Estimación de un modelo SAR para datos panel con coeficientes espaciales específicos

dc.contributor.advisorMelo Martínez, Oscar Orlandospa
dc.contributor.authorDelgado Contreras, David Fernandospa
dc.date.accessioned2020-02-19T12:32:56Zspa
dc.date.available2020-02-19T12:32:56Zspa
dc.date.issued2019-10-28spa
dc.description.abstractLos modelos espaciales auto-regresivos permiten describir la dependencia espacial que surge cuando los valores que adopta una variable en una región o lugar están relacionados con las observaciones vecinas. Extensiones de estos modelos a estructuras de datos panel también han sido desarrolladas en la literatura espacial. El objetivo de este documento es presentar una propuesta que permita encontrar los estimadores de un modelo espacial auto-regresivo para datos panel con coeficientes espaciales específicos a través del método de máxima verosimilitud. La estrategia utilizada conlleva a obtener formas cerradas para la estimación de los parámetros asociados a las variables exógenas y a la varianza, mientras que resulta necesario el uso de métodos numéricos para calcular los coeficientes espaciales. Los resultados se aplican sobre un panel que tiene como objetivo explicar de forma lineal los componentes del IDH (Índice de Desarrollo Humano) dentro de una muestra intercontinental. Los experimentos dejaron notar que el cálculo de los coeficientes específicos resulta costoso computacionalmente, pero los resultados son significativamente diferentes a la especificación con un coeficiente espacial único y resulta en una mejor bondad de ajuste. En relación a la aplicación se resalta que mientras el modelo con único coeficiente espacial tiende a sobre-explicar el IDH por su componente de estándar de vida, el uso de esta propuesta atenúa la magnitud de tal parámetro asociado.spa
dc.description.abstractSpatial auto-regressive models allow to describe spatial dependence underlying when regional values are related to the neighbor observations. Extensions of this models to data panel structures have been developed in recent spatial literature, too. This paper has as objective to present a proposal that allows to find the estimators of a spatial auto-regressive model for panel data with specific spatial coefficients through the maximum likelihood methodology. Implemented strategy leads to obtain closed expressions for the parameter estimators associated to non-distance explanatory variables, and variance, while it is necessary the use numeric methodologies to compute the spatial coefficients. Results were applied over a panel which has as objective explaining in a linear way the HDI (Human Development Index) com- ponents within an intercontinental sample. Experiments let to see that estimation of specific coefficients is very computing expensive, but the results are statistically different respect to the unique spatial coefficient specification and leads a better goodness-of-fit. Regarding to the application, we highlight the over-accounting in living standard component by the unique coefficient proposal, parameter attenuated using specific coefficients model.spa
dc.description.additionalMagister en Ciencias - Estadística. Línea de Investigación: Modelos Lineales para datos panelspa
dc.description.degreelevelMaestríaspa
dc.format.extent96spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75644
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.relation.referencesAnselin, L. (2001), ‘Spatial econometrics’, A companion to theoretical econometrics 310330.spa
dc.relation.referencesAnselin, L. (2013), Spatial Econometrics: Methods and Models, Vol. 4, Springer Science & Business Mediaspa
dc.relation.referencesAnselin, L. & Kelejian, H. H. (1997), ‘Testing for spatial error autocorrelation in the presence of endogenous regressors’, International Regional Science Review 20(1-2), 153–182spa
dc.relation.referencesAnselin, L., Le Gallo, J. & Jayet, H. (2008), Spatial panel econometrics, in ‘The Econometrics of Panel Data’, Springer, pp. 625–660.spa
dc.relation.referencesArellano, M. (2003), Panel data econometrics, Oxford University Press.spa
dc.relation.referencesAyvar-Campos, F. J., Navarro-Chavez, J. C. L. & Giménez-García, V. M. (2017), ‘La eficiencia de la dimensión ingreso del IDH en México’, Ensayos. Revista de economía 36(2), 95–121.spa
dc.relation.referencesBaltagi, B. (2001), Econometric Analysis of Panel Data, John Wiley & Sons.spa
dc.relation.referencesBaltagi, B. H., Egger, P. & Pfaffermayr, M. (2013), ‘A generalized spatial panel data model with random effects’, Econometric Reviews 32(5-6), 650–685.spa
dc.relation.referencesBaltagi, B. H. & Li, D. (2006), ‘Prediction in the panel data model with spatial correlation: the case of liquor’, Spatial Economic Analysis 1(2), 175–185.spa
dc.relation.referencesBaltagi, B. H., Song, S. H. & Koh, W. (2003), ‘Testing panel data regression models with spatial error correlation’, Journal of Econometrics 117(1), 123–150.spa
dc.relation.referencesBaringhaus, L., Danschke, R. & Henze, N. (1989), ‘Recent and classical tests for normality-a comparative study’, Communications in Statistics-Simulation and Computation 18(1), 363–379.spa
dc.relation.referencesBarry, R. P. & Pace, R. K. (1999), ‘Monte carlo estimates of the log determinant of large sparse matrices’, Linear Algebra and its Applications 289(1-3), 41–54.spa
dc.relation.referencesBibby, J., Kent, J. & Mardia, K. (1979), ‘Multivariate analysis’.spa
dc.relation.referencesBreusch, T. & Pagan, A. (1980), ‘The lagrange multiplier test and its applications to model specification in econometrics’, The Review of Economic Studies 47(1), 239–253.spa
dc.relation.referencesBrueckner, J. K. (2006), ‘Strategic interaction among governments’, A companion to urban economics 26, 332–347.spa
dc.relation.referencesCelemín, J. P. & Velázquez, G. A. (2017), ‘Spatial analysis of the relationship between a life quality index, HDI and poverty in the province of Buenos Aires and the Autonomous City of Buenos Aires, Argentina’, Social Indicators Research 17, 1–21.spa
dc.relation.referencesChintagunta, P. K., Jain, D. C. & Vilcassim, N. J. (1991), ‘Investigating heterogeneity in brand preferences in logit models for panel data’, Journal of Marketing Research 1, 417–428.spa
dc.relation.referencesCliff, A. D. & Ord, J. K. (1973), ‘Spatial autocorrelation, monographs in spatial environmental systems analysis’, London: Pion Limited 1.spa
dc.relation.referencesDoornik, J. A. & Hansen, H. (2008), ‘An omnibus test for univariate and multivariate normality’, Oxford Bulletin of Economics and Statistics 70, 927–939.spa
dc.relation.referencesDruska, V. & Horrace, W. C. (2004), ‘Generalized moments estimation for spatial panel data: Indonesian rice farming’, American Journal of Agricultural Economics 86(1), 185–198.spa
dc.relation.referencesEgger, P., Pfaffermayr, M. & Winner, H. (2005), ‘An unbalanced spatial panel data approach to us state tax competition’, Economics Letters 88(3), 329–335.spa
dc.relation.referencesElhorst, J. P. (2003), ‘Specification and estimation of spatial panel data models’, International Regional Science Review 26(3), 244–268.spa
dc.relation.referencesFrazier, C. & Kockelman, K. (2005), ‘Spatial econometric models for panel data: incorporating spatial and temporal data’, Transportation Research Record: Journal of the Transportation Research Board (1902), 80–90.spa
dc.relation.referencesGoldfeld, S. M. & Quandt, R. E. (1965), ‘Some tests for homoscedasticity’, Journal of the American Statistical Association 60(310), 539–547.spa
dc.relation.referencesGreene, W. (2000), Econometric analysis, International edition, Pearson US Imports & PHIPEsspa
dc.relation.referencesHausman, J. A. (1975), ‘An instrumental variable approach to full information estimators for linear and certain nonlinear econometric models’, Econometrica: Journal of the Econometric Society 43, 727–738.spa
dc.relation.referencesHausman, J. A. (1978), ‘Specification tests in econometrics’, Econometrica: Journal of the Econometric Society 46, 1251–1271spa
dc.relation.referencesHenze, N. & Zirkler, B. (1990), ‘A class of invariant consistent tests for multivariate normality’, Communications in Statistics-Theory and Methods 19(10), 3595–3617.spa
dc.relation.referencesKao, C. (1999), ‘Spurious regression and residual-based tests for cointegration in panel data’, Journal of Econometrics 90(1), 1–44spa
dc.relation.referencesKapoor, M., Kelejian, H. H. & Prucha, I. R. (2007), ‘Panel data models with spatially correlated error components’, Journal of Econometrics 140(1), 97–130.spa
dc.relation.referencesKmenta, J. & Rafailzadeh, B. (1997), Elements of econometrics, University of Michigan Press.spa
dc.relation.referencesKumar, S. (2014), ‘Eigenvalue statistics for the sum of two complex wishart matrices’, EPL (Europhysics Letters) 107(6), 60002.spa
dc.relation.referencesLax, P. D. & Lax, P. (2007), Linear Algebra and its Applications, Wiley-Interscience.spa
dc.relation.referencesLee, L.-F. (2004), ‘Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models’, Econometrica 72(6), 1899–1925.spa
dc.relation.referencesLee, L.-f. & Yu, J. (2010a), ‘Estimation of spatial autoregressive panel data models with fixed effects’, Journal of Econometrics 154(2), 165–185.spa
dc.relation.referencesLee, L.-f. & Yu, J. (2010b), ‘Some recent developments in spatial panel data models’, Regional Science and Urban Economics 40(5), 255–271.spa
dc.relation.referencesLeSage, J. & Pace, R. K. (2009), Introduction to spatial econometrics, Chapman and Hall/CRC.spa
dc.relation.referencesLetkoviˇcov´a, H. et al. (2014), ‘Spatial distribution and relationship between sustainable development measures in EU countries’, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 53(3), 87–94spa
dc.relation.referencesMaddala, G. S. (1987), ‘Limited dependent variable models using panel data’, Journal of Human Resources 22.spa
dc.relation.referencesMaddala, G. S. & Wu, S. (1999), ‘A comparative study of unit root tests with panel data and a new simple test’, Oxford Bulletin of Economics and Statistics 61, 631–652.spa
dc.relation.referencesMagnus, J. R. & Neudecker, H. (1988), ‘Matrix differential calculus with applications in statistics and econometrics’, Wiley Series in Probability and Mathematical Mtatistics .spa
dc.relation.referencesMardia, K. V. (1970), ‘Measures of multivariate skewness and kurtosis with applications’, Biometrika 57(3), 519–530.spa
dc.relation.referencesMoran, P. A. (1950), ‘Notes on continuous stochastic phenomena’, Biometrika 37(1/2), 17–23.spa
dc.relation.referencesMutl, J. & Pfaffermayr, M. (2008), The spatial random effects and the spatial fixed effects model: the hausman test in a cliff and ord panel model, Technical report, Reihe Okonomie/Economics Series, Institut f¨ur H¨ohere Studien (IHS).spa
dc.relation.referencesOrd, K. (1975), ‘Estimation methods for models of spatial interaction’, Journal of the American Statistical Association 70(349), 120–126.spa
dc.relation.referencesPace, R. K. & Barry, R. (1997), ‘Quick computation of spatial autoregressive estimators’, Geographical analysis 29(3), 232–247.spa
dc.relation.referencesPawitan, Y. (2001), In all likelihood: statistical modelling and inference using likelihood, Oxford University Press.spa
dc.relation.referencesPesaran, M. H. & Smith, R. (1995), ‘Estimating long-run relationships from dynamic heterogeneous panels’, Journal of Econometrics 68(1), 79–113.spa
dc.relation.referencesQiu, Q., Sung, J., Davis, W. & Tchernis, R. (2018), ‘Using spatial factor analysis to measure human development’, Journal of Development Economics 132, 130–149.spa
dc.relation.referencesShaker, R. R. (2015), ‘The spatial distribution of development in Europe and its underlying sustainability correlations’, Applied Geography 63, 304–314.spa
dc.relation.referencesWooldridge, J. M. (2010), Econometric analysis of cross section and panel data, MIT press.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcMatemáticas::Probabilidades y matemáticas aplicadasspa
dc.subject.proposalspatial auto-regressiveeng
dc.subject.proposaldatos panelspa
dc.subject.proposalmodelos linealesspa
dc.subject.proposaldevelopment economicseng
dc.titleEstimación de un modelo SAR para datos panel con coeficientes espaciales específicosspa
dc.title.alternativeEstimation of a SAR model for panel data with spatial specific coefficientsspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015446735.2019.pdf
Tamaño:
709.87 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: