Perfil de expresión de pink1 e idh1 en glioblastoma multiforme
dc.contributor.advisor | Ricaurte Guerrero, Orlando | |
dc.contributor.advisor | Arboleda Bustos, Gonzalo | |
dc.contributor.author | Cano Muñoz, Carlos Arturo | |
dc.contributor.referee | Sánchez Merchán, Ángel Yobany | |
dc.date.accessioned | 2021-04-29T14:54:31Z | |
dc.date.available | 2021-04-29T14:54:31Z | |
dc.date.issued | 2021 | |
dc.description | Ilustraciones a color, tablas | spa |
dc.description.abstract | El glioblastoma Multiforme (GBM) es el tumor cerebral primario maligno derivado de los astrocitos más común del sistema nervioso central en adultos. Pertenece a la categoría de los gliomas difusos o infiltrativos. La Organización Mundial de la Salud en 2016 lo clasifica en el grado histológico IV, es decir el más agresivo. Mutaciones en los genes que codifican la proteína PINK1 están relacionadas con la enfermedad de Parkinson (EP) familiar, autosómica recesiva. De manera sorprendente las personas con EP tienen un pequeño pero significativo incremento en el riesgo para desarrollar cáncer cerebral y pulmonar (Veeriah S, 2010), aunque en este aumento del riesgo no se ha implicado directamente a la proteína PINK1. A nivel mundial se han desarrollado escasos trabajos de investigación que busquen la relación entre GBM y la proteína PINK1. El objetivo de este trabajo es describir, por medio de la técnica de inmunohistoquímica en un microarreglo de 23 muestras de GBM, el perfil de expresión y localización subcelular de las proteínas PINK1 e IDH1. | spa |
dc.description.abstract | Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor derived from astrocytes of the central nervous system in adults. It belongs to the category of diffuse or infiltrative gliomas. The World Health Organization in 2016 classifies it as histological grade IV, that is, the most aggressive. Mutations in the genes encoding the PINK1 protein are related to familial, autosomal recessive Parkinson's disease (PD). Surprisingly, people with PD have a small but significant increase in the risk of developing brain and lung cancer (Veeriah S, 2010), although the PINK1 protein has not been directly implicated in this increased risk. Worldwide, few research works have been carried out that seek the relationship between GBM and the PINK1 protein. The objective of this work is to describe, by means of the immunohistochemical technique in a microarray of 23 GBM samples, the expression profile and subcellular localization of the PINK1 and IDH1 proteins. | eng |
dc.description.degreelevel | Especialidades Médicas | spa |
dc.description.researcharea | Pink1 y cáncer | spa |
dc.format.extent | 1 recurso en línea (63 páginas) | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79458 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bogotá - Medicina - Especialidad en Patología Anatómica y Clínica | spa |
dc.relation.references | Agnihotri S., G. B. (2016). PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Res. | spa |
dc.relation.references | al, L. D. (2020). cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. | spa |
dc.relation.references | al, R. R.-A. (2014). PINK1 deficiency sustains cell proliferation by. Nature Communications , 1-9. | spa |
dc.relation.references | al, R. R.-A. (2015). DJ1 represses glycolysis and cell proliferation by. Biochem J, 303- 310. | spa |
dc.relation.references | al, R.-A. R. (2014). PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun, 1-9. | spa |
dc.relation.references | Amirian ES, S. M. (2016). History of chickenpox in glioma risk: a report from the glioma international case-control study (GICC). Cancer Med. | spa |
dc.relation.references | Andrés Felipe Cardona, L. R. (2016164-172). Genotyping low-grade gliomas among Hispanics. Neuro-Oncology Practice. | spa |
dc.relation.references | Bernardini, J. P. (2016). Parkin and mitophagy in cancer. Oncogene. | spa |
dc.relation.references | Cai J, Z. P. (2016). Detection of ATRX and IDH1-R132H immunohistochemistry in the progression of 211 paired gliomas. Oncotarget, 16384‐16395. | spa |
dc.relation.references | David N. Louis, H. O. (2016). WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency For Research On Cancer. | spa |
dc.relation.references | Dikic, I. &. (2018). Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology. | spa |
dc.relation.references | Eiyama, A. &. (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Current Opinion in Cell Biology. | spa |
dc.relation.references | Hanif F, M. K. (2017). Glioblastoma Multiforme:A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev, 3-9. | spa |
dc.relation.references | IARC. (2018). Recuperado el 20 de Noviembre de 2019, de http://gco.iarc.fr/today/data/factsheets/cancers/31-Brain-central-nervous-system- fact-sheet.pdf | spa |
dc.relation.references | JUWEID, A. F. (2017). Epidemiology and Outcome of Glioblastoma. En S. D. Vleeschouwer, GLIOBLASTOMA (pág. 452). Brisbane: Codon Publications. | spa |
dc.relation.references | Kulikov, A. V. (2017). Mitophagy: Link to cancer development and therapy. Biochemical and Biophysical Research Communications. | spa |
dc.relation.references | Liberti MV, L. J. (2016). The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci. | spa |
dc.relation.references | Louis DN, W. P. (2020). cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. | spa |
dc.relation.references | M. Preusser, D. C. (2011). IDH testing in diagnostic neuropathology: review and practical guideline article invited by the Euro-CNS research committee. Clin Neuropathol. | spa |
dc.relation.references | Melin BS, B.-S. J. (2017). Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet. | spa |
dc.relation.references | Molina, A. V. (2016). Caracterización clínica e imagenológica de pacientes con glioblastoma o astrocitoma anaplásico atendidos en el Instituto Nacional de Cancerología durante el periodo enero 2007 – diciembre 2013. Bogotá D.C, Colombia: Universidad Nacional de Colombia. | spa |
dc.relation.references | Orlando Ricaurte, K. N.-R.-B. (2018). Estudio de mutaciones en los genes IDH1 e IDH2 en una muestra de gliomas de población colombiana. Biomédica. | spa |
dc.relation.references | Ostrom QT, G. H. (2017). CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol. | spa |
dc.relation.references | Pardo C, d. V. (2017). Atlas de mortalidad por cáncer en Colombia. Bogotá D.C: Instituto Geográfico Agustín Codazzi . | spa |
dc.relation.references | Requejo-Aguilar R, L.-F. I.-B. (2015). DJ1 represses glycolysis and cell proliferation by transcriptionally up-regulating Pink1. Biochem J. , 303-310. | spa |
dc.relation.references | Requejo-Aguilar R, L.-F. I.-B.-r., & doi:10.1042/BJ20141025, 4.‐3. (2015). DJ1 represses glycolysis and cell proliferation by transcriptionally upregulating pink1. Biochem J, 303-310. | spa |
dc.relation.references | Requejo-Aguilar, R. L.-F. (2014). PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun. | spa |
dc.relation.references | Rosenblum, A. P. (2018). Central Nervous System. In: Rosai and Ackermans Surgical Pathology. Philadelphia: Elsevier. | spa |
dc.relation.references | Shireen A. Sarraf, D. P. (2019). PINK1/Parkin Influences Cell Cycle by Sequestering TBK1 at Damaged Mitochondria, Inhibiting Mitosis. Cell Reports. | spa |
dc.relation.references | Tamimi AF, J. M. (2017). Epidemiology and Outcome of Glioblastoma. En D. V. S, Glioblastoma. Brisbane (AU): Codon Publications. | spa |
dc.relation.references | Uhlen M, Z. C. (2017). A pathology atlas of the human cancer transcriptome. Science, 1- 11. | spa |
dc.relation.references | Valencia Artunduaga, M. (2017). Determinación de la presencia del receptor de orexina 1 en células de Glioblastoma Multiforme. Bogotá, Colombia: Universidad Nacional de Colombia. | spa |
dc.relation.references | Vander Heiden, M. G. (2009). Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science. | spa |
dc.relation.references | Vander Heiden, M. G. (2009). Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 1029-1033. | spa |
dc.relation.references | Vara-Perez M, F.-A. B. (2019). Mitophagy in Cancer: A Tale of Adaptation. Cells. | spa |
dc.relation.references | Veeriah S, T. B. (2010). Somatic mutations of the Parkinsons disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet, 77-82. | spa |
dc.relation.references | Wesseling, P. &. (2018). WHO 2016 Classification of gliomas. Neuropathology and Applied Neurobiology. | spa |
dc.relation.references | Wirsching, H.-G. G. (2016). Glioblastoma. Gliomas. | spa |
dc.relation.references | Yao ZQ, Z. X. (2018). A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death Dis. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Mitofagia | |
dc.subject.decs | Mitophagy | |
dc.subject.decs | Glioblastoma | |
dc.subject.decs | Enfermedad de Parkinson | |
dc.subject.decs | Parkinson Disease | |
dc.subject.proposal | pink1 | spa |
dc.subject.proposal | idh1 | spa |
dc.subject.proposal | Gliomagénesis | spa |
dc.subject.proposal | Mitofagia | spa |
dc.subject.proposal | Glioblastoma multiforme | spa |
dc.subject.proposal | pink1 | eng |
dc.subject.proposal | idh1 | eng |
dc.subject.proposal | Gliomagenesis | eng |
dc.subject.proposal | Mitophagy | eng |
dc.subject.proposal | Glioblastoma multiforme | eng |
dc.title | Perfil de expresión de pink1 e idh1 en glioblastoma multiforme | spa |
dc.title.translated | Expression profile of pink1 and idh1 in glioblastoma multiforme | eng |
dc.type | Trabajo de grado - Especialidad Médica | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_46ec | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1075277208.2021.pdf
- Tamaño:
- 1.07 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Especialidad médica en Patología Anatómica y Clínica
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: