Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos

dc.contributor.advisorCortés Guerrero, Camilo Andrésspa
dc.contributor.advisorMartínez Martínez, Wilmar Hernánspa
dc.contributor.authorGomez Carrillo, Tania Ginethspa
dc.contributor.researchgroupGrupo de Investigación Emc-Unspa
dc.date.accessioned2023-05-29T20:31:39Z
dc.date.available2023-05-29T20:31:39Z
dc.date.issued2023
dc.descriptionilustracionesspa
dc.description.abstractEn este trabajo de investigación, se llevó a cabo una revisión bibliográfica sobre de las tecnologías disponibles para la transferencia inalámbrica de energía en vehículos eléctricos. Con base en esta revisión, se estableció una metodología para el diseño de un sistema de transferencia inalámbrica de energía que se enfoca principalmente en el diseño del sistema de apantallamiento electromagnético mediante el uso de software de simulación de elementos finitos. Como resultado de la evaluación de distintas combinaciones de dimensiones de las bobinas y el sistema de apantallamiento, se identificó un diseño óptimo que logró maximizar el coeficiente de acoplamiento entre las bobinas, reducir el tamaño total y garantizar el cumplimiento de los estándares de seguridad electromagnética. Tras realizar modificaciones al sistema de apantallamiento, se evaluaron diferentes materiales y formas para mejorar su eficiencia, lo que permitió identificar los más apropiados para reducir las pérdidas obtenidas por el apantallamiento. (Texto tomado de la fuente).spa
dc.description.abstractIn this research work, a state of the art review was carried out on the technologies available for wireless power transfer of energy in electric vehicles. Based on this review, a methodology was established for the design of a wireless power transfer system that focuses mainly on the design of the electromagnetic shielding system through the use of finite element simulation software. As a result of the evaluation of different combinations of dimensions of the coils and the shielding system, an optimal design was identified. Such system will maximize the concentration coefficient between the coils, reduce the overall size, and guarantee compliance with electromagnetic safety standards. After making modifications to the shielding system, different materials and shapes were evaluated to improve its efficiency, which allowed identifying the most appropriate to reduce the losses obtained by the shielding.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Electrónicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaElectrónica de potencia, diseño de componentes magnéticosspa
dc.format.extentxix, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83902
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónicaspa
dc.relation.referencesAkhil, A.G. et al. (2021) ‘Coupled wireless charging system for electric vehicles’, Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV 2021, (Icicv), pp. 475–479. Available at: https://doi.org/10.1109/ICICV50876.2021.9388458.spa
dc.relation.referencesANSYS (2013) ‘Ansys Maxweel V16 Training Manual, Lecture 3: Static Magnetic Solvers’.spa
dc.relation.referencesAnsys Inc (2013) ‘Ansys Maxwell V16 Training Manual - Lecture 6: Meshing and Mesh Operations’.spa
dc.relation.referencesAnsys INC (2013) ‘Ansys Maxwell V16 Training Manual - Lecture 1: Introduction to Ansys Maxwell’.spa
dc.relation.referencesBadwey, M.A., Abbasy, N.H. and Eldallal, G.M. (2022) ‘An efficient design of LC-compensated hybrid wireless power transfer system for electric vehicle charging applications’, Alexandria Engineering Journal, 61(8), pp. 6565–6580. Available at: https://doi.org/10.1016/j.aej.2021.12.016.spa
dc.relation.referencesBandyopadhyay, S. et al. (2017) ‘Design considerations for a misalignment tolerant wireless inductive power system for electric vehicle (EV) charging’, 2017 19th European Conference on Power Electronics and Applications, EPE 2017 ECCE Europe, 2017-Janua, pp. 1–10. Available at: https://doi.org/10.23919/EPE17ECCEEurope.2017.8099320.spa
dc.relation.referencesBarth, D., Klaus, B. and Leibfried, T. (2017) ‘Litz wire design for wireless power transfer in electric vehicles’, WPTC 2017 - Wireless Power Transfer Conference [Preprint]. Available at: https://doi.org/10.1109/WPT.2017.7953819.spa
dc.relation.referencesBenalia, N., Laroussi, K. and Benlaloui, I. (2022) ‘Improvement of the Magnetic Coupler design for Wireless Inductive Power Transfer’, Proceedings - 2022 5th International Conference on Power Electronics and their Applications, ICPEA 2022, 1(March), pp. 1–6. Available at: https://doi.org/10.1109/ICPEA51060.2022.9791150.spa
dc.relation.referencesBudhia, M. et al. (2013) ‘Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems’, IEEE Transactions on Industrial Electronics, 60(1), pp. 318–328. Available at: https://doi.org/10.1109/TIE.2011.2179274.spa
dc.relation.referencesCampi, T. et al. (2015) ‘Magnetic shielding design of wireless power transfer systems’, Annual Review of Progress in Applied Computational Electromagnetics, 2015-May (1), pp. 422–425.spa
dc.relation.referencesChoi, B.G. and Kim, Y.S. (2021) ‘New Structure Design of Ferrite Cores for Wireless Electric Vehicle Charging by Machine Learning’, IEEE Transactions on Industrial Electronics, 68(12), pp. 12162– 12172. Available at: https://doi.org/10.1109/TIE.2020.3047041.spa
dc.relation.referencesChowdhury, M.S.A. (2019) Design and performance evaluation of different power pad topologies for electric vehicles wireless charging systems. Available at: https://research.library.mun.ca/13949/.spa
dc.relation.referencesCorti, F. et al. (2019) ‘Circular Coil for EV Wireless Charging Design and Optimization Considering Ferrite Saturation’, 5th International Forum on Research and Technologies for Society and Industry: Innovation to Shape the Future, RTSI 2019 - Proceedings, pp. 279–284. Available at: https://doi.org/10.1109/RTSI.2019.8895601.spa
dc.relation.referencesCruciani, S. et al. (2018) ‘Application of the artificial material single layer (AMSL) method to assess the magnetic field generated by a WPT system with shield’, 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility, EMC/APEMC 2018, pp. 80–83. Available at: https://doi.org/10.1109/ISEMC.2018.8393743.spa
dc.relation.referencesEl-Shahat, A. and Ayisire, E. (2021) ‘Novel electrical modeling, design and comparative control techniques for wireless electric vehicle battery charging’, Electronics (Switzerland), 10(22). Available at: https://doi.org/10.3390/electronics10222842.spa
dc.relation.referencesEmmons Terman, F. (1943) Radio engineer’s handbook, Textile Research Journal. Available at: http://www.sidalc.net/cgibin/wxis.exe/?IsisScript=UCC.xis&method=post&formato=2&cantidad=1&expresion=mfn=031555 %0Apapers2://publication/uuid/1060C9BD-59A1-4088-871E-C79F9568A608.spa
dc.relation.referencesFeliziani, M. and Cruciani, S. (2013) ‘Mitigation of the magnetic field generated by a wireless power transfer (WPT) system without reducing the WPT efficiency’, IEEE International Symposium on Electromagnetic Compatibility, pp. 610–615.spa
dc.relation.referencesFeng, H. et al. (2020) ‘Advances in High-Power Wireless Charging Systems: Overview and Design Considerations’, IEEE Transactions on Transportation Electrification, 6(3), pp. 886–919. Available at: https://doi.org/10.1109/TTE.2020.3012543.spa
dc.relation.referencesGaona, D.E., Jiang, C. and Long, T. (2021) ‘Highly Efficient 11.1-kW Wireless Power Transfer Utilizing Nanocrystalline Ribbon Cores’, IEEE Transactions on Power Electronics, 36(9), pp. 9955– 9969. Available at: https://doi.org/10.1109/TPEL.2021.3064902.spa
dc.relation.referencesGhosh, A. (2020) ‘Possibilities and challenges for the inclusion of the electric vehicle (EV) to reduce the carbon footprint in the transport sector: A review’, Energies, 13(10). Available at: https://doi.org/10.3390/en13102602.spa
dc.relation.referencesGómez, T. and Hernández, W. (2015) Técnicas de control para convertidores DC / DC de potencia intercalados con acoplamiento magnético.spa
dc.relation.referencesHariri, A. et al. (2016) ‘An Iterative Design Approach for Shielding of WPT Systems in Electric Vehicle Charging Applications’, 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 - Proceedings, pp. 1–4. Available at: https://doi.org/10.1109/VPPC.2016.7791613.spa
dc.relation.referencesIclodean, C. et al. (2017) ‘Comparison of Different Battery Types for Electric Vehicles’, IOP Conference Series: Materials Science and Engineering, 252(1). Available at: https://doi.org/10.1088/1757-899X/252/1/012058.spa
dc.relation.referencesInternational Electrotechnical Commission (2019) IEC TS 61980-2:2019 Electric vehicle wireless power transfer (WPT) systems - Part 2: Specific requirements for communication between electric road vehicle (EV) and infrastructure. Available at: https://webstore.iec.ch/publication/31050 (Accessed: 5 December 2022).spa
dc.relation.referencesInternational Electrotechnical Commission (2022) IEC 61980-3:2022 Electric vehicle wireless power transfer (WPT) systems - Part 3: Specific requirements for magnetic field wireless power transfer systems. Available at: https://webstore.iec.ch/publication/66059 (Accessed: 5 December 2022).spa
dc.relation.referencesInternational Electrotechnical Commission (no date) IEC 61980-1:2020 Electric vehicle wireless power transfer (WPT) systems - Part 1: General requirements, 2020. Available at: https://webstore.iec.ch/publication/31657 (Accessed: 5 December 2022).spa
dc.relation.referencesJensen, K.D. (2020) ‘Litz Wire: Practical Design Considerations for Today´s High Frecuency Applications’.spa
dc.relation.referencesKadem, K. et al. (2019) ‘Reduction of the shielding effect on the coupling factor of an EV WPT system’, 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2019, pp. 21–24. Available at: https://doi.org/10.1109/WoW45936.2019.9030652.spa
dc.relation.referencesKan, T. (2020) ‘Modelling Inductive-Based Wireless Power Transfer Using Ansys Maxwell’spa
dc.relation.referencesKavitha, M., Bobba, P.B. and Prasad, D. (2017) ‘Effect of coil geometry and shielding on wireless power transfer system’, 2016 IEEE 7th Power India International Conference, PIICON 2016, pp. 1– 6. Available at: https://doi.org/10.1109/POWERI.2016.8077154.spa
dc.relation.referencesKim, S. et al. (2014) ‘Modeling of electromagnetic interference shielding materials in wireless power transfer for board-to-board level interconnections’, IEEE Wireless Power Transfer Conference 2014, IEEE WPTC 2014, pp. 273–276. Available at: https://doi.org/10.1109/WPT.2014.6839561.spa
dc.relation.referencesKnaisch, K. and Gratzfeld, P. (2015) ‘Comparison of magnetic couplers for inductive electric vehicle charging using accurate numerical simulation and statistical methods’, 2015 5th International Conference on Electric Drives Production, EDPC 2015 - Proceedings, pp. 1–10. Available at: https://doi.org/10.1109/EDPC.2015.7323223.spa
dc.relation.referencesLawton, P.A.J., Lin, F.J. and Covic, G.A. (2022) ‘Magnetic Design Considerations for High-Power Wireless Charging Systems’, IEEE Transactions on Power Electronics, 37(8), pp. 9972–9982. Available at: https://doi.org/10.1109/TPEL.2022.3154365.spa
dc.relation.referencesLi, S. and Mi, C.C. (2020) ‘Wireless power transfer for electric vehicle charging’, AIP Conference Proceedings, 2306(March). Available at: https://doi.org/10.1063/5.0032383.spa
dc.relation.referencesLiang, J. and Kan, T. (2021) ‘Wireless Charging Systems - Create Better Designs Through Simulation’.spa
dc.relation.referencesLiu, C., Jiang, C. and Qiu, C. (2017) ‘Overview of coil designs for wireless charging of electric vehicle’, 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2017, pp. 15–18. Available at: https://doi.org/10.1109/WoW.2017.7959389.spa
dc.relation.referencesDe Marco, D. et al. (2019) ‘Design and performance analysis of pads for dynamicwireless charging of EVs using the finite element method’, Energies, 12(21). Available at: https://doi.org/10.3390/en12214139.spa
dc.relation.referencesMartinez, W. (2020) Modeling and Multi-Objective Optimization of Inductive Components in High Voltage Gain Power Converters Modeling and Multi-Objective Optimization of Inductive Components in High Voltage Gain Power Converters. Universidad Nacional de Colombia.spa
dc.relation.referencesMartínez, W. (2013) Diseño de un sistema de carga y descarga de energía eléctrica para vehículos eléctricos de alto desempeño Diseño de un sistema de carga y descarga de energía eléctrica para vehículos eléctricos de alto desempeño. Universidad Nacional de Colombia.spa
dc.relation.referencesMohamed, A.A.S. et al. (2020) ‘A comprehensive overview of inductive pad in electric vehicles stationary charging’, Applied Energy, 262(February), p. 114584. Available at: https://doi.org/10.1016/j.apenergy.2020.114584.spa
dc.relation.referencesMohamed, N., Aymen, F., Alharbi, T.E.A., et al. (2022) ‘A Comprehensive Analysis of Wireless Charging Systems for Electric Vehicles’, IEEE Access, 10, pp. 43865–43881. Available at: https://doi.org/10.1109/ACCESS.2022.3168727.spa
dc.relation.referencesMohamed, N., Aymen, F., Alqarni, M., et al. (2022) ‘A new wireless charging system for electric vehicles using two receiver coils’, Ain Shams Engineering Journal, 13(2), p. 101569. Available at: https://doi.org/10.1016/j.asej.2021.08.012.spa
dc.relation.referencesMohammed, S.A.Q. and Jung, J.W. (2021) ‘A Comprehensive State-of-the-Art Review of Wired/Wireless Charging Technologies for Battery Electric Vehicles: Classification/Common Topologies/Future Research Issues’, IEEE Access, 9, pp. 19572–19585. Available at: https://doi.org/10.1109/ACCESS.2021.3055027.spa
dc.relation.referencesMou, X. et al. (2019) ‘Survey on magnetic resonant coupling wireless power transfer technology for electric vehicle charging’, IET Power Electronics, 12(12), pp. 3005–3020. Available at: https://doi.org/10.1049/iet-pel.2019.0529.spa
dc.relation.referencesNaik Mude, K. (2014) Wireless power transfer for electric vehicle.spa
dc.relation.referencesNew England Wire Technologies (2005) ‘Litz and Winding Wires’, in, pp. 127–136.spa
dc.relation.referencesNew England Wire Technologies (2017) Litz Wire Theory. Available at: https://www.newenglandwire.com/products/litz-wire-and-formed-cables/theory (Accessed: 16 December 2022).spa
dc.relation.referencesParikh, P.P., Sidhu, T.S. and Shami, A. (2013) ‘A Comprehensive Investigation of Wireless LAN for IEC 61850-2013; Based Smart Distribution Substation Applications’, IEEE Transactions on Industrial Informatics, pp. 1466–1476. Available at: https://doi.org/10.1109/TII.2012.2223225.spa
dc.relation.referencesPavelek, M., Frivaldsky, M. and Spanik, P. (2018) ‘Influence of the passive shielding on the optimal working point of the wireless power transfer systems’, SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 773–778. Available at: https://doi.org/10.1109/SPEEDAM.2018.8445377.spa
dc.relation.referencesPellitteri, F. (2016) Wireless charging systems for electric vehicle batteries.spa
dc.relation.referencesPetersen, M. and Fuchs, F.W. (2013) ‘Comparative study on optimal core design for maximizing the coupling coefficient in electric vehicle inductive power transfer system’, PCIM Europe Conference Proceedings, (May), pp. 1525–1530.spa
dc.relation.referencesPinto, R., Lopresto, V. and Genovese, A. (2018) ‘A numerical study for the design of a new DD coil prototype for dynamic wireless charging of electric vehicles’, IET Conference Publications, 2018(CP741), pp. 2–6. Available at: https://doi.org/10.1049/cp.2018.1096.spa
dc.relation.referencesPusti, A. et al. (2021) ‘Essential analysis of MRC-WPT system for electric vehicle charging using coupled mode theory’, 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology, ODICON 2021 [Preprint]. Available at: https://doi.org/10.1109/ODICON50556.2021.9429020.spa
dc.relation.referencesRahman, M. et al. (2021) ‘Magnetic Resonance Coupled Wireless Power Transfer Analysis for Electric Vehicle’, Proceedings - 2021 IEEE 3rd Global Power, Energy and Communication Conference, GPECOM 2021, pp. 28–33. Available at: https://doi.org/10.1109/GPECOM52585.2021.9587543.spa
dc.relation.referencesRazu, M.R.R. et al. (2021) ‘Wireless Charging of Electric Vehicle while Driving’, IEEE Access, 9(December), pp. 157973–157983. Available at: https://doi.org/10.1109/ACCESS.2021.3130099.spa
dc.relation.referencesSAE International (2019) ‘Surface Vehicle Recomended Practice J2954’, SAE International, 4970(724), pp. 1–5.spa
dc.relation.referencesTalluri, G. et al. (2021) ‘Analysis of Power Losses due to Magnetic Shielding for Electric Vehicle Wireless Charging’, 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2021, pp. 1–6. Available at: https://doi.org/10.1109/CPE-POWERENG50821.2021.9501223.spa
dc.relation.referencesTDK Corporation (2017a) ‘Ferrites and accessories - SIFERRIT material N87 Datasheet’, (September 2017), pp. 1–11. Available at: https://www.tdkelectronics.tdk.com/download/528882/71e02c7b9384de1331b3f625ce4b2123/pdf-n87.pdf.spa
dc.relation.referencesTDK Corporation (2017b) ‘Ferrites and accessories - SIFERRIT material N95 Datasheet’, (May 2017)spa
dc.relation.referencesTDK Corporation (2023) Magnetic Design Tool. Available at: https://tools.tdk-electronics.tdk.com/ (Accessed: 20 January 2021).spa
dc.relation.referencesThein, M.E. et al. (2021) ‘Investigation of power transfer efficiency: utilizing different coil designs in wireless charging of electric vehicles’, IOP Conference Series: Materials Science and Engineering, 1137(1), p. 012019. Available at: https://doi.org/10.1088/1757-899x/1137/1/012019.spa
dc.relation.referencesTriviño-Cabrera, A., González-González, J.M. and Aguado, J.A. (2020) Wireless Power Transfer for Electric Vehicles: Foundations and Design Approach, Power Systems. Available at: https://doi.org/10.1007/978-3-030-26706-3_1.spa
dc.relation.referencesVelandia, F. (2018) Diseño e Implementación de un Convertidor de Potencia de Alta Eficiencia para un Vehículo Eléctrico de Alto Desempeño. Universidad Nacional de Colombia.spa
dc.relation.referencesXie, W., Chen, Q.G. and Lei, S.Z. (2021) ‘An Optimized Design of an Electric Vehicle Wireless Charging Coupling Coil’, Journal of Physics: Conference Series, 2125(1). Available at: https://doi.org/10.1088/1742-6596/2125/1/012035.spa
dc.relation.referencesXiong, M. et al. (2021) ‘Design and effect analysis of wireless energy transmission device for electric vehicle’, Proceedings - 2021 International Conference on Information Control, Electrical Engineering and Rail Transit, ICEERT 2021, pp. 91–94. Available at: https://doi.org/10.1109/ICEERT53919.2021.00027.spa
dc.relation.referencesYang, Y., Cui, J. and Cui, X. (2020) ‘Design and analysis of magnetic coils for optimizing the coupling coefficient in an electric vehicle wireless power transfer system’, Energies, 13(6). Available at: https://doi.org/10.3390/en13164143.spa
dc.relation.referencesZhang, X., Zhu, C. and Song, H. (2011) Wireless power transfer technologies for electric vehicles, SAE Technical Papers. Available at: https://doi.org/10.1149/10701.18697ecst.spa
dc.relation.referencesZhu, H. et al. (2011) ‘Design of auto air pressure balance system for fire control and numerical simulation of pressure balance effect’, Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on, pp. 2503–2507. Available at: https://doi.org/10.1109/FSKD.2011.6019963.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.proposalWPTspa
dc.subject.proposalApantallamientospa
dc.subject.proposalNúcleo magnéticosspa
dc.subject.proposalSeguridad electromagnéticaspa
dc.subject.proposalTransmisión inalámbrica de potenciaspa
dc.subject.proposalWPTeng
dc.subject.proposalShieldingeng
dc.subject.proposalMagnetic coreeng
dc.subject.proposalElectromagnetic safetyeng
dc.subject.proposalWireless power transmissioneng
dc.subject.unescoTecnología electrónicaspa
dc.subject.unescoElectronic engineeringeng
dc.subject.unescoVehículo automotorspa
dc.subject.unescoMotor vehicleseng
dc.subject.unescoIngeniería eléctricaspa
dc.subject.unescoElectrical engineeringeng
dc.titleDiseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricosspa
dc.title.translatedElectromagnetic shielding design for a wireless power transmission system for electric vehicleseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032453485.2023.pdf
Tamaño:
3.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Electrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: