johnson, J. A., Andres, B. A., & Senner, N. R. (2020). Seasonal survival and reversible state effects in a long-distance migratory shorebird. Journal of Animal Ecology, 89(9), 2043–2055. https://doi.org/10.1111/1365-2656.13246spa
dc.relation.referencesWebster, M. S., Marra, P. P., Haig, S. M., Bensch, S., & Holmes, R. T. (2002). Links between worlds: Unraveling migratory connectivity. Trends in Ecology and Evolution, 17(2), 76–83. https://doi.org/10.1016/S0169-5347(01)02380-1spa
dc.relation.referencesWhite, G. C., & Burnham, K. P. (1999). Program mark: Survival estimation from populations of marked animals. Bird Study, 46, S120–S139. https://doi.org/10.1080/00063659909477239spa
dc.relation.referencesWoodworth, B. K., Wheelwright, N. T., Newman, A. E., Schaub, M., & Norris, D. R. (2017). Winter temperatures limit population growth rate of a migratory songbird. Nature Communications, 8. https://doi.org/10.1038/ncomms14812spa
dc.relation.referencesWunderle, J. (1995). Population characteristics of Black-throated Blue Warblers wintering in three sites on Puerto Rico. The Auk, 112(4), 931–946.spa
dc.relation.referencesJohnston, A., Hochachka, W., Strimas-Mackey, M., Ruiz Gutierrez, V., Robinson, O., Auer, T., Kelling, S., & Fink, D. (2019). Best practices for making reliable inferences from citizen science data: case study using eBird to estimate species distributions. 1–13. https://doi.org/10.1101/574392spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc590 - Animales::598 - Pájarosspa
dc.subject.ddc500 - Ciencias naturales y matemáticas::508 - Historia naturalspa
dc.subject.proposalBlackpoll Warblereng
dc.subject.proposaloccupancyeng
dc.subject.proposaldemographyeng
dc.subject.proposalhabitateng
dc.subject.proposalhome-rangeeng
dc.subject.proposalAmazoneng
dc.subject.proposalOrinocoeng
dc.subject.proposalSetophaga striataspa
dc.subject.proposalocupaciónspa
dc.subject.proposaldemografíaspa
dc.subject.proposalhábitatspa
dc.subject.proposaláreas de hogarspa
dc.subject.proposalAmazoniaspa
dc.subject.proposalOrinoquiaspa
dc.subject.proposalnon-breeding areaseng
dc.subject.proposaláreas no reproductivasspa
dc.titleNonbreeding ecology of the Blackpoll Warbler (Setophaga striata) in Colombiaeng
dc.title.translatedEcología no reproductiva de la reinita rayada (Setophaga striata) en Colombiaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFunding was provided by Environment and Climate Change Canada through an operating grant by Keith.A.Hobson., from Western University, London, Canada, and Phil.Taylor from Acadia University. Project and fieldwork was carried out under an agreement between SELVA and Universidad de Los Llanos (no. 053, 2017 and no.29, 2021)spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
52426112_2024.pdf
Tamaño:
12.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Estudios Amazónicos
Cargando...
Miniatura
Nombre:
52426112_2024.pdf
Tamaño:
12.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Se carga de nuevo el documento con el título en inglés y español respondiendo a la solicitud.

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: