Perfil de expresión de pink1 e idh1 en glioblastoma multiforme

dc.contributor.advisorRicaurte Guerrero, Orlando
dc.contributor.advisorArboleda Bustos, Gonzalo
dc.contributor.authorCano Muñoz, Carlos Arturo
dc.contributor.refereeSánchez Merchán, Ángel Yobany
dc.date.accessioned2021-04-29T14:54:31Z
dc.date.available2021-04-29T14:54:31Z
dc.date.issued2021
dc.descriptionIlustraciones a color, tablasspa
dc.description.abstractEl glioblastoma Multiforme (GBM) es el tumor cerebral primario maligno derivado de los astrocitos más común del sistema nervioso central en adultos. Pertenece a la categoría de los gliomas difusos o infiltrativos. La Organización Mundial de la Salud en 2016 lo clasifica en el grado histológico IV, es decir el más agresivo. Mutaciones en los genes que codifican la proteína PINK1 están relacionadas con la enfermedad de Parkinson (EP) familiar, autosómica recesiva. De manera sorprendente las personas con EP tienen un pequeño pero significativo incremento en el riesgo para desarrollar cáncer cerebral y pulmonar (Veeriah S, 2010), aunque en este aumento del riesgo no se ha implicado directamente a la proteína PINK1. A nivel mundial se han desarrollado escasos trabajos de investigación que busquen la relación entre GBM y la proteína PINK1. El objetivo de este trabajo es describir, por medio de la técnica de inmunohistoquímica en un microarreglo de 23 muestras de GBM, el perfil de expresión y localización subcelular de las proteínas PINK1 e IDH1.spa
dc.description.abstractGlioblastoma multiforme (GBM) is the most common malignant primary brain tumor derived from astrocytes of the central nervous system in adults. It belongs to the category of diffuse or infiltrative gliomas. The World Health Organization in 2016 classifies it as histological grade IV, that is, the most aggressive. Mutations in the genes encoding the PINK1 protein are related to familial, autosomal recessive Parkinson's disease (PD). Surprisingly, people with PD have a small but significant increase in the risk of developing brain and lung cancer (Veeriah S, 2010), although the PINK1 protein has not been directly implicated in this increased risk. Worldwide, few research works have been carried out that seek the relationship between GBM and the PINK1 protein. The objective of this work is to describe, by means of the immunohistochemical technique in a microarray of 23 GBM samples, the expression profile and subcellular localization of the PINK1 and IDH1 proteins.eng
dc.description.degreelevelEspecialidades Médicasspa
dc.description.researchareaPink1 y cáncerspa
dc.format.extent1 recurso en línea (63 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79458
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Medicina - Especialidad en Patología Anatómica y Clínicaspa
dc.relation.referencesAgnihotri S., G. B. (2016). PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Res.spa
dc.relation.referencesal, L. D. (2020). cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol.spa
dc.relation.referencesal, R. R.-A. (2014). PINK1 deficiency sustains cell proliferation by. Nature Communications , 1-9.spa
dc.relation.referencesal, R. R.-A. (2015). DJ1 represses glycolysis and cell proliferation by. Biochem J, 303- 310.spa
dc.relation.referencesal, R.-A. R. (2014). PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun, 1-9.spa
dc.relation.referencesAmirian ES, S. M. (2016). History of chickenpox in glioma risk: a report from the glioma international case-control study (GICC). Cancer Med.spa
dc.relation.referencesAndrés Felipe Cardona, L. R. (2016164-172). Genotyping low-grade gliomas among Hispanics. Neuro-Oncology Practice.spa
dc.relation.referencesBernardini, J. P. (2016). Parkin and mitophagy in cancer. Oncogene.spa
dc.relation.referencesCai J, Z. P. (2016). Detection of ATRX and IDH1-R132H immunohistochemistry in the progression of 211 paired gliomas. Oncotarget, 16384‐16395.spa
dc.relation.referencesDavid N. Louis, H. O. (2016). WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency For Research On Cancer.spa
dc.relation.referencesDikic, I. &. (2018). Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology.spa
dc.relation.referencesEiyama, A. &. (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Current Opinion in Cell Biology.spa
dc.relation.referencesHanif F, M. K. (2017). Glioblastoma Multiforme:A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev, 3-9.spa
dc.relation.referencesIARC. (2018). Recuperado el 20 de Noviembre de 2019, de http://gco.iarc.fr/today/data/factsheets/cancers/31-Brain-central-nervous-system- fact-sheet.pdfspa
dc.relation.referencesJUWEID, A. F. (2017). Epidemiology and Outcome of Glioblastoma. En S. D. Vleeschouwer, GLIOBLASTOMA (pág. 452). Brisbane: Codon Publications.spa
dc.relation.referencesKulikov, A. V. (2017). Mitophagy: Link to cancer development and therapy. Biochemical and Biophysical Research Communications.spa
dc.relation.referencesLiberti MV, L. J. (2016). The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci.spa
dc.relation.referencesLouis DN, W. P. (2020). cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol.spa
dc.relation.referencesM. Preusser, D. C. (2011). IDH testing in diagnostic neuropathology: review and practical guideline article invited by the Euro-CNS research committee. Clin Neuropathol.spa
dc.relation.referencesMelin BS, B.-S. J. (2017). Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet.spa
dc.relation.referencesMolina, A. V. (2016). Caracterización clínica e imagenológica de pacientes con glioblastoma o astrocitoma anaplásico atendidos en el Instituto Nacional de Cancerología durante el periodo enero 2007 – diciembre 2013. Bogotá D.C, Colombia: Universidad Nacional de Colombia.spa
dc.relation.referencesOrlando Ricaurte, K. N.-R.-B. (2018). Estudio de mutaciones en los genes IDH1 e IDH2 en una muestra de gliomas de población colombiana. Biomédica.spa
dc.relation.referencesOstrom QT, G. H. (2017). CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol.spa
dc.relation.referencesPardo C, d. V. (2017). Atlas de mortalidad por cáncer en Colombia. Bogotá D.C: Instituto Geográfico Agustín Codazzi .spa
dc.relation.referencesRequejo-Aguilar R, L.-F. I.-B. (2015). DJ1 represses glycolysis and cell proliferation by transcriptionally up-regulating Pink1. Biochem J. , 303-310.spa
dc.relation.referencesRequejo-Aguilar R, L.-F. I.-B.-r., & doi:10.1042/BJ20141025, 4.‐3. (2015). DJ1 represses glycolysis and cell proliferation by transcriptionally upregulating pink1. Biochem J, 303-310.spa
dc.relation.referencesRequejo-Aguilar, R. L.-F. (2014). PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun.spa
dc.relation.referencesRosenblum, A. P. (2018). Central Nervous System. In: Rosai and Ackermans Surgical Pathology. Philadelphia: Elsevier.spa
dc.relation.referencesShireen A. Sarraf, D. P. (2019). PINK1/Parkin Influences Cell Cycle by Sequestering TBK1 at Damaged Mitochondria, Inhibiting Mitosis. Cell Reports.spa
dc.relation.referencesTamimi AF, J. M. (2017). Epidemiology and Outcome of Glioblastoma. En D. V. S, Glioblastoma. Brisbane (AU): Codon Publications.spa
dc.relation.referencesUhlen M, Z. C. (2017). A pathology atlas of the human cancer transcriptome. Science, 1- 11.spa
dc.relation.referencesValencia Artunduaga, M. (2017). Determinación de la presencia del receptor de orexina 1 en células de Glioblastoma Multiforme. Bogotá, Colombia: Universidad Nacional de Colombia.spa
dc.relation.referencesVander Heiden, M. G. (2009). Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science.spa
dc.relation.referencesVander Heiden, M. G. (2009). Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 1029-1033.spa
dc.relation.referencesVara-Perez M, F.-A. B. (2019). Mitophagy in Cancer: A Tale of Adaptation. Cells.spa
dc.relation.referencesVeeriah S, T. B. (2010). Somatic mutations of the Parkinsons disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet, 77-82.spa
dc.relation.referencesWesseling, P. &. (2018). WHO 2016 Classification of gliomas. Neuropathology and Applied Neurobiology.spa
dc.relation.referencesWirsching, H.-G. G. (2016). Glioblastoma. Gliomas.spa
dc.relation.referencesYao ZQ, Z. X. (2018). A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death Dis.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsMitofagia
dc.subject.decsMitophagy
dc.subject.decsGlioblastoma
dc.subject.decsEnfermedad de Parkinson
dc.subject.decsParkinson Disease
dc.subject.proposalpink1spa
dc.subject.proposalidh1spa
dc.subject.proposalGliomagénesisspa
dc.subject.proposalMitofagiaspa
dc.subject.proposalGlioblastoma multiformespa
dc.subject.proposalpink1eng
dc.subject.proposalidh1eng
dc.subject.proposalGliomagenesiseng
dc.subject.proposalMitophagyeng
dc.subject.proposalGlioblastoma multiformeeng
dc.titlePerfil de expresión de pink1 e idh1 en glioblastoma multiformespa
dc.title.translatedExpression profile of pink1 and idh1 in glioblastoma multiformeeng
dc.typeTrabajo de grado - Especialidad Médicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075277208.2021.pdf
Tamaño:
1.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Especialidad médica en Patología Anatómica y Clínica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: