Implementación de métodos para predecir las interacciones proteína-proteína con base en datos genómicos entre humano-patógeno
dc.contributor.advisor | López Kleine, Liliana | |
dc.contributor.advisor | Cuesta Astroz, Yesid | |
dc.contributor.author | Orjuela Lagos, Vanessa | |
dc.contributor.researchgroup | Grupo de Investigación en Bioinformática y Biología de Sistemas | |
dc.date.accessioned | 2025-09-17T22:45:28Z | |
dc.date.available | 2025-09-17T22:45:28Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas | spa |
dc.description.abstract | Las etapas críticas en la biología de un patógeno están mediadas principalmente por interacciones proteína-proteína entre el hospedero y el patógeno. Para comprender estos procesos y desarrollar alternativas terapéuticas, es fundamental identificar dichas interacciones a nivel molecular. Sin embargo, las bases de datos que recopilan interacciones experimentales son limitadas debido a los altos costos y la complejidad de los experimentos. Este trabajo tiene como objetivo comparar y evaluar distintos métodos computacionales para predecir interacciones proteína-proteína intraespecie, con el fin de adaptarlos y extenderlos hacia la predicción de redes de interacción proteína-proteína interespecie. Para ello, se emplearon datos genómicos y postgenómicos de acceso público, centrándose en la interacción entre el virus de inmunodeficiencia humana (VIH) y Homo sapiens, cuyo conjunto de datos experimentales de referencia está disponible. La predicción de estas interacciones se abordó mediante métodos de análisis canónico del kernel (KCCA) y aprendizaje de máquina supervisado, integrando datos ómicos a través de kernels. Los resultados muestran que el método KCCA no logró predecir de manera efectiva la red de interacción de proteínas, mientras que los modelos de aprendizaje automático sí lo hicieron. En particular, los mejores modelos se obtuvieron mediante el balanceo de los datos, combinando el submuestreo de la clase mayoritaria (0 = no interacción) y la generación de datos sintéticos para ajustar la proporción de clases, dado que la red de referencia (1 = interacción) es muy pequeña. Estos modelos aprovecharon un kernel integrado teniendo en cuenta pesos para cada tipo de datos, lo que permitió mejorar la capacidad predictiva en un contexto de datos altamente desbalanceados. (Texto tomados de la fuente) | spa |
dc.description.abstract | Critical stages in a pathogen's biology are primarily mediated by protein-protein interactions between the host and the pathogen. To understand these processes and develop therapeutic alternatives, it is essential to identify such interactions at the molecular level. However, databases compiling experimentally derived interactions are limited due to the high costs and complexity of the experiments. This study aims to compare and evaluate different computational methods for predicting intra-species protein-protein interactions, with the goal of adapting and extending them for the prediction of inter-species protein-protein interaction networks. To achieve this, publicly available genomic and post-genomic data were employed, focusing on the interaction between the human inmunodeficiency virus (HIV) and Homo sapiens, for which a reference dataset of experimentally validated interactions is available. The prediction of these interactions was approached using kernel canonical correlation analysis (KCCA) and supervised machine learning methods, integrating omics data through kernels. The results show that KCCA failed to effectively predict the protein interaction network, whereas machine learning models performed successfully. Notably, the best-performing models were obtained through data balancing strategies, combining majority class (0 = no interaction) undersampling and synthetic data generation to adjust the class proportions, given that the reference network (1 = interaction) is very small. These models leveraged a weighted kernel, enhancing predictive performance in the context of highly imbalanced data. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Estadística | |
dc.description.researcharea | Estadística genómica | |
dc.format.extent | ix, 68 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88893 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | |
dc.relation.references | Akaho, Shotaro (2006). ‘‘A kernel method for canonical correlation analysis’’. En: arXiv preprint cs/0609071 | |
dc.relation.references | Akhtar, Mohd Sayeed, Ibrahim A Alaraidh y Mallappa Kumara Swamy (2019). ‘‘Data measurement, data redundancy, and their biological relevance’’. En: Essentials of Bioinformatics, Volume III: In Silico Life Sciences: Agriculture, págs. 103-107 | |
dc.relation.references | Ako-Adjei, Danso et al. (2015). ‘‘HIV-1, human interaction database: current status and new features’’. En: Nucleic acids research 43.D1, págs. D566-D570 | |
dc.relation.references | Alam, Md. Ashad et al. (2016). ‘‘Robust kernel canonical correlation analysis to detect gene-gene interaction for imaging genetics data’’. En: págs. 279-288. doi: 10.1145/ 2975167.2975196 | |
dc.relation.references | Alcamí, José (2004). ‘‘Advances in the immunopathology of HIV infection’’. En: Enfermedades Infecciosas Y Microbiologia Clinica 22.8, págs. 486-496 | |
dc.relation.references | Aleksander, Suzi A et al. (2023). ‘‘The Gene Ontology knowledgebase in 2023’’. En: Genetics 224.1, iyad031 | |
dc.relation.references | Alme, Colten, Harun Pirim y Yusuf Akbulut (2025). ‘‘Machine learning approaches for predicting craniofacial anomalies with graph neural networks’’. En: 115. doi: 10.1016/j. compbiolchem.2024.108294 | |
dc.relation.references | Alvarez-Rivera, Eduardo, Madeline Rodríguez-Valentín y Nawal M. Boukli (2023). ‘‘The Antiviral Compound PSP Inhibits HIV-1 Entry via PKR-Dependent Activation in Monocytic Cells’’. En: 15.3. doi: 10.3390/v15030804 | |
dc.relation.references | Anders, Simon y Wolfgang Huber (2010). ‘‘Differential expression analysis for sequence count data’’. En: Nature Precedings, págs. 1-1 | |
dc.relation.references | Ashad Alam, M. et al. (2019). ‘‘Robust kernel canonical correlation analysis to detect genegene co-Associations: A case study in genetics’’. En: 17.4. doi: 10.1142/S0219720019500288 | |
dc.relation.references | Ashburner, Michael et al. (2000). ‘‘Gene ontology: tool for the unification of biology’’. En: Nature genetics 25.1, págs. 25-29 | |
dc.relation.references | Benoni, Barbora et al. (2024). ‘‘HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA’’. En: 19.6, págs. 1243-1249. doi: 10.1021/acschembio.4c00151 | |
dc.relation.references | Botstein, David et al. (2000). ‘‘Gene Ontology: tool for the unification of biology’’. En: Nat genet 25.1, págs. 25-9 | |
dc.relation.references | Brazma, Alvis y Jaak Vilo (2000). ‘‘Gene expression data analysis’’. En: FEBS Letters 480.1. Functional Genomics, págs. 17-24. issn: 0014-5793. doi: https://doi.org/10.1016/ S0014-5793(00)01772-5. url: https://www.sciencedirect.com/science/article/ pii/S0014579300017725 | |
dc.relation.references | Breiman, Leo (2001). ‘‘Random forests’’. En: Machine learning 45, págs. 5-32 | |
dc.relation.references | Breitling, Rainer, Anna Amtmann y Pawel Herzyk (2004). ‘‘Iterative Group Analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments’’. En: BMC bioinformatics 5.1, págs. 1-8 | |
dc.relation.references | Brody, Lawrence C. (2021). Protein. https://www.genome.gov/genetics-glossary/Protein. Recuperado el 8 de junio de 2021 | |
dc.relation.references | Cabrera-Rodríguez, Romina et al. (2023). ‘‘HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton’’. En: 24.17. doi: 10 . 3390 / ijms241713104 | |
dc.relation.references | Candotti, Fabio (2021). Gene Expression. https://www.genome.gov/genetics-glossary/Gene- Expression. Recuperado el 8 de junio de 2021 | |
dc.relation.references | Carbon, Seth et al. (2009). ‘‘AmiGO: online access to ontology and annotation data’’. En: Bioinformatics 25.2, págs. 288-289 | |
dc.relation.references | Chang, Ji-Wei et al. (2016). ‘‘Prediction of protein--protein interactions by evidence combining methods’’. En: International journal of molecular sciences 17.11, pág. 1946 | |
dc.relation.references | Chen, Tianqi y Carlos Guestrin (2016). ‘‘XGBoost: A Scalable Tree Boosting System’’. En: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, págs. 785-794 | |
dc.relation.references | Clayworth, Katherine, Mary Gilbert y Vanessa Auld (2024). ‘‘Proximity ligation assay (PLA) for fillets of Drosophila larvae’’. En: Cold Spring Harbor Protocols 2024.7, pdb-prot108162 | |
dc.relation.references | Clifford, Gary M y Silvia Franceschi (2009). ‘‘Cancer risk in HIV-infected persons: influence of CD4+ count’’. En: Future Oncology 5.5, págs. 669-678 | |
dc.relation.references | Clough, Emily et al. (2024). ‘‘NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update’’. En: Nucleic Acids Research 52.D1, págs. D138-D144. doi: 10.1093/nar/gkad965. url: https://www.ncbi.nlm.nih.gov/geo/ | |
dc.relation.references | Consortium, The Gene Ontology et al. (mar. de 2023). ‘‘The Gene Ontology knowledgebase in 2023’’. En: Genetics 224.1, iyad031. issn: 1943-2631. doi: 10.1093/genetics/iyad031. eprint: https : / / academic . oup . com / genetics / article - pdf / 224 / 1 / iyad031 / 59147104/iyad031.pdf. url: https://doi.org/10.1093/genetics/iyad031 | |
dc.relation.references | Consortium, UniProt (2019). ‘‘UniProt: a worldwide hub of protein knowledge’’. En: Nucleic acids research 47.D1, págs. D506-D515 | |
dc.relation.references | Crater, Jacqueline M., Douglas F. Nixon y Robert L. Furler O’Brien (2022). ‘‘HIV-1 replication and latency are balanced by mTOR-driven cell metabolism’’. En: 12. doi: 10.3389/fcimb.2022.1068436 | |
dc.relation.references | Cuesta-Astroz, Yesid y Guilherme Oliveira (2018). ‘‘Computational and experimental approaches to predict host--parasite protein--protein interactions’’. En: Computational Cell Biology. Springer, págs. 153-173 | |
dc.relation.references | Cuesta-Astroz, Yesid, Alberto Santos et al. (2019). ‘‘Analysis of predicted host--parasite interactomes reveals commonalities and specificities related to parasitic lifestyle and tissues tropism’’. En: Frontiers in immunology 10, pág. 212 | |
dc.relation.references | Dang, Thanh Hai y Tien Anh Vu (2024). ‘‘xCAPT5: protein–protein interaction prediction using deep and wide multi-kernel pooling convolutional neural networks with protein language model’’. En: 25.1. doi: 10.1186/s12859-024-05725-6 | |
dc.relation.references | Database of Interacting Proteins (2024). DIP: Database of Interacting Proteins. https: //dip.doe-mbi.ucla.edu/. Consultado el 10 de mayo de 2024 | |
dc.relation.references | David, Arango Rodríguez Julián (2019). Predicción de interacciones proteína-proteína mediante un método basado en aprendizaje de máquina para el análisis de la proteína NS5A del virus GB tipo C. url: http://hdl.handle.net/20.500.12622/1399 | |
dc.relation.references | Dray, Stéphane y Anne--Béatrice Dufour (2007). ‘‘The ade4 Package: Implementing the Duality Diagram for Ecologists’’. En: Journal of Statistical Software 22.4, págs. 1-20. doi: 10.18637/jss.v022.i04 | |
dc.relation.references | Ebeid, Islam Akef et al. (2021). ‘‘Biomedical knowledge graph refinement and completion using graph representation learning and top-k similarity measure’’. En: Diversity, Divergence, Dialogue: 16th International Conference, iConference 2021, Beijing, China, March 17--31, 2021, Proceedings, Part I 16. Springer, págs. 112-123 | |
dc.relation.references | European Bioinformatics Institute (2025). Pfam Protein Families – InterPro. Accessed: 2025-03-05. url: https://www.ebi.ac.uk/interpro/entry/pfam/#table | |
dc.relation.references | Falcon, S y R Gentleman (2007). ‘‘Using GOstats to test gene lists for GO term association.’’ En: Bioinformatics 23.2, págs. 257-8 | |
dc.relation.references | Finnegan, Thomas y Alison Hall (2017). ‘‘Dr Jeffrey M Skopek, University of Cambridge, Neil M Walker, University of Cambridge and Susan E Wallace, University of Leicester’’. En | |
dc.relation.references | Garapati, Hita Sony y Krishnaveni Mishra (2018). ‘‘Comparative genomics of nuclear envelope proteins 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0601 Biochemistry and Cell Biology’’. En: 19.1. doi: 10.1186/s12864-018-5218-4 | |
dc.relation.references | Gene Ontology Consortium (2025). Gene Ontology Resource. Accessed: 2025-03-05. url: https://geneontology.org/ | |
dc.relation.references | Géron, Aurélien (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. " O’Reilly Media, Inc." | |
dc.relation.references | Golemis, Erica A, Ilya Serebriiskii y Susan F Law (2023). ‘‘Adjustment of parameters in the yeast two-hybrid system: criteria for detecting physiologically significant protein-protein interactions’’. En: Gene Cloning and Analysis. Garland Science, págs. 11-28 | |
dc.relation.references | Gong, Jian et al. (2011). ‘‘Down-regulation of HIV-1 Infection by Inhibition of the MAPK signaling pathway’’. En: 26.2, págs. 114-122. doi: 10.1007/s12250-011-3184-y | |
dc.relation.references | Hanafi, Hamza, Badr Dine Rossi Hassani et al. (2022). ‘‘Using biological networks to integrate, visualize and analyze gene-disease interactions’’. En: E3S Web of Conferences. Vol. 351. EDP Sciences, pág. 01034 | |
dc.relation.references | Hastie, T., R. Tibshirani y J.H. Friedman (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics. Springer. isbn: 9780387848846. url: https://books.google.com.co/books?id=eBSgoAEACAAJ | |
dc.relation.references | Hoai-Nhan, Tran et al. (2025). ‘‘Combining Ensemble Learning and Multi–view Feature Extraction for Protein–protein Interaction Prediction’’. En: 1205 LNNS, págs. 650-660. doi: 10.1007/978-3-031-80943-9_69 | |
dc.relation.references | Hotteling, H (1936). ‘‘Canonical Correlation Analysis (CCA)’’. En: Biometrika 47, págs. 321-377 | |
dc.relation.references | Hu, Jun et al. (2024). ‘‘Improving protein-protein interaction prediction using protein language model and protein network features’’. En: 693. doi: 10.1016/j.ab.2024. 115550 | |
dc.relation.references | Huang, Da Wei, Brad T Sherman y Richard A Lempicki (2009). ‘‘Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists’’. En: Nucleic acids research 37.1, págs. 1-13 | |
dc.relation.references | Instituto Nacional de Salud (2023). Información Epidemiológica - Informes de Evento. https://www.ins.gov.co/. Recuperado el 7 de marzo de 2025 | |
dc.relation.references | Jaeger, Sebastian et al. (2012). ‘‘Global landscape of HIV–human protein complexes’’. En: Nature 481.7381, págs. 365-370. doi: 10.1038/nature10719 | |
dc.relation.references | Jeong, Dabin et al. (2021). ‘‘Construction of Condition-Specific Gene Regulatory Network Using Kernel Canonical Correlation Analysis’’. En: 12. doi: 10.3389/fgene.2021. 652623 | |
dc.relation.references | Kanehisa, Minoru, Miho Furumichi et al. (2025). ‘‘KEGG: biological systems database as a model of the real world’’. En: Nucleic Acids Research 53.D1, págs. D672-D677 | |
dc.relation.references | Kanehisa, Minoru y Susumu Goto (2000). ‘‘KEGG: kyoto encyclopedia of genes and genomes’’. En: Nucleic acids research 28.1, págs. 27-30 | |
dc.relation.references | Kanehisa, Minoru, Yoko Sato et al. (2019). ‘‘New approach for understanding genome variations in KEGG’’. En: Nucleic acids research 47.D1, págs. D590-D595 | |
dc.relation.references | Kanjilal, Ria, Bandana Barman y Mainak Kumar Kundu (2021). Preservation module prediction by weighted differentially coexpressed gene network analysis (WDCGNA) of HIV-1 disease: A case study for cancer, págs. 213-246. doi: 10.1016/B978- 0- 12- 822260-7.00004-2 | |
dc.relation.references | Karatzoglou, Alexandros et al. (2004). ‘‘kernlab -- An S4 Package for Kernel Methods in R’’. En: Journal of Statistical Software 11.9, págs. 1-20. url: http://www.jstatsoft.org/ v11/i09/ | |
dc.relation.references | Kazan, Hilal (2016). ‘‘Modeling gene regulation in liver hepatocellular carcinoma with random forests’’. En: BioMed research international 2016 | |
dc.relation.references | KEGG (2023). Kyoto Encyclopedia of Genes and Genomes. url: https://www.kegg.jp/ | |
dc.relation.references | Kim, Byungmin et al. (2017). ‘‘An improved method for predicting interactions between virus and human proteins’’. En: Journal of bioinformatics and computational biology 15.01, pág. 1650024 | |
dc.relation.references | Kishimoto, Naoki et al. (2012). ‘‘Glyceraldehyde 3-phosphate dehydrogenase negatively regulates human immunodeficiency virus type 1 infection’’. En: 9. doi: 10.1186/1742- 4690-9-107 | |
dc.relation.references | Kösesoy, İrfan, Murat Gök y Cemil Öz (2019). ‘‘A new sequence based encoding for prediction of host--pathogen protein interactions’’. En: Computational biology and chemistry 78, págs. 170-177 | |
dc.relation.references | Kuo, Lillian S. et al. (2012). ‘‘Overlapping effector interfaces define the multiple functions of the HIV-1 Nef polyproline helix’’. En: 9. doi: 10.1186/1742-4690-9-47 | |
dc.relation.references | Kuss, Malte (jun. de 2003). ‘‘The Geometry of Kernel Canonical Correlation Analysis’’ | |
dc.relation.references | Lederman, Michael M et al. (2006). ‘‘Biology of CCR5 and its role in HIV infection and treatment’’. En: Jama 296.7, págs. 815-826 | |
dc.relation.references | Lelek, Mickaël et al. (2015). ‘‘Chromatin organization at the nuclear pore favours HIV replication’’. En: 6. doi: 10.1038/ncomms7483 | |
dc.relation.references | Levray, Yvette S, Anne D Berhe y Andrew R Osborne (2020). ‘‘Use of split-dihydrofolate reductase for the detection of protein-protein interactions and simultaneous selection of multiple plasmids in Plasmodium falciparum’’. En: Molecular and Biochemical Parasitology 238, pág. 111292 | |
dc.relation.references | Liaw, Andy y Matthew Wiener (2002). ‘‘Classification and Regression by randomForest’’. En: R News 2.3, págs. 18-22. url: https://CRAN.R-project.org/doc/Rnews/ | |
dc.relation.references | López, Ana y Carlos Martínez (2022). ‘‘Aplicación de redes neuronales en la predicción de interacciones proteína-proteína entre hospedero y patógeno’’. En: Journal of Computational Biology 28.7, págs. 789-802. url: https://scielo.sld.cu/scielo.php?pid=S2227- 18992017000300009&script=sci_arttext | |
dc.relation.references | López Kleine, Liliana (2012). Estadística genómica orientada a la predicción funcional de proteínas | |
dc.relation.references | Love, Michael I, Wolfgang Huber y Simon Anders (2014a). ‘‘Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2’’. En: Genome biology 15.12, págs. 1-21. — (2014b). ‘‘Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2’’. En: Genome Biology 15 (12), pág. 550. doi: 10.1186/s13059-014-0550-8. | |
dc.relation.references | Mammano, Fabrizio y François Clavel (2013). ‘‘Host cell factors in HIV replication: Partners and opponents; [Interactions VIH-cellules : Partenaires et adversaires]’’. En: 17.3, págs. 145-156. doi: 10.1684/vir.2013.0499 | |
dc.relation.references | Markowitz, Martin y Teresa Hope Evering (2017). Raltegravir, págs. 4215-4241. doi: 10. 1201/9781315152110 | |
dc.relation.references | Masseroli, Marco, Dario Martucci y Francesco Pinciroli (2004). ‘‘GFINDer: Genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining’’. En: Nucleic acids research 32.suppl_2, W293-W300 | |
dc.relation.references | Matich, Damián Jorge (2001). ‘‘Redes Neuronales: Conceptos básicos y aplicaciones’’. En: Universidad Tecnológica Nacional, México 41, págs. 12-16 | |
dc.relation.references | Mei, Suyu, Erik K Flemington y Kun Zhang (2018). ‘‘Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways: a case study on M. tuberculosis’’. En: BMC genomics 19.1, págs. 1-21 | |
dc.relation.references | Meyer, David et al. (2020). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-4. url: https: //CRAN.R-project.org/package=e1071 | |
dc.relation.references | Milacic, Marija et al. (2024). ‘‘The reactome pathway knowledgebase 2024’’. En: Nucleic acids research 52.D1, págs. D672-D678 | |
dc.relation.references | Milev, Miroslav P., Chris M. Brown y Andrew J. Mouland (2010). ‘‘Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1’’. En: 7. doi: 10.1186/1742-4690-7-41 | |
dc.relation.references | Mootha, Vamsi K et al. (2003). ‘‘PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes’’. En: Nature genetics 34.3, págs. 267-273 | |
dc.relation.references | Morgan, Martin (2019). BiocManager: Access the Bioconductor Project Package Repository. R package version 1.30.10. url: https://CRAN.R-project.org/package=BiocManager | |
dc.relation.references | National Center for Biotechnology Information (s.f.). NCBI [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988]--presente. Available from: https://www.ncbi.nlm.nih.gov/. Consultado el 20 de agosto de 2024 | |
dc.relation.references | National Human Genome Research Institute (NHGRI) (2022). Genomic Data Science. https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science. Recuperado el 25 de junio de 2023. — (2003). Terminación del Proyecto Genoma Humano. https://www.genome.gov/11510905/preguntasmaacutes- frecuentesal-2. Recuperado el 8 de junio de 2021 | |
dc.relation.references | Nørgaard, Sarah Kristine et al. (2021). ‘‘On using kernel integration by graphical LASSO to study partial correlations between heterogeneous data sets’’. En: Journal of Chemometrics 35.10, e3324 | |
dc.relation.references | Nourani, Esmaeil, Farshad Khunjush y Saliha Durmuş (2015). ‘‘Computational approaches for prediction of pathogen-host protein-protein interactions’’. En: Frontiers in microbiology 6, pág. 94 | |
dc.relation.references | Orjuela, Vanessa (2025). human-pathogen-ppi-prediction [GitHub repository]. https:// github.com/vorjuelal/human-pathogen-ppi-prediction.git | |
dc.relation.references | Oughtred, Rose et al. (2019). ‘‘The BioGRID interaction database: 2019 update’’. En: Nucleic acids research 47.D1, págs. D529-D541 | |
dc.relation.references | Ozturk, Unsal et al. (2022). ‘‘MPEG-G Reference-Based Compression of Unaligned Reads Through Ultra-Fast Alignments’’. En: 2022 Data Compression Conference (DCC). IEEE, págs. 478-478 | |
dc.relation.references | Pasquereau, Sébastien y Georges Herbein (2022). ‘‘CounterAKTing HIV: Toward a “Block and Clear” Strategy?’’ En: 12. doi: 10.3389/fcimb.2022.827717 | |
dc.relation.references | Paysan-Lafosse, Typhaine et al. (2025). ‘‘The Pfam protein families database: embracing AI/ML’’. En: Nucleic acids research 53.D1, págs. D523-D534 | |
dc.relation.references | Pazhamala, Lekha T. et al. (2021). ‘‘Systems biology for crop improvement’’. En: 14.2. doi: 10.1002/tpg2.20098 | |
dc.relation.references | Pérez, Juan y María Gómez (2023). ‘‘Predicción de contactos interresiduales de proteínas utilizando algoritmos de aprendizaje automático’’. En: Revista de Bioinformática 15.3, págs. 123-135. url: https://www.academia.edu/55991292/Selecci%C3%B3n_de_la_ mejor_estrategia_para_la_predicci%C3%B3n_de_contactos_interresiduales_ de_prote%C3%ADnas | |
dc.relation.references | Planès, Rémi et al. (2016). ‘‘HIV-1 Tat protein activates both the MyD88 and TRIF pathways to induce tumor necrosis factor alpha and interleukin-10 in human monocytes’’. En: 90.13, págs. 5886-5898. doi: 10.1128/JVI.00262-16 | |
dc.relation.references | R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. url: http://www.R-project.org/ | |
dc.relation.references | Réthi-Nagy, Zsuzsánna, Edit Ábrahám y Zoltán Lipinszki (2022). ‘‘GST-IVTT pull-down: a fast and versatile in vitro method for validating and mapping protein–protein interactions’’. En: FEBS Open Bio 12.11, págs. 1988-1995. doi: 10.1002/2211-5463.13485 | |
dc.relation.references | Roca, B (2003). ‘‘Metabolic disorders associated with HIV and antiretroviral therapy’’. En: Anales de Medicina Interna (Madrid, Spain: 1984). Vol. 20. 11, págs. 585-593 | |
dc.relation.references | Rupp, Steffen y Kai Sohn (2009). Host-pathogen interactions: methods and protocols. Springer | |
dc.relation.references | Salwinski, Lukasz et al. (2004). ‘‘The database of interacting proteins: 2004 update’’. En: Nucleic acids research 32.suppl_1, págs. D449-D451 | |
dc.relation.references | Samer, Sadia et al. (2022). ‘‘Blockade of TGF-β signaling reactivates HIV-1/SIV reservoirs and immune responses in vivo’’. En: JCI insight 7.21, e162290 | |
dc.relation.references | Sarfraz, Maliha, Sanaullah Sajid y Hayat Ullah (2024). Molecular basis of the human immunodeficiency virus, págs. 212-224. doi: 10.2174/9789815238037124010019 | |
dc.relation.references | Sayin, Ahenk Zeynep et al. (2024). ‘‘Conformational diversity and protein–protein interfaces in drug repurposing in Ras signaling pathway’’. En: 14.1. doi: 10.1038/s41598-023- 50913-8 | |
dc.relation.references | Schaid, Daniel J (2010). ‘‘Genomic similarity and kernel methods I: advancements by building on mathematical and statistical foundations’’. En: Human heredity 70.2, págs. 109-131 | |
dc.relation.references | Schemelev, Alexandr N. et al. (2024). ‘‘Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024’’. En: 16.11. doi: 10.3390/v16111682 | |
dc.relation.references | Schmid, Ernst y Johannes Walter (2025). ‘‘Predictomes: A classifier-curated database of AlphaFold-modeled protein-protein interactions’’. En: Molecular Cell. Consultado el 18 de febrero de 2025. doi: 10.1016/j.molcel.2025.01.005. url: https://www. sciencedirect.com/science/article/pii/S1097276525001054 | |
dc.relation.references | Scholkopf, Bernhard y Alexander J Smola (2018). Learning with kernels: support vector machines, regularization, optimization, and beyond. Adaptive Computation y Machine Learning series | |
dc.relation.references | Schölkopf, Bernhard, Koji Tsuda y Jean-Philippe Vert (2004). Kernel methods in computational biology. MIT press | |
dc.relation.references | Sherman, Brad T, Richard A Lempicki et al. (2009). ‘‘Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources’’. En: Nature protocols 4.1, pág. 44 | |
dc.relation.references | Shi Jing, Lu et al. (2015). ‘‘A review on bioinformatics enrichment analysis tools towards functional analysis of high throughput gene set data’’. En: Current Proteomics 12.1, págs. 14-27 | |
dc.relation.references | Stepanchenko, NS, GV Novikova y IE Moshkov (2011). ‘‘Protein quantification’’. En: Russian journal of plant physiology 58.4, págs. 737-742 | |
dc.relation.references | Stynen, Bram et al. (2012). ‘‘Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system’’. En: Microbiology and molecular biology reviews 76.2, págs. 331-382 | |
dc.relation.references | Subramanian, Aravind et al. (2005). ‘‘Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles’’. En: Proceedings of the National Academy of Sciences 102.43, págs. 15545-15550 | |
dc.relation.references | Sudhakar, Padhmanand, Kathleen Machiels y Severine Vermeire (2020). ‘‘Computational Biology and Machine Learning Approaches to Study Mechanistic Microbiomehost Interactions’’ | |
dc.relation.references | Szklarczyk, Damian, Annika L Gable et al. (2019). ‘‘STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets’’. En: Nucleic acids research 47.D1, págs. D607-D613 | |
dc.relation.references | Szklarczyk, Damian, Rebecca Kirsch et al. (2023). ‘‘The STRING database in 2023: protein- -protein association networks and functional enrichment analyses for any sequenced genome of interest’’. En: Nucleic acids research 51.D1, págs. D638-D646 | |
dc.relation.references | The BioGRID Interaction Database (2024). BioGRID: Biological General Repository for Interaction Datasets. https://thebiogrid.org/. Versión 4.4.243, consultado el 13 de mayo de 2024 | |
dc.relation.references | Torres-Godino, Isabel (2014). ‘‘“Microarrays” de ARN’’ | |
dc.relation.references | Toxvaerd, Søren (2019). ‘‘A Prerequisite for Life’’. En: 474, págs. 48-51. doi: 10.1016/j. jtbi.2019.05.001 | |
dc.relation.references | Ushakov, Anton V., Xenia Klimentova e Igor Vasilyev (2018). ‘‘Bi-level and Bi-objective p- Median Type Problems for Integrative Clustering: Application to Analysis of Cancer Gene-Expression and Drug-Response Data’’. En: IEEE/ACM Transactions on Computational Biology and Bioinformatics 15.1, págs. 46-59. doi: 10.1109/TCBB.2016.2622692 | |
dc.relation.references | Vargas, José et al. (2012). ‘‘Máquinas de soporte vectorial: metodología y aplicación en R’’. En: Décimo Congreso Latinoamericano de Sociedades de Estadística | |
dc.relation.references | Vert, Jean-Philippe y Minoru Kanehisa (2003). ‘‘Graph-driven feature extraction from microarray data using diffusion kernels and kernel CCA’’. En: Advances in neural information processing systems, págs. 1449-1405 | |
dc.relation.references | Von Mering, Christian et al. (2005). ‘‘STRING: known and predicted protein--protein associations, integrated and transferred across organisms’’. En: Nucleic acids research 33.suppl_1, págs. D433-D437 | |
dc.relation.references | Wang, Haiyue, Zaiyi Liu y Xiaoke Ma (2024). ‘‘Learning consistency and specificity of cells from single-cell multi-omic data’’. En: IEEE Journal of Biomedical and Health Informatics | |
dc.relation.references | Winchester, A.M (mayo de 2020). ‘‘Genetics’’. En: Encyclopaedia Britannica | |
dc.relation.references | Yamanishi, Yoshihiro, J-P Vert et al. (2003). ‘‘Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis’’. En: Bioinformatics 19.suppl_1, págs. i323-i330 | |
dc.relation.references | Yamanishi, Yoshihiro, Jean-Philippe Vert y Minoru Kanehisa (2005). ‘‘Supervised enzyme network inference from the integration of genomic data and chemical information’’. En: Bioinformatics 21.suppl_1, págs. i468-i477 | |
dc.relation.references | Yang, Jie et al. (2024). ‘‘An End-to-end Knowledge Graph Fused Graph Neural Network for Accurate Protein-Protein Interactions Prediction’’. En: doi: 10.1109/TCBB.2024. 3486216 | |
dc.relation.references | Zeeberg, Barry R et al. (2003). ‘‘GoMiner: a resource for biological interpretation of genomic and proteomic data’’. En: Genome biology 4.4, págs. 1-8 | |
dc.relation.references | Zheng, Qi y Xiu-Jie Wang (2008). ‘‘GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis’’. En: Nucleic acids research 36.suppl_2, W358-W363 | |
dc.relation.references | Zitnik, Marinka, Monica Agrawal y Jure Leskovec (2018). ‘‘Modeling polypharmacy side effects with graph convolutional networks’’. En: Bioinformatics 34.13, págs. i457-i466 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.armarc | Canonical correlation analysis | eng |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | |
dc.subject.decs | Interacciones huésped-parásitos | spa |
dc.subject.decs | Host-parasite interactions | eng |
dc.subject.decs | Mapas de interacción de proteínas | spa |
dc.subject.decs | Protein interaction maps | eng |
dc.subject.decs | Genómica -- Estadística & datos numéricos | spa |
dc.subject.decs | Genomics -- Statistics & numerical data | eng |
dc.subject.proposal | Interacción proteína-proteína | spa |
dc.subject.proposal | Interacciones patógeno-hospedero | spa |
dc.subject.proposal | Datos genómicos | spa |
dc.subject.proposal | Kernel | spa |
dc.subject.proposal | KCCA | spa |
dc.subject.proposal | Patógeno | spa |
dc.subject.proposal | Aprendizaje supervisado | spa |
dc.subject.proposal | Protein-protein interaction | eng |
dc.subject.proposal | Host–pathogen interactions | eng |
dc.subject.proposal | Genomic data | eng |
dc.subject.proposal | Supervised learning | eng |
dc.subject.proposal | Supervised learning | eng |
dc.subject.wikidata | Medicina predictiva | spa |
dc.subject.wikidata | Predictive medicine | eng |
dc.subject.wikidata | Análisis de la correlación canónica | spa |
dc.subject.wikidata | Canonical correlation analysis | eng |
dc.title | Implementación de métodos para predecir las interacciones proteína-proteína con base en datos genómicos entre humano-patógeno | spa |
dc.title.translated | Implementation of methods to predict protein-protein interactions based on genomic data between humans and pathogens | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Implementación de métodos para predecir las interacciones proteína-proteína con base en datos genómicos entre humano-patógeno.pdf
- Tamaño:
- 49.14 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: