Implementación de métodos para predecir las interacciones proteína-proteína con base en datos genómicos entre humano-patógeno

dc.contributor.advisorLópez Kleine, Liliana
dc.contributor.advisorCuesta Astroz, Yesid
dc.contributor.authorOrjuela Lagos, Vanessa
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biología de Sistemas
dc.date.accessioned2025-09-17T22:45:28Z
dc.date.available2025-09-17T22:45:28Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractLas etapas críticas en la biología de un patógeno están mediadas principalmente por interacciones proteína-proteína entre el hospedero y el patógeno. Para comprender estos procesos y desarrollar alternativas terapéuticas, es fundamental identificar dichas interacciones a nivel molecular. Sin embargo, las bases de datos que recopilan interacciones experimentales son limitadas debido a los altos costos y la complejidad de los experimentos. Este trabajo tiene como objetivo comparar y evaluar distintos métodos computacionales para predecir interacciones proteína-proteína intraespecie, con el fin de adaptarlos y extenderlos hacia la predicción de redes de interacción proteína-proteína interespecie. Para ello, se emplearon datos genómicos y postgenómicos de acceso público, centrándose en la interacción entre el virus de inmunodeficiencia humana (VIH) y Homo sapiens, cuyo conjunto de datos experimentales de referencia está disponible. La predicción de estas interacciones se abordó mediante métodos de análisis canónico del kernel (KCCA) y aprendizaje de máquina supervisado, integrando datos ómicos a través de kernels. Los resultados muestran que el método KCCA no logró predecir de manera efectiva la red de interacción de proteínas, mientras que los modelos de aprendizaje automático sí lo hicieron. En particular, los mejores modelos se obtuvieron mediante el balanceo de los datos, combinando el submuestreo de la clase mayoritaria (0 = no interacción) y la generación de datos sintéticos para ajustar la proporción de clases, dado que la red de referencia (1 = interacción) es muy pequeña. Estos modelos aprovecharon un kernel integrado teniendo en cuenta pesos para cada tipo de datos, lo que permitió mejorar la capacidad predictiva en un contexto de datos altamente desbalanceados. (Texto tomados de la fuente)spa
dc.description.abstractCritical stages in a pathogen's biology are primarily mediated by protein-protein interactions between the host and the pathogen. To understand these processes and develop therapeutic alternatives, it is essential to identify such interactions at the molecular level. However, databases compiling experimentally derived interactions are limited due to the high costs and complexity of the experiments. This study aims to compare and evaluate different computational methods for predicting intra-species protein-protein interactions, with the goal of adapting and extending them for the prediction of inter-species protein-protein interaction networks. To achieve this, publicly available genomic and post-genomic data were employed, focusing on the interaction between the human inmunodeficiency virus (HIV) and Homo sapiens, for which a reference dataset of experimentally validated interactions is available. The prediction of these interactions was approached using kernel canonical correlation analysis (KCCA) and supervised machine learning methods, integrating omics data through kernels. The results show that KCCA failed to effectively predict the protein interaction network, whereas machine learning models performed successfully. Notably, the best-performing models were obtained through data balancing strategies, combining majority class (0 = no interaction) undersampling and synthetic data generation to adjust the class proportions, given that the reference network (1 = interaction) is very small. These models leveraged a weighted kernel, enhancing predictive performance in the context of highly imbalanced data.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Estadística
dc.description.researchareaEstadística genómica
dc.format.extentix, 68 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88893
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadística
dc.relation.referencesAkaho, Shotaro (2006). ‘‘A kernel method for canonical correlation analysis’’. En: arXiv preprint cs/0609071
dc.relation.referencesAkhtar, Mohd Sayeed, Ibrahim A Alaraidh y Mallappa Kumara Swamy (2019). ‘‘Data measurement, data redundancy, and their biological relevance’’. En: Essentials of Bioinformatics, Volume III: In Silico Life Sciences: Agriculture, págs. 103-107
dc.relation.referencesAko-Adjei, Danso et al. (2015). ‘‘HIV-1, human interaction database: current status and new features’’. En: Nucleic acids research 43.D1, págs. D566-D570
dc.relation.referencesAlam, Md. Ashad et al. (2016). ‘‘Robust kernel canonical correlation analysis to detect gene-gene interaction for imaging genetics data’’. En: págs. 279-288. doi: 10.1145/ 2975167.2975196
dc.relation.referencesAlcamí, José (2004). ‘‘Advances in the immunopathology of HIV infection’’. En: Enfermedades Infecciosas Y Microbiologia Clinica 22.8, págs. 486-496
dc.relation.referencesAleksander, Suzi A et al. (2023). ‘‘The Gene Ontology knowledgebase in 2023’’. En: Genetics 224.1, iyad031
dc.relation.referencesAlme, Colten, Harun Pirim y Yusuf Akbulut (2025). ‘‘Machine learning approaches for predicting craniofacial anomalies with graph neural networks’’. En: 115. doi: 10.1016/j. compbiolchem.2024.108294
dc.relation.referencesAlvarez-Rivera, Eduardo, Madeline Rodríguez-Valentín y Nawal M. Boukli (2023). ‘‘The Antiviral Compound PSP Inhibits HIV-1 Entry via PKR-Dependent Activation in Monocytic Cells’’. En: 15.3. doi: 10.3390/v15030804
dc.relation.referencesAnders, Simon y Wolfgang Huber (2010). ‘‘Differential expression analysis for sequence count data’’. En: Nature Precedings, págs. 1-1
dc.relation.referencesAshad Alam, M. et al. (2019). ‘‘Robust kernel canonical correlation analysis to detect genegene co-Associations: A case study in genetics’’. En: 17.4. doi: 10.1142/S0219720019500288
dc.relation.referencesAshburner, Michael et al. (2000). ‘‘Gene ontology: tool for the unification of biology’’. En: Nature genetics 25.1, págs. 25-29
dc.relation.referencesBenoni, Barbora et al. (2024). ‘‘HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA’’. En: 19.6, págs. 1243-1249. doi: 10.1021/acschembio.4c00151
dc.relation.referencesBotstein, David et al. (2000). ‘‘Gene Ontology: tool for the unification of biology’’. En: Nat genet 25.1, págs. 25-9
dc.relation.referencesBrazma, Alvis y Jaak Vilo (2000). ‘‘Gene expression data analysis’’. En: FEBS Letters 480.1. Functional Genomics, págs. 17-24. issn: 0014-5793. doi: https://doi.org/10.1016/ S0014-5793(00)01772-5. url: https://www.sciencedirect.com/science/article/ pii/S0014579300017725
dc.relation.referencesBreiman, Leo (2001). ‘‘Random forests’’. En: Machine learning 45, págs. 5-32
dc.relation.referencesBreitling, Rainer, Anna Amtmann y Pawel Herzyk (2004). ‘‘Iterative Group Analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments’’. En: BMC bioinformatics 5.1, págs. 1-8
dc.relation.referencesBrody, Lawrence C. (2021). Protein. https://www.genome.gov/genetics-glossary/Protein. Recuperado el 8 de junio de 2021
dc.relation.referencesCabrera-Rodríguez, Romina et al. (2023). ‘‘HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton’’. En: 24.17. doi: 10 . 3390 / ijms241713104
dc.relation.referencesCandotti, Fabio (2021). Gene Expression. https://www.genome.gov/genetics-glossary/Gene- Expression. Recuperado el 8 de junio de 2021
dc.relation.referencesCarbon, Seth et al. (2009). ‘‘AmiGO: online access to ontology and annotation data’’. En: Bioinformatics 25.2, págs. 288-289
dc.relation.referencesChang, Ji-Wei et al. (2016). ‘‘Prediction of protein--protein interactions by evidence combining methods’’. En: International journal of molecular sciences 17.11, pág. 1946
dc.relation.referencesChen, Tianqi y Carlos Guestrin (2016). ‘‘XGBoost: A Scalable Tree Boosting System’’. En: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, págs. 785-794
dc.relation.referencesClayworth, Katherine, Mary Gilbert y Vanessa Auld (2024). ‘‘Proximity ligation assay (PLA) for fillets of Drosophila larvae’’. En: Cold Spring Harbor Protocols 2024.7, pdb-prot108162
dc.relation.referencesClifford, Gary M y Silvia Franceschi (2009). ‘‘Cancer risk in HIV-infected persons: influence of CD4+ count’’. En: Future Oncology 5.5, págs. 669-678
dc.relation.referencesClough, Emily et al. (2024). ‘‘NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update’’. En: Nucleic Acids Research 52.D1, págs. D138-D144. doi: 10.1093/nar/gkad965. url: https://www.ncbi.nlm.nih.gov/geo/
dc.relation.referencesConsortium, The Gene Ontology et al. (mar. de 2023). ‘‘The Gene Ontology knowledgebase in 2023’’. En: Genetics 224.1, iyad031. issn: 1943-2631. doi: 10.1093/genetics/iyad031. eprint: https : / / academic . oup . com / genetics / article - pdf / 224 / 1 / iyad031 / 59147104/iyad031.pdf. url: https://doi.org/10.1093/genetics/iyad031
dc.relation.referencesConsortium, UniProt (2019). ‘‘UniProt: a worldwide hub of protein knowledge’’. En: Nucleic acids research 47.D1, págs. D506-D515
dc.relation.referencesCrater, Jacqueline M., Douglas F. Nixon y Robert L. Furler O’Brien (2022). ‘‘HIV-1 replication and latency are balanced by mTOR-driven cell metabolism’’. En: 12. doi: 10.3389/fcimb.2022.1068436
dc.relation.referencesCuesta-Astroz, Yesid y Guilherme Oliveira (2018). ‘‘Computational and experimental approaches to predict host--parasite protein--protein interactions’’. En: Computational Cell Biology. Springer, págs. 153-173
dc.relation.referencesCuesta-Astroz, Yesid, Alberto Santos et al. (2019). ‘‘Analysis of predicted host--parasite interactomes reveals commonalities and specificities related to parasitic lifestyle and tissues tropism’’. En: Frontiers in immunology 10, pág. 212
dc.relation.referencesDang, Thanh Hai y Tien Anh Vu (2024). ‘‘xCAPT5: protein–protein interaction prediction using deep and wide multi-kernel pooling convolutional neural networks with protein language model’’. En: 25.1. doi: 10.1186/s12859-024-05725-6
dc.relation.referencesDatabase of Interacting Proteins (2024). DIP: Database of Interacting Proteins. https: //dip.doe-mbi.ucla.edu/. Consultado el 10 de mayo de 2024
dc.relation.referencesDavid, Arango Rodríguez Julián (2019). Predicción de interacciones proteína-proteína mediante un método basado en aprendizaje de máquina para el análisis de la proteína NS5A del virus GB tipo C. url: http://hdl.handle.net/20.500.12622/1399
dc.relation.referencesDray, Stéphane y Anne--Béatrice Dufour (2007). ‘‘The ade4 Package: Implementing the Duality Diagram for Ecologists’’. En: Journal of Statistical Software 22.4, págs. 1-20. doi: 10.18637/jss.v022.i04
dc.relation.referencesEbeid, Islam Akef et al. (2021). ‘‘Biomedical knowledge graph refinement and completion using graph representation learning and top-k similarity measure’’. En: Diversity, Divergence, Dialogue: 16th International Conference, iConference 2021, Beijing, China, March 17--31, 2021, Proceedings, Part I 16. Springer, págs. 112-123
dc.relation.referencesEuropean Bioinformatics Institute (2025). Pfam Protein Families – InterPro. Accessed: 2025-03-05. url: https://www.ebi.ac.uk/interpro/entry/pfam/#table
dc.relation.referencesFalcon, S y R Gentleman (2007). ‘‘Using GOstats to test gene lists for GO term association.’’ En: Bioinformatics 23.2, págs. 257-8
dc.relation.referencesFinnegan, Thomas y Alison Hall (2017). ‘‘Dr Jeffrey M Skopek, University of Cambridge, Neil M Walker, University of Cambridge and Susan E Wallace, University of Leicester’’. En
dc.relation.referencesGarapati, Hita Sony y Krishnaveni Mishra (2018). ‘‘Comparative genomics of nuclear envelope proteins 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0601 Biochemistry and Cell Biology’’. En: 19.1. doi: 10.1186/s12864-018-5218-4
dc.relation.referencesGene Ontology Consortium (2025). Gene Ontology Resource. Accessed: 2025-03-05. url: https://geneontology.org/
dc.relation.referencesGéron, Aurélien (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. " O’Reilly Media, Inc."
dc.relation.referencesGolemis, Erica A, Ilya Serebriiskii y Susan F Law (2023). ‘‘Adjustment of parameters in the yeast two-hybrid system: criteria for detecting physiologically significant protein-protein interactions’’. En: Gene Cloning and Analysis. Garland Science, págs. 11-28
dc.relation.referencesGong, Jian et al. (2011). ‘‘Down-regulation of HIV-1 Infection by Inhibition of the MAPK signaling pathway’’. En: 26.2, págs. 114-122. doi: 10.1007/s12250-011-3184-y
dc.relation.referencesHanafi, Hamza, Badr Dine Rossi Hassani et al. (2022). ‘‘Using biological networks to integrate, visualize and analyze gene-disease interactions’’. En: E3S Web of Conferences. Vol. 351. EDP Sciences, pág. 01034
dc.relation.referencesHastie, T., R. Tibshirani y J.H. Friedman (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics. Springer. isbn: 9780387848846. url: https://books.google.com.co/books?id=eBSgoAEACAAJ
dc.relation.referencesHoai-Nhan, Tran et al. (2025). ‘‘Combining Ensemble Learning and Multi–view Feature Extraction for Protein–protein Interaction Prediction’’. En: 1205 LNNS, págs. 650-660. doi: 10.1007/978-3-031-80943-9_69
dc.relation.referencesHotteling, H (1936). ‘‘Canonical Correlation Analysis (CCA)’’. En: Biometrika 47, págs. 321-377
dc.relation.referencesHu, Jun et al. (2024). ‘‘Improving protein-protein interaction prediction using protein language model and protein network features’’. En: 693. doi: 10.1016/j.ab.2024. 115550
dc.relation.referencesHuang, Da Wei, Brad T Sherman y Richard A Lempicki (2009). ‘‘Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists’’. En: Nucleic acids research 37.1, págs. 1-13
dc.relation.referencesInstituto Nacional de Salud (2023). Información Epidemiológica - Informes de Evento. https://www.ins.gov.co/. Recuperado el 7 de marzo de 2025
dc.relation.referencesJaeger, Sebastian et al. (2012). ‘‘Global landscape of HIV–human protein complexes’’. En: Nature 481.7381, págs. 365-370. doi: 10.1038/nature10719
dc.relation.referencesJeong, Dabin et al. (2021). ‘‘Construction of Condition-Specific Gene Regulatory Network Using Kernel Canonical Correlation Analysis’’. En: 12. doi: 10.3389/fgene.2021. 652623
dc.relation.referencesKanehisa, Minoru, Miho Furumichi et al. (2025). ‘‘KEGG: biological systems database as a model of the real world’’. En: Nucleic Acids Research 53.D1, págs. D672-D677
dc.relation.referencesKanehisa, Minoru y Susumu Goto (2000). ‘‘KEGG: kyoto encyclopedia of genes and genomes’’. En: Nucleic acids research 28.1, págs. 27-30
dc.relation.referencesKanehisa, Minoru, Yoko Sato et al. (2019). ‘‘New approach for understanding genome variations in KEGG’’. En: Nucleic acids research 47.D1, págs. D590-D595
dc.relation.referencesKanjilal, Ria, Bandana Barman y Mainak Kumar Kundu (2021). Preservation module prediction by weighted differentially coexpressed gene network analysis (WDCGNA) of HIV-1 disease: A case study for cancer, págs. 213-246. doi: 10.1016/B978- 0- 12- 822260-7.00004-2
dc.relation.referencesKaratzoglou, Alexandros et al. (2004). ‘‘kernlab -- An S4 Package for Kernel Methods in R’’. En: Journal of Statistical Software 11.9, págs. 1-20. url: http://www.jstatsoft.org/ v11/i09/
dc.relation.referencesKazan, Hilal (2016). ‘‘Modeling gene regulation in liver hepatocellular carcinoma with random forests’’. En: BioMed research international 2016
dc.relation.referencesKEGG (2023). Kyoto Encyclopedia of Genes and Genomes. url: https://www.kegg.jp/
dc.relation.referencesKim, Byungmin et al. (2017). ‘‘An improved method for predicting interactions between virus and human proteins’’. En: Journal of bioinformatics and computational biology 15.01, pág. 1650024
dc.relation.referencesKishimoto, Naoki et al. (2012). ‘‘Glyceraldehyde 3-phosphate dehydrogenase negatively regulates human immunodeficiency virus type 1 infection’’. En: 9. doi: 10.1186/1742- 4690-9-107
dc.relation.referencesKösesoy, İrfan, Murat Gök y Cemil Öz (2019). ‘‘A new sequence based encoding for prediction of host--pathogen protein interactions’’. En: Computational biology and chemistry 78, págs. 170-177
dc.relation.referencesKuo, Lillian S. et al. (2012). ‘‘Overlapping effector interfaces define the multiple functions of the HIV-1 Nef polyproline helix’’. En: 9. doi: 10.1186/1742-4690-9-47
dc.relation.referencesKuss, Malte (jun. de 2003). ‘‘The Geometry of Kernel Canonical Correlation Analysis’’
dc.relation.referencesLederman, Michael M et al. (2006). ‘‘Biology of CCR5 and its role in HIV infection and treatment’’. En: Jama 296.7, págs. 815-826
dc.relation.referencesLelek, Mickaël et al. (2015). ‘‘Chromatin organization at the nuclear pore favours HIV replication’’. En: 6. doi: 10.1038/ncomms7483
dc.relation.referencesLevray, Yvette S, Anne D Berhe y Andrew R Osborne (2020). ‘‘Use of split-dihydrofolate reductase for the detection of protein-protein interactions and simultaneous selection of multiple plasmids in Plasmodium falciparum’’. En: Molecular and Biochemical Parasitology 238, pág. 111292
dc.relation.referencesLiaw, Andy y Matthew Wiener (2002). ‘‘Classification and Regression by randomForest’’. En: R News 2.3, págs. 18-22. url: https://CRAN.R-project.org/doc/Rnews/
dc.relation.referencesLópez, Ana y Carlos Martínez (2022). ‘‘Aplicación de redes neuronales en la predicción de interacciones proteína-proteína entre hospedero y patógeno’’. En: Journal of Computational Biology 28.7, págs. 789-802. url: https://scielo.sld.cu/scielo.php?pid=S2227- 18992017000300009&script=sci_arttext
dc.relation.referencesLópez Kleine, Liliana (2012). Estadística genómica orientada a la predicción funcional de proteínas
dc.relation.referencesLove, Michael I, Wolfgang Huber y Simon Anders (2014a). ‘‘Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2’’. En: Genome biology 15.12, págs. 1-21. — (2014b). ‘‘Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2’’. En: Genome Biology 15 (12), pág. 550. doi: 10.1186/s13059-014-0550-8.
dc.relation.referencesMammano, Fabrizio y François Clavel (2013). ‘‘Host cell factors in HIV replication: Partners and opponents; [Interactions VIH-cellules : Partenaires et adversaires]’’. En: 17.3, págs. 145-156. doi: 10.1684/vir.2013.0499
dc.relation.referencesMarkowitz, Martin y Teresa Hope Evering (2017). Raltegravir, págs. 4215-4241. doi: 10. 1201/9781315152110
dc.relation.referencesMasseroli, Marco, Dario Martucci y Francesco Pinciroli (2004). ‘‘GFINDer: Genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining’’. En: Nucleic acids research 32.suppl_2, W293-W300
dc.relation.referencesMatich, Damián Jorge (2001). ‘‘Redes Neuronales: Conceptos básicos y aplicaciones’’. En: Universidad Tecnológica Nacional, México 41, págs. 12-16
dc.relation.referencesMei, Suyu, Erik K Flemington y Kun Zhang (2018). ‘‘Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways: a case study on M. tuberculosis’’. En: BMC genomics 19.1, págs. 1-21
dc.relation.referencesMeyer, David et al. (2020). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-4. url: https: //CRAN.R-project.org/package=e1071
dc.relation.referencesMilacic, Marija et al. (2024). ‘‘The reactome pathway knowledgebase 2024’’. En: Nucleic acids research 52.D1, págs. D672-D678
dc.relation.referencesMilev, Miroslav P., Chris M. Brown y Andrew J. Mouland (2010). ‘‘Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1’’. En: 7. doi: 10.1186/1742-4690-7-41
dc.relation.referencesMootha, Vamsi K et al. (2003). ‘‘PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes’’. En: Nature genetics 34.3, págs. 267-273
dc.relation.referencesMorgan, Martin (2019). BiocManager: Access the Bioconductor Project Package Repository. R package version 1.30.10. url: https://CRAN.R-project.org/package=BiocManager
dc.relation.referencesNational Center for Biotechnology Information (s.f.). NCBI [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988]--presente. Available from: https://www.ncbi.nlm.nih.gov/. Consultado el 20 de agosto de 2024
dc.relation.referencesNational Human Genome Research Institute (NHGRI) (2022). Genomic Data Science. https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science. Recuperado el 25 de junio de 2023. — (2003). Terminación del Proyecto Genoma Humano. https://www.genome.gov/11510905/preguntasmaacutes- frecuentesal-2. Recuperado el 8 de junio de 2021
dc.relation.referencesNørgaard, Sarah Kristine et al. (2021). ‘‘On using kernel integration by graphical LASSO to study partial correlations between heterogeneous data sets’’. En: Journal of Chemometrics 35.10, e3324
dc.relation.referencesNourani, Esmaeil, Farshad Khunjush y Saliha Durmuş (2015). ‘‘Computational approaches for prediction of pathogen-host protein-protein interactions’’. En: Frontiers in microbiology 6, pág. 94
dc.relation.referencesOrjuela, Vanessa (2025). human-pathogen-ppi-prediction [GitHub repository]. https:// github.com/vorjuelal/human-pathogen-ppi-prediction.git
dc.relation.referencesOughtred, Rose et al. (2019). ‘‘The BioGRID interaction database: 2019 update’’. En: Nucleic acids research 47.D1, págs. D529-D541
dc.relation.referencesOzturk, Unsal et al. (2022). ‘‘MPEG-G Reference-Based Compression of Unaligned Reads Through Ultra-Fast Alignments’’. En: 2022 Data Compression Conference (DCC). IEEE, págs. 478-478
dc.relation.referencesPasquereau, Sébastien y Georges Herbein (2022). ‘‘CounterAKTing HIV: Toward a “Block and Clear” Strategy?’’ En: 12. doi: 10.3389/fcimb.2022.827717
dc.relation.referencesPaysan-Lafosse, Typhaine et al. (2025). ‘‘The Pfam protein families database: embracing AI/ML’’. En: Nucleic acids research 53.D1, págs. D523-D534
dc.relation.referencesPazhamala, Lekha T. et al. (2021). ‘‘Systems biology for crop improvement’’. En: 14.2. doi: 10.1002/tpg2.20098
dc.relation.referencesPérez, Juan y María Gómez (2023). ‘‘Predicción de contactos interresiduales de proteínas utilizando algoritmos de aprendizaje automático’’. En: Revista de Bioinformática 15.3, págs. 123-135. url: https://www.academia.edu/55991292/Selecci%C3%B3n_de_la_ mejor_estrategia_para_la_predicci%C3%B3n_de_contactos_interresiduales_ de_prote%C3%ADnas
dc.relation.referencesPlanès, Rémi et al. (2016). ‘‘HIV-1 Tat protein activates both the MyD88 and TRIF pathways to induce tumor necrosis factor alpha and interleukin-10 in human monocytes’’. En: 90.13, págs. 5886-5898. doi: 10.1128/JVI.00262-16
dc.relation.referencesR Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. url: http://www.R-project.org/
dc.relation.referencesRéthi-Nagy, Zsuzsánna, Edit Ábrahám y Zoltán Lipinszki (2022). ‘‘GST-IVTT pull-down: a fast and versatile in vitro method for validating and mapping protein–protein interactions’’. En: FEBS Open Bio 12.11, págs. 1988-1995. doi: 10.1002/2211-5463.13485
dc.relation.referencesRoca, B (2003). ‘‘Metabolic disorders associated with HIV and antiretroviral therapy’’. En: Anales de Medicina Interna (Madrid, Spain: 1984). Vol. 20. 11, págs. 585-593
dc.relation.referencesRupp, Steffen y Kai Sohn (2009). Host-pathogen interactions: methods and protocols. Springer
dc.relation.referencesSalwinski, Lukasz et al. (2004). ‘‘The database of interacting proteins: 2004 update’’. En: Nucleic acids research 32.suppl_1, págs. D449-D451
dc.relation.referencesSamer, Sadia et al. (2022). ‘‘Blockade of TGF-β signaling reactivates HIV-1/SIV reservoirs and immune responses in vivo’’. En: JCI insight 7.21, e162290
dc.relation.referencesSarfraz, Maliha, Sanaullah Sajid y Hayat Ullah (2024). Molecular basis of the human immunodeficiency virus, págs. 212-224. doi: 10.2174/9789815238037124010019
dc.relation.referencesSayin, Ahenk Zeynep et al. (2024). ‘‘Conformational diversity and protein–protein interfaces in drug repurposing in Ras signaling pathway’’. En: 14.1. doi: 10.1038/s41598-023- 50913-8
dc.relation.referencesSchaid, Daniel J (2010). ‘‘Genomic similarity and kernel methods I: advancements by building on mathematical and statistical foundations’’. En: Human heredity 70.2, págs. 109-131
dc.relation.referencesSchemelev, Alexandr N. et al. (2024). ‘‘Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024’’. En: 16.11. doi: 10.3390/v16111682
dc.relation.referencesSchmid, Ernst y Johannes Walter (2025). ‘‘Predictomes: A classifier-curated database of AlphaFold-modeled protein-protein interactions’’. En: Molecular Cell. Consultado el 18 de febrero de 2025. doi: 10.1016/j.molcel.2025.01.005. url: https://www. sciencedirect.com/science/article/pii/S1097276525001054
dc.relation.referencesScholkopf, Bernhard y Alexander J Smola (2018). Learning with kernels: support vector machines, regularization, optimization, and beyond. Adaptive Computation y Machine Learning series
dc.relation.referencesSchölkopf, Bernhard, Koji Tsuda y Jean-Philippe Vert (2004). Kernel methods in computational biology. MIT press
dc.relation.referencesSherman, Brad T, Richard A Lempicki et al. (2009). ‘‘Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources’’. En: Nature protocols 4.1, pág. 44
dc.relation.referencesShi Jing, Lu et al. (2015). ‘‘A review on bioinformatics enrichment analysis tools towards functional analysis of high throughput gene set data’’. En: Current Proteomics 12.1, págs. 14-27
dc.relation.referencesStepanchenko, NS, GV Novikova y IE Moshkov (2011). ‘‘Protein quantification’’. En: Russian journal of plant physiology 58.4, págs. 737-742
dc.relation.referencesStynen, Bram et al. (2012). ‘‘Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system’’. En: Microbiology and molecular biology reviews 76.2, págs. 331-382
dc.relation.referencesSubramanian, Aravind et al. (2005). ‘‘Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles’’. En: Proceedings of the National Academy of Sciences 102.43, págs. 15545-15550
dc.relation.referencesSudhakar, Padhmanand, Kathleen Machiels y Severine Vermeire (2020). ‘‘Computational Biology and Machine Learning Approaches to Study Mechanistic Microbiomehost Interactions’’
dc.relation.referencesSzklarczyk, Damian, Annika L Gable et al. (2019). ‘‘STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets’’. En: Nucleic acids research 47.D1, págs. D607-D613
dc.relation.referencesSzklarczyk, Damian, Rebecca Kirsch et al. (2023). ‘‘The STRING database in 2023: protein- -protein association networks and functional enrichment analyses for any sequenced genome of interest’’. En: Nucleic acids research 51.D1, págs. D638-D646
dc.relation.referencesThe BioGRID Interaction Database (2024). BioGRID: Biological General Repository for Interaction Datasets. https://thebiogrid.org/. Versión 4.4.243, consultado el 13 de mayo de 2024
dc.relation.referencesTorres-Godino, Isabel (2014). ‘‘“Microarrays” de ARN’’
dc.relation.referencesToxvaerd, Søren (2019). ‘‘A Prerequisite for Life’’. En: 474, págs. 48-51. doi: 10.1016/j. jtbi.2019.05.001
dc.relation.referencesUshakov, Anton V., Xenia Klimentova e Igor Vasilyev (2018). ‘‘Bi-level and Bi-objective p- Median Type Problems for Integrative Clustering: Application to Analysis of Cancer Gene-Expression and Drug-Response Data’’. En: IEEE/ACM Transactions on Computational Biology and Bioinformatics 15.1, págs. 46-59. doi: 10.1109/TCBB.2016.2622692
dc.relation.referencesVargas, José et al. (2012). ‘‘Máquinas de soporte vectorial: metodología y aplicación en R’’. En: Décimo Congreso Latinoamericano de Sociedades de Estadística
dc.relation.referencesVert, Jean-Philippe y Minoru Kanehisa (2003). ‘‘Graph-driven feature extraction from microarray data using diffusion kernels and kernel CCA’’. En: Advances in neural information processing systems, págs. 1449-1405
dc.relation.referencesVon Mering, Christian et al. (2005). ‘‘STRING: known and predicted protein--protein associations, integrated and transferred across organisms’’. En: Nucleic acids research 33.suppl_1, págs. D433-D437
dc.relation.referencesWang, Haiyue, Zaiyi Liu y Xiaoke Ma (2024). ‘‘Learning consistency and specificity of cells from single-cell multi-omic data’’. En: IEEE Journal of Biomedical and Health Informatics
dc.relation.referencesWinchester, A.M (mayo de 2020). ‘‘Genetics’’. En: Encyclopaedia Britannica
dc.relation.referencesYamanishi, Yoshihiro, J-P Vert et al. (2003). ‘‘Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis’’. En: Bioinformatics 19.suppl_1, págs. i323-i330
dc.relation.referencesYamanishi, Yoshihiro, Jean-Philippe Vert y Minoru Kanehisa (2005). ‘‘Supervised enzyme network inference from the integration of genomic data and chemical information’’. En: Bioinformatics 21.suppl_1, págs. i468-i477
dc.relation.referencesYang, Jie et al. (2024). ‘‘An End-to-end Knowledge Graph Fused Graph Neural Network for Accurate Protein-Protein Interactions Prediction’’. En: doi: 10.1109/TCBB.2024. 3486216
dc.relation.referencesZeeberg, Barry R et al. (2003). ‘‘GoMiner: a resource for biological interpretation of genomic and proteomic data’’. En: Genome biology 4.4, págs. 1-8
dc.relation.referencesZheng, Qi y Xiu-Jie Wang (2008). ‘‘GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis’’. En: Nucleic acids research 36.suppl_2, W358-W363
dc.relation.referencesZitnik, Marinka, Monica Agrawal y Jure Leskovec (2018). ‘‘Modeling polypharmacy side effects with graph convolutional networks’’. En: Bioinformatics 34.13, págs. i457-i466
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.armarcCanonical correlation analysiseng
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.decsInteracciones huésped-parásitosspa
dc.subject.decsHost-parasite interactionseng
dc.subject.decsMapas de interacción de proteínasspa
dc.subject.decsProtein interaction mapseng
dc.subject.decsGenómica -- Estadística & datos numéricosspa
dc.subject.decsGenomics -- Statistics & numerical dataeng
dc.subject.proposalInteracción proteína-proteínaspa
dc.subject.proposalInteracciones patógeno-hospederospa
dc.subject.proposalDatos genómicosspa
dc.subject.proposalKernelspa
dc.subject.proposalKCCAspa
dc.subject.proposalPatógenospa
dc.subject.proposalAprendizaje supervisadospa
dc.subject.proposalProtein-protein interactioneng
dc.subject.proposalHost–pathogen interactionseng
dc.subject.proposalGenomic dataeng
dc.subject.proposalSupervised learningeng
dc.subject.proposalSupervised learningeng
dc.subject.wikidataMedicina predictivaspa
dc.subject.wikidataPredictive medicineeng
dc.subject.wikidataAnálisis de la correlación canónicaspa
dc.subject.wikidataCanonical correlation analysiseng
dc.titleImplementación de métodos para predecir las interacciones proteína-proteína con base en datos genómicos entre humano-patógenospa
dc.title.translatedImplementation of methods to predict protein-protein interactions based on genomic data between humans and pathogenseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Implementación de métodos para predecir las interacciones proteína-proteína con base en datos genómicos entre humano-patógeno.pdf
Tamaño:
49.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: