Quimeras peptídicas como estrategia para el diseño de agentes citotóxicos contra el cáncer de cuello uterino
dc.contributor.advisor | García Castañeda, Javier Eduardo | spa |
dc.contributor.advisor | Rivera Monroy, Jhon Erick | spa |
dc.contributor.author | Ardila Chantré, Natalia | spa |
dc.contributor.cvlac | Natalia Ardila Chantré [0000116692] | |
dc.contributor.orcid | Natalia Ardila-Chantré [0000000174914508] | |
dc.contributor.researchgroup | Síntesis y Aplicación de Moléculas Peptídicas | |
dc.date.accessioned | 2025-09-02T20:25:09Z | |
dc.date.available | 2025-09-02T20:25:09Z | |
dc.date.issued | 2025-08 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El incremento sostenido de la mortalidad y morbilidad del cáncer a nivel mundial ha llevado a tomar medidas para mitigar su impacto. La concientización de la población a reducir los factores de riesgo, el diagnóstico temprano y la búsqueda de nuevos tratamientos más eficaces, selectivos y de amplía cobertura han sido prioridad de los sistemas de salud. Los tratamientos sistémicos (quimioterapéuticos) son los más utilizados en el tratamiento del cáncer, por esto es de suma importancia la búsqueda, investigación y desarrollo de nuevos compuestos con actividad citotóxica. Los péptidos representan una importante alternativa gracias a su amplio espectro de actividad, inocuidad, seguridad y facilidad de obtención a escala de laboratorio para fines de investigación y desarrollo. En este contexto, en este trabajo se diseñaron e identificaron nuevas moléculas de naturaleza peptídica en forma de quimeras, que se definen como constructos no naturales obtenidos a partir de la unión de dos o más secuencias bioactivas. Para esto, se diseñaron, sintetizaron y evaluaron diversas quimeras peptídicas inspiradas en la secuencia RRWQWR, que es considerada el motivo mínimo de actividad antibacteriana y anticancerígena, de la Lactoferricina Bovina. Esta secuencia fue conjugada con diferentes secuencias funcionales como: péptidos anticancerígenos, péptidos dirigidos a células de cáncer de cuello uterino y péptidos de internalización celular. De esta forma se obtuvieron y evaluaron varias clases de quimeras: directas, invertidas, con reemplazo de arginina por lisina, diméricas, con diferentes enlazadores y truncadas. Las quimeras y los péptidos precursores fueron obtenidos mediante la síntesis de péptidos en fase sólida utilizando la estrategia Fmoc/tBu manual, purificados por extracción en fase sólida y caracterizados por cromatografía RP-HPLC y espectrometría de masas. La citotoxicidad in vitro de los péptidos fue determinada sobre las líneas celulares humanas de cáncer cervical HeLa y Ca Ski por medio del ensayo MTT. Los resultados muestran que todos los péptidos fueron obtenidos con alta pureza y la masa experimental correspondió con la masa teórica. Algunas quimeras peptídicas exhibieron actividad citotóxica significativa, rápida y selectiva contra las células cancerosas evaluadas, específicamente aquellas que contenían secuencias de péptidos anticancerígenos y péptidos de internalización celular. El efecto citotóxico ejercido por los péptidos quiméricos fue dependiente de la concentración del péptido, lo que permitió la determinación de los valores de IC50 y el índice de selectividad. El péptido KKWQWK-Ahx-RLLRRLLR presentó la mejor selectividad y su actividad citotóxica fue dependiente de la concentración, rápida y de larga duración (48 h). Este péptido también presentó citotoxicidad sobre líneas celulares de cáncer de mama, próstata y colon. La muerte celular inducida sobre células HeLa por este péptido está asociada a la vía apoptótica y muestra activación de caspasas; además, tiene la capacidad de internalizarse en la célula cancerosa y localizarse en el núcleo y citoplasma para ejercer su actividad. Estas quimeras peptídicas pueden ser consideradas moléculas prometedoras para realizar ensayos preclínicos como parte del proceso de investigación y desarrollo de nuevos fármacos para el tratamiento del cáncer ya que pueden funcionar como sistema de transporte e internalización de moléculas peptídicas bioactivas en células cancerosas. Los resultados sugieren que la estrategia de formación de quimeras peptídicas constituye una alternativa viable y útil para el diseño de péptidos terapéuticos con actividad citotóxica contra el cáncer de cuello uterino. (Texto tomado de la fuente). | spa |
dc.description.abstract | The persistent rise in cancer mortality and morbidity worldwide has prompted the implementation of measures to mitigate its impact. Increasing public awareness to reduce risk factors, promoting early diagnosis, and pursuing new, more effective, selective, and broadly applicable treatments have become priorities for health systems. Systemic treatments, particularly chemotherapeutics, are the most commonly used approaches in cancer therapy; therefore, the search for, research into, and development of new compounds with cytotoxic activity is of paramount importance. Peptides offer a promising alternative due to their wide range of activity, safety, and the ease with which they can be synthesized at a laboratory scale for research and development purposes. In this context, this study focused on designing and identifying novel peptide-based molecules in the form of chimeras, which are defined as non-natural constructs created by the fusion of two or more bioactive sequences. To accomplish this, various peptide chimeras inspired by the sequence RRWQWR, which is considered the minimal motif of antibacterial and anticancer activity of Bovine Lactoferricin, were designed, synthesized, and evaluated. This sequence was conjugated with different functional sequences, including anticancer peptides, peptides targeting cervical cancer cells, and peptides for cell internalization. In this way, several types of chimeras were obtained and evaluated: direct, inverted, with replacement of arginine by lysine, dimeric, with different linkers and truncated. Chimeras and precursor peptides were obtained by solid-phase peptide synthesis using the manual Fmoc/tBu strategy, purified by solid-phase extraction and characterized by RP- RP-HPLC and mass spectrometry. The in vitro cytotoxicity of the peptides was determined on human cervical cancer cell lines HeLa and Ca Ski using the MTT assay. The results indicate that all peptides were obtained with high purity and that the experimental mass corresponded with the theoretical mass. Notably, some peptide chimeras exhibited significant, rapid, and selective cytotoxic activity against the evaluated cancer cells, particularly those containing sequences from anticancer peptides and cell penetrating peptides. The cytotoxic effect of the chimeric peptides was concentration-dependent, allowing for the determination of IC50 values and selectivity indexes. Among them, the peptide KKWQWK-Ahx-RLLRRLLR exhibited the highest selectivity, and its cytotoxic activity was concentration-dependent, rapid, and long-lasting (up to 48 hours). This peptide also exhibited cytotoxicity against breast, prostate, and colon cancer cell lines. The cell death induced by this peptide in HeLa cells is associated with the apoptotic pathway and shows caspase activation. Furthermore, the peptide has the ability to internalize into cancer cells and localize in both the nucleus and cytoplasm, where it exerts its activity. These chimeras represent promising candidates for preclinical trials as part of the research and development process for new drugs for cancer treatments, serving as a transport and internalization system for bioactive peptide molecules within cancer cells. The results suggest that the strategy of forming peptide chimeras is a viable and effective alternative for designing therapeutic peptides with cytotoxic properties against cervical cancer. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias Farmacéuticas | spa |
dc.description.researcharea | Péptidos como agentes terapéuticos | spa |
dc.format.extent | xiv, 255 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88557 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias Farmacéuticas | spa |
dc.relation.references | Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021, 71, 209–249 | |
dc.relation.references | International Agency for Research on Cancer. World Health Organization (WHO). Global Cancer Observatory. Available online: https://gco.iarc.fr/. | |
dc.relation.references | Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the Use of Therapeutic Peptides for Cancer Treatment. J Biomed Sci 2017, 24, 1–15 | |
dc.relation.references | Erak, M.; Bellmann-Sickert, K.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide Chemistry Toolbox – Transforming Natural Peptides into Peptide Therapeutics. Bioorg Med Chem 2018, 26, 2759–2765 | |
dc.relation.references | Zompra, A.A.; Galanis, A.S.; Werbitzky, O.; Albericio, F. Manufacturing Peptides as Active Pharmaceutical Ingredients. Future Med Chem 2009, 1, 361–377 | |
dc.relation.references | Wang, C.; Yang, C.; Chen, Y. chen; Ma, L.; Huang, K. Rational Design of Hybrid Peptides: A Novel Drug Design Approach. Curr Med Sci 2019, 39, 349–355 | |
dc.relation.references | Pineda-Castañeda, H.M.; Huertas-Ortiz, K.A.; Leal-Castro, A.L.; Vargas-Casanova, Y.; Parra-Giraldo, C.M.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Designing Chimeric Peptides: A Powerful Tool for Enhancing Antibacterial Activity. Chem Biodivers 2021, 18, e2000885 | |
dc.relation.references | Klubthawee, N.; Adisakwattana, P.; Hanpithakpong, W. A Novel, Rationally Designed, Hybrid Antimicrobial Peptide, Inspired by Cathelicidin and Aurein, Exhibits Membrane-Active Mechanisms against Pseudomonas Aeruginosa. Sci Rep 2020, 1–17 | |
dc.relation.references | Arias, M.; McDonald, L.J.; Haney, E.F.; Nazmi, K.; Bolscher, J.G.M.; Vogel, H.J. Bovine and Human Lactoferricin Peptides: Chimeras and New Cyclic Analogs. BioMetals 2014, 27, 935–948 | |
dc.relation.references | Lee, H.; Lim, S.I.; Shin, S.H.; Lim, Y.; Koh, J.W.; Yang, S. Conjugation of Cell-Penetrating Peptides to Antimicrobial Peptides Enhances Antibacterial Activity. ACS Omega 2019, 4, 15694–15701 | |
dc.relation.references | Namvar Erbani, Samaneh.; Madanchi, H.; Ajodani far, H.; Rostamian, M.; Rahmati, S.; Shabani, A. akbar. First Report of Antifungal Activity of CecropinA-Magenin2 (CE-MA) Hybrid Peptide and Its Truncated Derivatives. Biochem Biophys Res Commun 2021, 549, 157–163 | |
dc.relation.references | Kim, Y.M.; Kim, N.H.; Lee, J.W.; Jang, J.S.; Park, Y.H.; Park, S.C.; Jang, M.K. Novel Chimeric Peptide with Enhanced Cell Specificity and Anti-Inflammatory Activity. Biochem Biophys Res Commun 2015, 463, 322–328 | |
dc.relation.references | Lisy, O.; Huntley, B.K.; McCormick, D.J.; Kurlansky, P.A.; Burnett, J.C. Design, Synthesis, and Actions of a Novel Chimeric Natriuretic Peptide: CD-NP. J Am Coll Cardiol 2008, 52, 60–68 | |
dc.relation.references | Ueyama, H.; Horibe, T.; Nakajima, O.; Ohara, K.; Kohno, M.; Kawakami, K. Semaphorin 3A Lytic Hybrid Peptide Binding to Neuropilin-1 as a Novel Anti-Cancer Agent in Pancreatic Cancer. Biochem Biophys Res Commun 2011, 414, 60–66 | |
dc.relation.references | Kohno, M.; Horibe, T.; Haramoto, M.; Yano, Y.; Ohara, K.; Nakajima, O.; Matsuzaki, K.; Kawakami, K. A Novel Hybrid Peptide Targeting EGFR-Expressing Cancers. Eur J Cancer 2011, 47, 773–783 | |
dc.relation.references | Richardson, A.; de Antueno, R.; Duncan, R.; Hoskin, D.W. Intracellular Delivery of Bovine Lactoferricin’s Antimicrobial Core (RRWQWR) Kills T-Leukemia Cells. Biochem Biophys Res Commun 2009, 388, 736–741 | |
dc.relation.references | Solarte, V.A.; Rosas, J.E.; Rivera, Z.J.; Arango-Rodríguez, M.L.; García, J.E.; Vernot, J.P. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines. Biomed Res Int 2015, 2015 | |
dc.relation.references | Barragán-Cárdenas, A.; Insuasty-Cepeda, D.S.; Niño-Ramírez, V.A.; Umaña-Pérez, A.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. The Nonapeptide RWQWRWQWR: A Promising Molecule for Breast Cancer Therapy. ChemistrySelect 2020, 5, 9691–9700 | |
dc.relation.references | Barragán-Cárdenas, A.; Urrea-Pelayo, M.; Niño-Ramírez, V.A.; Umaña-Pérez, A.; Vernot, J.P.; Parra-Giraldo, C.M.; Fierro-Medina, R.; Rivera-Monroy, Z.; García-Castañeda, J. Selective Cytotoxic Effect against the MDA-MB-468 Breast Cancer Cell Line of the Antibacterial Palindromic Peptide Derived from Bovine Lactoferricin. RSC Adv 2020, 10, 17593–17601 | |
dc.relation.references | Cho, J.H.; Sung, B.H.; Kim, S.C. Buforins: Histone H2A-Derived Antimicrobial Peptides from Toad Stomach. Biochim Biophys Acta Biomembr 2009, 1788, 1564–1569 | |
dc.relation.references | Lee, H.S.; Park, C.B.; Kim, J.M.; Jang, S.A.; Park, I.Y.; Kim, M.S.; Cho, J.H.; Kim, S.C. Mechanism of Anticancer Activity of Buforin IIb, a Histone H2A-Derived Peptide. Cancer Lett 2008, 271, 47–55 | |
dc.relation.references | Liu, X.; Peng, J.; He, J.; Li, Q.; Zhou, J.; Liang, X.; Tang, S. Selection and Identification of Novel Peptides Specifically Targeting Human Cervical Cancer. Amino Acids 2018, 50, 577–592 | |
dc.relation.references | Pooga, M.; Langel, Ü. Synthesis of Cell-Penetrating Peptides for Cargo Delivery. In Methods in Molecular Biology: Peptide Synthesis and Applications; Inc., H.P., Ed.; Vol. 298, pp. 77–89 | |
dc.relation.references | World Health Organization (WHO). Cervical Cancer. Available online: https://www.who.int/health-topics/cervical-cancer. | |
dc.relation.references | Castellsagué, X. Natural History and Epidemiology of HPV Infection and Cervical Cancer. Gynecol Oncol 2008, 110, 4–7 | |
dc.relation.references | Ministerio de Salud y Protección Social. Guía de Práctica Clínica Para El Manejo Del Cáncer de Cuello Uterino Invasivo. Guía No. GPC 2014-45. 2014. | |
dc.relation.references | Small, W.; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; et al. Cervical Cancer: A Global Health Crisis. Cancer 2017, 123, 2404–2412 | |
dc.relation.references | Marth, C.; Landoni, F.; Mahner, S.; McCormack, M.; Gonzalez-Martin, A.; Colombo, N. Cervical Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology 2017, 28, iv72–iv83 | |
dc.relation.references | International Cancer Research Center. Global Cancer Observatory (GLOBOCAN) Cancer Tomorrow 2040 Estimates. Available online: https://gco.iarc.fr/tomorrow/en/dataviz/isotype?types=1&single_unit=100&cancers=23&years=2040&sexes=2&populations=170. | |
dc.relation.references | Duenas-González, A.; Cetina, L.; Coronel, J.; Martínez-Baños, D. Pharmacotherapy Options for Locally Advanced and Advanced Cervical Cancer. Drugs 2010, 70, 403–432 | |
dc.relation.references | Florea, A.M.; Büsselberg, D. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers (Basel) 2011, 3, 1351–1371 | |
dc.relation.references | Markman, M. Advances in Cervical Cancer Pharmacotherapies. Expert Rev. Clin. Pharmacol. 2014, 7, 219–223 | |
dc.relation.references | Della Corte, L.; Barra, F.; Foreste, V.; Giampaolino, P.; Evangelisti, G.; Ferrero, S.; Bifulco, G. Advances in Paclitaxel Combinations for Treating Cervical Cancer. Expert Opin Pharmacother 2020, 21, 663–677 | |
dc.relation.references | Lian, Z.; Ji, T. Functional Peptide-Based Drug Delivery Systems. J Mater Chem B 2020, 8, 6517–6529 | |
dc.relation.references | Daliri, E.B.M.; Lee, B.H.; Oh, D.H. Current Trends and Perspectives of Bioactive Peptides. Crit Rev Food Sci Nutr 2018, 58, 2273–2284 | |
dc.relation.references | Lau, J.L.; Dunn, M.K. Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorg Med Chem 2018, 26, 2700–2707 | |
dc.relation.references | Henninot, A.; Collins, J.C.; Nuss, J.M. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2018, 61, 1382–1414 | |
dc.relation.references | Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic Therapeutic Peptides: Science and Market. Drug Discov Today 2010, 15, 40–56 | |
dc.relation.references | Hilchie, A.L.; Hoskin, D.W.; Power Coombs, M.R. Anticancer Activities of Natural and Synthetic Peptides. Adv Exp Med Biol 2019, 1117, 131–147 | |
dc.relation.references | Nhàn, N.T.T.; Yamada, T.; Yamada, K.H. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023, 24 | |
dc.relation.references | Raj Kumar Chinnadurai; Nazam Khan; Gautam Kumar Meghwanshi; Saravanaraman Ponne; Maryam Althobiti; Rajender Kumar. Current Research Status of Anti-Cancer Peptides: Mechanism of Action, Production, and Clinical Applications. Biomedicine & Pharmacotherapy 2023, 164 | |
dc.relation.references | Gifford, J.L.; Hunter, H.N.; Vogel, H.J. Lactoferricin: A Lactoferrin-Derived Peptide with Antimicrobial, Antiviral, Antitumor and Immunological Properties. Cellular and Molecular Life Sciences 2005, 62, 2588–2598 | |
dc.relation.references | Mader, J.S.; Salsman, J.; Conrad, D.M.; Hoskin, D.W. Bovine Lactoferricin Selectively Induces Apoptosis in Human Leukemia and Carcinoma Cell Lines. Mol Cancer Ther 2005, 4, 612–624 | |
dc.relation.references | Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and Arginine-Rich Antimicrobial Peptides: Structures and Mechanisms of Action. Biochim Biophys Acta Biomembr 2006, 1758, 1184–1202 | |
dc.relation.references | Pan, W.R.; Chen, P.W.; Chen, Y.L.S.; Hsu, H.C.; Lin, C.C.; Chen, W.J. Bovine Lactoferricin B Induces Apoptosis of Human Gastric Cancer Cell Line AGS by Inhibition of Autophagy at a Late Stage. J Dairy Sci 2013, 96, 7511–7520 | |
dc.relation.references | Hilchie, A.L.; Vale, R.; Zemlak, T.S.; Hoskin, D.W. Generation of a Hematologic Malignancy-Selective Membranolytic Peptide from the Antimicrobial Core (RRWQWR) of Bovine Lactoferricin. Exp Mol Pathol 2013, 95, 192–198 | |
dc.relation.references | Arias, M., Hilchie, A. L., Haney, E. F., Bolscher, J. G. M., Hyndman, M. E., Hancock, R. E. W., & Vogel, H.J. Anticancer Activities of Bovine and Human Lactoferricin-Derived Peptides. Biochemistry and Cell Biology 2017, 95(1), 1–32 | |
dc.relation.references | Jang, S.A.; Kim, H.; Lee, J.Y.; Shin, J.R.; Kim, D.J.; Cho, J.H.; Kim, S.C. Mechanism of Action and Specificity of Antimicrobial Peptides Designed Based on Buforin IIb. Peptides (N.Y.) 2012, 34, 283–289 | |
dc.relation.references | Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial Peptides: Promising Alternatives in the Post Feeding Antibiotic Era. Med Res Rev 2019, 39, 831–859 | |
dc.relation.references | Jang, J.H.; Kim, Y.J.; Kim, H.; Kim, S.C.; Cho, J.H. Buforin IIb Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in HeLa Cells. Peptides (N.Y.) 2015, 69, 144–149 | |
dc.relation.references | Liu, G.; Yin, Q.; Ji, H.; Wang, Y.; Liu, H.; Jiang, L.; Zhu, F.; Li, B. A Study on Screening and Antitumor Effect of CD55-Specific Ligand Peptide in Cervical Cancer Cells. Drug Des Devel Ther 2018, 12, 3899–3912 | |
dc.relation.references | Li, C.; Gao, N.; Xue, Q.; Ma, N.; Hu, Y.; Zhang, J.; Chen, B.; Hou, Y. Screening and Identification of a Specific Peptide Binding to Cervical Cancer Cells from a Phage-Displayed Peptide Library. Biotechnol Lett 2017, 39, 1463–1469 | |
dc.relation.references | Copolovici, D.M.; Langel, K.; Eriste, E.; Langel, Ü. Cell-Penetrating Peptides: Design, Synthesis, and Applications. ACS Nano 2014, 8, 1972–1994 | |
dc.relation.references | Borrelli, A.; Tornesello, A.L.; Tornesello, M.L.; Buonaguro, F.M. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents. Molecules 2018, 23 | |
dc.relation.references | Milletti, F. Cell-Penetrating Peptides: Classes, Origin, and Current Landscape. Drug Discov Today 2012, 17, 850–860 | |
dc.relation.references | Langel, Ü. Cell-Penetrating Peptides. Methods and Protocols. Methods in Molecular Biology.; Second Edition.; 2015; ISBN 978-1-4939-2805-7. | |
dc.relation.references | Regberg, J.; Srimanee, A.; Langel, Ü. Applications of Cell-Penetrating Peptides for Tumor Targeting and Future Cancer Therapies. Pharmaceuticals 2012, 5, 991–1007 | |
dc.relation.references | Gräslund, A.; Madani, F.; Lindberg, S.; Langel, Ü.; Futaki, S. Mechanisms of Cellular Uptake of Cell-Penetrating Peptides. Journal of Biophysics 2011, 2011 | |
dc.relation.references | Lindgren, M.; Langel, Ü. Classes and Prediction of Cell-Penetrating Peptides. In Cell-Penetrating Peptides: Methods and Protocols, Methods in Molecular Biology; Ülo Langel, Ed.; 2011; Vol. 683, pp. 3–19 ISBN 9781607619192. | |
dc.relation.references | Klimpel, A.; Lützenburg, T.; Neundorf, I. Recent Advances of Anti-Cancer Therapies Including the Use of Cell-Penetrating Peptides. Curr Opin Pharmacol 2019, 47, 8–13 | |
dc.relation.references | Ma, Y.; Gong, C.; Ma, Y.; Fan, F.; Luo, M.; Yang, F.; Zhang, Y. Direct Cytosolic Delivery of Cargoes in Vivo by a Chimera Consisting of D - and L -Arginine Residues. Journal of Controlled Release 2012, 162, 286–294 | |
dc.relation.references | Song, J.; Zhang, Y.; Zhang, W.; Chen, J.; Yang, X.; Ma, P.; Zhang, B.; Liu, B.; Ni, J.; Wang, R. Cell Penetrating Peptide TAT Can Kill Cancer Cells via Membrane Disruption after Attachment of Camptothecin. Peptides (N.Y.) 2015, 63, 143–149 | |
dc.relation.references | Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y. Arginine-Rich Peptides. An Abundant Source of Membrane-Permeable Peptides Having Potential as Carriers for Intracellular Protein Delivery. Journal of Biological Chemistry 2001, 276, 5836–5840 | |
dc.relation.references | Dissanayake, S.; Denny, W.A.; Gamage, S.; Sarojini, V. Recent Developments in Anticancer Drug Delivery Using Cell Penetrating and Tumor Targeting Peptides. Journal of Controlled Release 2017, 250, 62–76 | |
dc.relation.references | Hudecz, F. Synthesis of Linear, Branched, and Cyclic Peptide Chimera. In Methods in Molecular Biology: Peptide Synthesis and Applications; J. Howl © Humana Press Inc., Totowa, N., Ed.; 2005; Vol. 298. | |
dc.relation.references | Howl, J. Chimerism. In Methods in Molecular Biology. Peptide Synthesis and Applications; Humana Press Inc., Totowa, N., Ed.; Vol. 298, pp. 25–41. | |
dc.relation.references | Wu, D.; Gao, Y.; Chen, L.; Qi, Y.; Kang, Q.; Wang, H.; Zhu, L.; Ye, Y.; Zhai, M. Anti-Tumor Effects of a Novel Chimeric Peptide on S180 and H22 Xenografts Bearing Nude Mice. Peptides (N.Y.) 2010, 31, 850–864 | |
dc.relation.references | Chepurny, O.G.; Bonaccorso, R.L.; Leech, C.A.; Wöllert, T.; Langford, G.M.; Schwede, F.; Roth, C.L.; Doyle, R.P.; Holz, G.G. Chimeric Peptide EP45 as a Dual Agonist at GLP-1 and NPY2R Receptors. Sci Rep 2018, 8, 1–14 | |
dc.relation.references | Horn, M.; Neundorf, I. Design of a Novel Cell-Permeable Chimeric Peptide to Promote Wound Healing. Sci Rep 2018, 8, 1–12 | |
dc.relation.references | Ramírez-Sánchez, D.A.; Arredondo-Beltrán, I.G.; Canizalez-Roman, A.; Flores-Villaseñor, H.; Nazmi, K.; Bolscher, J.G.M.; León-Sicairos, N. Bovine Lactoferrin and Lactoferrin Peptides Affect Endometrial and Cervical Cancer Cell Lines. Biochemistry and Cell Biology 2021, 99, 149–158 | |
dc.relation.references | Patel, D.K.; Menon, D. V.; Patel, D.H.; Dave, G. Linkers: A Synergistic Way for the Synthesis of Chimeric Proteins. Protein Expr Purif 2022, 191, 106012 | |
dc.relation.references | Kai, M.; Zhang, W.; Xie, H.; Liu, L.; Huang, S.; Li, X.; Zhang, Z.; Liu, Y.; Zhang, B.; Song, J.; et al. Effects of Linker Amino Acids on the Potency and Selectivity of Dimeric Antimicrobial Peptides. Chinese Chemical Letters 2018 | |
dc.relation.references | Alas, M.; Saghaeidehkordi, A.; Kaur, K. Peptide-Drug Conjugates with Different Linkers for Cancer Therapy. J Med Chem 2021, 64, 216–232 | |
dc.relation.references | Böhme, D.; Beck-Sickinger, A.G. Drug Delivery and Release Systems for Targeted Tumor Therapy. Journal of Peptide Science 2015, 21, 186–200 | |
dc.relation.references | Andersson, L.; Blomberg, L.; Flegel, M.; Lepsa, L.; Nilsson, B.; Verlander, M. Large-Scale Synthesis of Peptides. Biopolymers (Peptide Science) 2000, 55, 227–250 | |
dc.relation.references | Ting, D.S.J.; Beuerman, R.W.; Dua, H.S.; Lakshminarayanan, R.; Mohammed, I. Strategies in Translating the Therapeutic Potentials of Host Defense Peptides. Front Immunol 2020, 11, 1–16 | |
dc.relation.references | American Type Culture Collection. HeLa (ATCC CCL-2TM) Available online: https://www.atcc.org/products/ccl-2. | |
dc.relation.references | American Type Culture Collection Ca Ski (ATCC CRL-1550TM) Available online: https://www.atcc.org/products/crl-1550. | |
dc.relation.references | American Type Culture Collection. L-929 (NCTC Clone 929) (ATCC CCL-1TM) Available online: https://www.atcc.org/products/ccl-1. | |
dc.relation.references | American Type Culture Collection. HT-29 (ATCC HTB-38TM) Available online: https://www.atcc.org/products/htb-38. | |
dc.relation.references | American Type Culture Collection. Caco-2 (ATCC HTB-37TM) Available online: https://www.atcc.org/products/htb-37. | |
dc.relation.references | American Type Culture Collection. DU 145 (ATCC HTB-81TM) Available online: https://www.atcc.org/products/htb-81. | |
dc.relation.references | American Type Culture Collection. MCF7 (ATCC HTB-22TM) Available online: https://www.atcc.org/products/htb-22. | |
dc.relation.references | Vergel Galeano, C.F.; Rivera Monroy, Z.J.; Rosas Pérez, J.E.; García Castañeda, J.E. Efficient Synthesis of Peptides with 4-Methylpiperidine as Fmoc Removal Reagent by Solid Phase Synthesis. J Mex Chem Soc 2014, 58, 386–392 | |
dc.relation.references | Insuasty Cepeda, D.S.; Pineda Castañeda, H.M.; Rodríguez Mayor, A.V.; García Castañeda, J.E.; Maldonado Villamil, M.; Fierro Medina, R.; Rivera Monroy, Z.J. Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules 2019, 24, 1215 | |
dc.relation.references | Langdon, S.P. Cell Sensitivity Assays: The MTT Assay. In Cancer Cell Culture; 2003; Vol. 731, pp. 237–245 ISBN 9781617790805. | |
dc.relation.references | Sæbø, I.P.; Bjørås, M.; Franzyk, H.; Helgesen, E.; Booth, J.A. Optimization of the Hemolysis Assay for the Assessment of Cytotoxicity. Int J Mol Sci 2023, 24 | |
dc.relation.references | Corporation Promega. CellTiter-Glo ® Luminescent Cell Viability Assay. Instructions for Use of Products G7570, G7571, G7572 and G7573. | |
dc.relation.references | Luminex Corporation. Muse®. Annexin V & Dead Cell Kit. 2019. | |
dc.relation.references | Corporation Promega. Caspase-Glo ® 3/7 Assay. Instructions for Use of Products G8090, G8091, G8092 and G8093. | |
dc.relation.references | Merck KGaA. Muse® MultiCaspase Kit User’s Guide. 2013. | |
dc.relation.references | Kristensen, M.; Birch, D.; Nielsen, H.M. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos. Int J Mol Sci 2016, 17 | |
dc.relation.references | Cárdenas-Martínez, K.J.; Barragán-Cárdenas, A.C.; de la Rosa-Arbeláez, M.; Parra-Giraldo, C.M.; Ochoa-Zarzosa, A.; Lopez-Meza, J.E.; Rivera-Monroy, Z.J.; Fierro-Medina, R.; García-Castañeda, J.E. Evaluating the In Vitro Activity and Safety of Modified LfcinB Peptides as Potential Colon Anticancer Agents: Cell Line Studies and Insect-Based Toxicity Assessments. ACS Omega 2023, 8, 37948–37957 | |
dc.relation.references | Lemeshko, V. V. Electrical Potentiation of the Membrane Permeabilization by New Peptides with Anticancer Properties. Biochim Biophys Acta Biomembr 2013, 1828, 1047–1056 | |
dc.relation.references | Yang, N.; Strøm, M.B.; Mekonnen, S.M.; Svendsen, J.S.; Rekdal, Ø. The Effects of Shortening Lactoferrin Derived Peptides against Tumour Cells, Bacteria and Normal Human Cells. Journal of Peptide Science 2004, 10, 37–46 | |
dc.relation.references | Futaki, S.; Nakase, I. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization. Acc Chem Res 2017, 50, 2449–2456 | |
dc.relation.references | Vargas Casanova, Y.; Rodríguez Guerra, J.A.; Umaña Pérez, Y.A.; Leal Castro, A.L.; Almanzar Reina, G.; García Castañeda, J.E.; Rivera Monroy, Z.J. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules 2017, 22, 1–11 | |
dc.relation.references | Insuasty-Cepeda, D.S.; Barragán-Cárdenas, A.C.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Fierro-Medina, R.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. Int J Mol Sci 2020, 21, 4550 | |
dc.relation.references | Barragán-Cárdenas, A.C.; Insuasty-Cepeda, D.S.; Cárdenas-Martínez, K.J.; López-Meza, J.; Ochoa-Zarzosa, A.; Umaña-Pérez, A.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. LfcinB-Derived Peptides: Specific and Punctual Change of an Amino Acid in Monomeric and Dimeric Sequences Increase Selective Cytotoxicity in Colon Cancer Cell Lines. Arabian Journal of Chemistry 2022, 15 | |
dc.relation.references | Camilio, K.A.; Rekdal, Ø.; Sveinbjörnsson, B. LTX-315 (OncoporeTM): A Short Synthetic Anticancer Peptide and Novel Immunotherapeutic Agent. Oncoimmunology 2014, 3 | |
dc.relation.references | Yin, H.; Chen, X. tong; Chi, Q. na; Ma, Y. nan; Fu, X. yan; Du, S. shan; Qi, Y. kun; Wang, K. wei. The Hybrid Oncolytic Peptide NTP-385 Potently Inhibits Adherent Cancer Cells by Targeting the Nucleus. Acta Pharmacol Sin 2023, 44, 201–210 | |
dc.relation.references | Mól, A.; F.W.; C.M. NetWheels: Peptides Helical Wheel and Net Projections Maker. Available online: http://www.lbqp.unb.br/NetWheels/. | |
dc.relation.references | Kalafatovic, D.; Giralt, E. Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity. Molecules 2017, 22 | |
dc.relation.references | Haug, B.E.; Camilio, K.A.; Eliassen, L.T.; Stensen, W.; Svendsen, J.S.; Berg, K.; Mortensen, B.; Serin, G.; Mirjolet, J.F.; Bichat, F.; et al. Discovery of a 9-Mer Cationic Peptide (LTX-315) as a Potential First in Class Oncolytic Peptide. J Med Chem 2016, 59, 2918–2927 | |
dc.relation.references | Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between Hemolytic Activity, Cytotoxicity and Systemic in Vivo Toxicity of Synthetic Antimicrobial Peptides. Sci Rep 2020, 10 | |
dc.relation.references | Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of In-Vitro Bioassay Methods: Application in Herbal Drug Research; 1st ed.; Elsevier Inc., 2021; Vol. 46; ISBN 9780128241271. | |
dc.relation.references | Hoskin, D.W.; Ramamoorthy, A. Studies on Anticancer Activities of Antimicrobial Peptides. Biochim Biophys Acta Biomembr 2008, 1778, 357–375 | |
dc.relation.references | Filippova, M.; Filippov, V.; Williams, V.M.; Zhang, K.; Kokoza, A.; Bashkirova, S.; Duerksen-Hughes, P. Cellular Levels of Oxidative Stress Affect the Response of Cervical Cancer Cells to Chemotherapeutic Agents. Biomed Res Int 2014, 2014 | |
dc.relation.references | Malinowski, P.; Skała, K.; Jabłońska-Trypuć, A.; Koronkiewicz, A.; Wołejko, E.; Wydro, U.; Świderski, G.; Lewandowski, W. Comparison of the Usefulness of MTT and CellTiterGlo Tests Applied for Cytotoxicity Evaluation of Compounds from the Group of Polyphenols. 2022, 9 | |
dc.relation.references | Fadzen, C.M.; Holden, R.L.; Wolfe, J.M.; Choo, Z.N.; Schissel, C.K.; Yao, M.; Hanson, G.J.; Pentelute, B.L. Chimeras of Cell-Penetrating Peptides Demonstrate Synergistic Improvement in Antisense Efficacy. Biochemistry 2019, 58, 3980–3989 | |
dc.relation.references | Delenclos, M.; Trendafilova, T.; Mahesh, D.; Baine, A.M.; Moussaud, S.; Yan, I.K.; Patel, T.; McLean, P.J. Investigation of Endocytic Pathways for the Internalization of Exosome-Associated Oligomeric Alpha-Synuclein. Front Neurosci 2017 | |
dc.relation.references | Ma, Y.; Gong, C.; Ma, Y.; Fan, F.; Luo, M.; Yang, F.; Zhang, Y.H. Direct Cytosolic Delivery of Cargoes in Vivo by a Chimera Consisting of D- and L-Arginine Residues. Journal of Controlled Release 2012, 162, 286–294 | |
dc.relation.references | Ivanov, A.I. Pharmacological Inhibition of Endocytic Pathways: Is It Specific Enough to Be Useful? In Methods in Molecular Biology; A.I. Ivanov, Ed.; Humana Press, Totowa, NJ, 2008; Vol. 440, pp. 15–33 | |
dc.relation.references | Barragán-Cárdenas, A.C.; Insuasty-Cepeda, D.S.; Vargas-Casanova, Y.; López-Meza, J.E.; Parra-Giraldo, C.M.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines. ACS Omega 2022 | |
dc.relation.references | Yoo, Y.-C.; Watanabe, R.; Koike, Y.; Mitobe, M.; Shimazaki, K.-I.; Watanabe, S.; Azuma, I. Apoptosis in Human Leukemic Cells Induced by Lactoferricin, a Bovine Milk Protein-Derived Peptide: Involvement of Reactive Oxygen Species. 1997, 237, 624–628 | |
dc.relation.references | Jiang, R., & L.B. Bovine Lactoferrin and Lactoferricin Exert Antitumor Activities on Human Colorectal Cancer Cells (HT-29) by Activating Various Signaling Pathways. Biochemistry and Cell Biology 2017, 95, 99–109 | |
dc.relation.references | Furlong, S.J.; Mader, J.S.; Hoskin, D.W. Bovine Lactoferricin Induces Caspase-Independent Apoptosis in Human B-Lymphoma Cells and Extends the Survival of Immune-Deficient Mice Bearing B-Lymphoma Xenografts. Exp Mol Pathol 2010, 88, 371–375 | |
dc.relation.references | Tolos, A.M.; Moisa, C.; Dochia, M.; Popa, C.; Copolovici, L.; Copolovici, D.M. Anticancer Potential of Antimicrobial Peptides: Focus on Buforins. Polymers (Basel) 2024, 16 | |
dc.relation.references | Lamkanfi, M.; Kanneganti, T.D. Caspase-7: A Protease Involved in Apoptosis and Inflammation. International Journal of Biochemistry and Cell Biology 2010, 42, 21–24 | |
dc.relation.references | Johnson, S.; Nguyen, V.; Coder, D. Assessment of Cell Viability. Curr Protoc Cytom 2013, doi:10.1002/0471142956.cy0902s64. | |
dc.relation.references | Serrano, I.; Verdial, C.; Tavares, L.; Oliveira, M. The Virtuous Galleria Mellonella Model for Scientific Experimentation. Antibiotics 2023, 12 | |
dc.relation.references | Piatek, M.; Sheehan, G.; Kavanagh, K. Galleria Mellonella: The Versatile Host for Drug Discovery, in Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics 2021, 10 | |
dc.relation.references | Erhirhie, E.O.; Ihekwereme, C.P.; Ilodigwe, E.E. Advances in Acute Toxicity Testing: Strengths, Weaknesses and Regulatory Acceptance. Interdiscip Toxicol 2018, 11, 5–12 | |
dc.relation.references | Wang, W.; Gao, X.; Liu, L.; Guo, S.; Duan, J.; Xiao, P. Zebrafish as a Vertebrate Model for High-Throughput Drug Toxicity Screening: Mechanisms, Novel Techniques, and Future Perspectives. J Pharm Anal 2025, 101195 | |
dc.relation.references | Caballero, M.V.; Candiracci, M. Zebrafish as Toxicological Model for Screening and Recapitulate Human Diseases. Journal of Unexplored Medical Data 2018, 3, 4 | |
dc.relation.references | El-Harbawi, M. Toxicity Measurement of Imidazolium Ionic Liquids Using Acute Toxicity Test. Procedia Chem 2014, 9, 40–52 | |
dc.relation.references | Ardila-Chantré, N.; Parra-Giraldo, C.M.; Vargas-Casanova, Y.; Barragán-Cardenas, A.C.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; Rivera-Monroy, J.E.; García-Castañeda, J.E. Hybrid Peptides Inspired by the RWQWRWQWR Sequence Inhibit Cervical Cancer Cells Growth in Vitro. Exploration of Drug Science 2024, 614–631 | |
dc.relation.references | López-Sánchez, A.G.; Rodríguez-Mejía, K.G.; Cuero-Amu, K.J.; Ardila-Chantré, N.; Reyes-Calderón, J.E.; González-López, N.M.; Huertas-Ortiz, K.A.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. A New Methodology for Synthetic Peptides Purification and Counterion Exchange in One Step Using Solid-Phase Extraction Chromatography. Processes 2025, 13 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.decs | Péptidos | spa |
dc.subject.decs | Peptides | eng |
dc.subject.decs | Línea Celular Tumoral | spa |
dc.subject.decs | Cell Line, Tumor | eng |
dc.subject.decs | Neoplasias del Cuello Uterino | spa |
dc.subject.decs | Uterine Cervical Neoplasms | eng |
dc.subject.decs | Citotoxinas | spa |
dc.subject.decs | Cytotoxins | eng |
dc.subject.proposal | Quimeras peptídicas | spa |
dc.subject.proposal | Lactoferricina Bovina | spa |
dc.subject.proposal | Citotoxicidad | spa |
dc.subject.proposal | Cáncer de cuello uterino | spa |
dc.subject.proposal | Apoptosis | spa |
dc.subject.proposal | Chimeric peptides | eng |
dc.subject.proposal | Bovine lactoferricin | eng |
dc.subject.proposal | Cytotoxicity | eng |
dc.subject.proposal | Cervical cancer | eng |
dc.subject.proposal | Apoptosis | eng |
dc.title | Quimeras peptídicas como estrategia para el diseño de agentes citotóxicos contra el cáncer de cuello uterino | spa |
dc.title.translated | Chimeric peptides as a strategy for the design of cytotoxic agents against cervical cancer | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 53069673.2025.pdf
- Tamaño:
- 29.72 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias Farmacéuticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: