Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis

dc.contributor.advisorCadavid Restrepo, Gloria Ester
dc.contributor.advisorSaldamando Benjumea, Clara Inés
dc.contributor.authorCastañeda Molina, Yuliana del Pilar
dc.contributor.educationalvalidatorMoreno Herrera, Claudia Ximena
dc.contributor.researchgroupMicrobiodiversidad y Bioprospecciónspa
dc.date.accessioned2022-08-26T22:04:40Z
dc.date.available2022-08-26T22:04:40Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractSpodoptera frugiperda (Lepidoptera, Noctuidae), es reconocida como una plaga polífaga primaria de cultivos de maíz (Zea mays) y arroz (Oryza sativa) en todo el continente americano y recientemente en África, Asia y Australia. En Colombia, esta polilla ha divergido en dos biotipos morfológicamente idénticos en estado de larva, pero morfológicamente diferentes en estado adulto, los cuales se han denominado con base en la asociación al alimento que consumen con mayor preferencia: biotipos de maíz (asociado a los cultivos del maíz, algodón, sorgo y caña de azúcar) y biotipo arroz (asociado a arroz y pasto). Desde hace varias décadas, se ha descrito que en los insectos, las capacidades de defensa, digestión, captación de nutrientes, incluso la degradación de compuestos tóxicos como insecticidas y endotoxinas está fuertemente influenciada por su microbiota intestinal. Se ha encontrado que en Colombia, el biotipo maíz ha desarrollado resistencia a las endotoxinas de Bacillus thuringiensis (Bt) Cry 1Ac y Cry 1Ab, por lo que la microbiota intestinal podría tener un efecto modulador en la toxicidad de las mismas. En este estudio, se llevó a cabo la caracterización de la microbiota intestinal de larvas de S. frugiperda biotipo maíz en presencia/ausencia de endotoxinas de Bt y de antibióticos para determinar el papel de la microbiota en la respuesta del insecto al Bt. Para ello se implementó el uso de métodos cultivo dependientes y cultivo independientes mediante análisis de secuenciación Sanger y NGS (Next Generation Sequence). Adicionalmente se determinó la presencia de microorganismos endosimbiontes con potencial en control biológico como Wolbachia, Arsenophonus, Microsporidia, Spiroplasma, y Cardinium, usando cebadores específicos. Los aislados bacterianos intestinales fueron identificados a partir de caracterización molecular, mediante la secuenciación de los genes RNAr 16S y girasa, previo análisis de la región intergénica ribosomal (ITS) y adicionalmente la caracterización macro y microscópica de las colonias fue realizada. Los resultados indicaron que los 15 aislamientos bacterianos pertenecen a las especies Enterococcus mundtii, Enterococcus sileciacus, Enterococcus gallinarum y Enterococcus casseliflavus. Los resultados de NGS (Illumina Miseq) reportaron que, Firmicutes y Proteobacteria fueron los filos más abundantes en las muestras; un total de 790.011 lecturas fueron analizadas y asignadas por similaridad a 2439 ASVs (Del inglés Amplicon Sequence Variant). Con relación a la presencia de endosimbiontes, se encontró una prevalencia del 100% de Arsenophonus, por métodos de PCR convencional y NGS, en todas las muestras evaluadas; sin embargo, otros simbiontes no fueron detectados en las condiciones evaluadas. En este estudio se reportó la prevalencia del género Enterococcus así como ya se ha descrito en otros estudios anteriores realizados en el mismo biotipo. Adicionalmente se encontró que posterior al ensayo con antibióticos, la diversidad de la microbiota intestinal aumentó, lo cual podría sugerir la actuación de los antibióticos sobre bacterias del género Enterococcus lo que consecuentemente permitió un aumento en la diversidad bacteriana ya que se eliminó el género más competitivo y abundante del tracto intestinal del insecto. Por otro lado, se lograron identificar los géneros Burkholderia e Ileibacterium en aquellos tratamientos con presencia de Bt, sugiriendo que estas bacterias podrían realzar la respuesta del insecto a la endotoxina. Finalmente, este es, el primer reporte del género Arsenophonus en S. frugiperda, este endosimbionte es importante en insectos ya que ha sido relacionado con la respuesta de tolerancia a insecticidas que han sido utilizados para su control. Este trabajo es una primera aproximación al conocimiento de la microbiota de S. frugiperda biotipo maíz y su dinámica en presencia de endotoxinas lo que puede ayudar a comprender su papel potencial en la respuesta del insecto al control por Bt. (Texto tomado de la fuente)spa
dc.description.abstractSpodoptera frugiperda (Lepidoptera, Noctuidae), is recognized as a polyphagous pest and primary pest of corn (Zea mays) and rice (Oryza sativa) in America and recently in Africa, Asia and Australia. In Colombia, this moth has diverged in two strains that are morphologically identical at the larvae instar but are morphologically different at adult stages. These strains have been named according to the host they preferentially consume that are the corn strain (associated to corn, cotton, sorghum and sugar cane) and the rice strain (associated to rice and pasture grasses). Decades ago, it has been described that the capacity of insects’ defense, digestion, nutrients absorption and even degradation of toxic compounds such as insecticides and endotoxins are influenced by their microbiota. It has been found that in Colombia, the corn strain has developed resistance to Bacillus thuringiensis (Bt) endotoxins Cry1Ac and Cry1Ab and gut microbiota might have a modulatory effect on the response of this insect towards these endotoxins. In this study, the characterization of the gut microbiota of S. frugiperda larvae was carried out un presence/absence of Bt endotoxins and antibiotics to determine the role that microbiota plays in the response of the insect to Bt. For that, the use of cultivate dependent and independent methods were employed by using Sanger and NGS (Next Generation Sequence) sequencing. Additionally, detection of endosymbionts was also done to identify Wolbachia, Arsenophonus, Microsporidia, Spiroplasma, and Cardinium.by using specific primers for them. Bacteria isolates obtanied from the gut were identified based on a molecular characterization by sequencing the genes RNAr 16S, girase and ITS. Also, a macroscopic and microscopic characterization of the colonies was done allowing the identification of 15 different isolates that belong to the species Enterococcus mundtii, Enterococcus sileciacus, Enterococcus gallinarum y Enterococcus casseliflavus. NGS (Illumina Miseq) results reported the presence of the phyla Firmicutes and Proteobacteria as the most abundant groups; a total of 790.011 reads grouped into 2439 ASVs according to their genetic similarities. The presence of endosymbionts analysis showed a prevalence of the genus Arsenophonus in all samples based on conventional PCR and NGS; however, other endosymbionts were not detected. In this study, the prevalence of the genus Enterococcus was demonstrated, same results have been shown in other studies made on the species. Additionally, after the expose of gut microbiota to antibiotics an increment of bacteria diversity was observed, suggesting that these antibiotics eliminated this abundant genus found in S. frugiperda gut, and thus they eliminated the most competitive bacteria genus detected in this insect. On the other hand, the genus Burkholderia and Ileibacterium were mainly found in the bioassay of bacteria and presence of Bt, meaning that these bacteria might enhance the response of this insect to the endotoxin. Finally, this is the first report of the genus Arsenophonus in S. frugiperda and this endosymbiont is important in insects since it is related to the tolerance response of insects to insecticides that have been used for pest control. This work is a first approximation to the knowledge of S. frugiperda gut bacteria corn strain and its dynamics in the presence of endotoxins, which can help to understand its potential role in the response of the insect to control by Bt.eng
dc.description.curricularareaÁrea Curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaEcología Microbianaspa
dc.format.extentxx, 142 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82152
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAdamczyk, John J, Jonathan W Holloway, Billy R Leonard, and Jerry B Graves. 1997. “Susceptibility of Fall Armyworm Collected from Different Plant Hosts to Selected.” 28(August): 21–28.spa
dc.relation.referencesAbdelhadi AA, Elarabi NI, Salim RG, Sharaf AN, Abosereh NA (2016) Identification, characterization and genetic improvement of bacteriocin producing lactic acid bacteria. Biotechnology 15(3-4):76–85. https://doi.org/10.3923/biotech.2016.76.85spa
dc.relation.referencesAdang, M. J., Crickmore, N., & Jurat-Fuentes, J. L. (2014). Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In Advances in insect physiology (Vol. 47, pp. 39-87). Academic Press.spa
dc.relation.referencesAllen, Heather K et al. 2009. “Resident Microbiota of the Gypsy Moth Midgut Harbors Antibiotic Resistance Determinants.” 28(3): 109–17.spa
dc.relation.referencesAlmeida, L. G. D., Moraes, L. A. B. D., Trigo, J. R., Omoto, C., & Consoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PloS one, 12(3), e0174754.spa
dc.relation.referencesAshley, T O M R. 1986. “Geographical Distributions and Parasitization Levels for Parasitoids of the Fall Armyworm , Spodoptera Frugiperda Author ( S ): Tom R . Ashley Published by : Florida Entomological Society September , 1986 DISTRIBUTIONS AND PARASITIZATION GEOGRAPHICAL LEVE.” 69(3): 516–24.spa
dc.relation.referencesAssefa, F., & Ayalew, D. (2019). Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. Cogent Food & Agriculture, 5(1), 1641902.spa
dc.relation.referencesBel, Y., Ferré, J., & Hernández-Martínez, P. (2020). Bacillus thuringiensis toxins: functional characterization and mechanism of action. Toxins, 12(12), 785.spa
dc.relation.referencesBrinkmann, N., Martens, R., and Tebbe, C. C. (2008). Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl. Environ. Microbiol. 74, 7189–7196. doi: 10.1128/AEM.01464-08spa
dc.relation.referencesBroderick, Nichole A et al. 2004. “Census of the Bacterial Community of the Gypsy Moth Larval Midgut by Using Culturing and Culture-Independent Methods.” 70(1): 293–300.spa
dc.relation.referencesBroderick, N. A., Raffa, K. F., & Handelsman, J. (2006). Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences, 103(41), 15196-15199.spa
dc.relation.referencesBroderick, N. A., Robinson, C. J., McMahon, M. D., Holt, J., Handelsman, J., & Raffa, K. F. (2009). Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC biology, 7(1), 1-9.spa
dc.relation.referencesBusato, Gustavo et al. 2014. “Analysis of the Molecular Structure and Diversity of Spodoptera frugiperda SYSTEMATICS , MORPHOLOGY AND PHYSIOLOGY Análise Da Estrutura E Diversidade Molecular de Populações de Spodoptera frugiperda (J . E. Smith) (Lepidoptera : Noctuidae) Associadas.”spa
dc.relation.referencesCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869spa
dc.relation.referencesCano-Calle, Daniela, Rafael Arango-Isaza, and Clara Saldamando-Benjumea. 2015. “Molecular Identification of Spodoptera frugiperda ( Lepidoptera : Noctuidae ) Corn and Rice Strains in Colombia by Using a PCR-RFLP of the Mitochondrial Gene Cytochrome Oxydase I ( COI ) and a PCR of the Gene FR ( For Rice ).”spa
dc.relation.referencesCañas-Hoyos, N., Lobo-Echeverri, T., & Saldamando-Benjumea, C. I. (2017). Chemical Composition of Female Sexual Glands of Spodoptera frugiperda 1 Corn and Rice Strains from Tolima, Colombia. Southwestern Entomologist, 42(2), 375-394.spa
dc.relation.referencesCapinera, J. L. (2002). Fall Armyworm, Spodoptera frugiperda (JE Smith) (Insecta: Lepidoptera: Noctuidae): EENY098/IN255, rev. 7/2000. EDIS, 2002(7).spa
dc.relation.referencesCaporaso, J Gregory et al. 2011. “QIIME Allows Analysis of High-Throughput Community Sequencing Data.” 7(5): 335–36.spa
dc.relation.referencesCardenas, Estrella. 1993. “ESPECIES DE TRIPS (THYSANOPTERA : THRIPIDAE) MAS COMUNES EN INVERNADEROS DE FLORES DE LA SABANA DE BOGOTA. Thrips Species (Thysanoptera Thripidae) More Common in Cut Flower Greenhouse in Bogotá Plateau .”spa
dc.relation.referencesCaruso, V., Song, X., Asquith, M., & Karstens, L. (2019). Performance of microbiome sequence inference methods in environments with varying biomass. MSystems, 4(1), e00163-18.spa
dc.relation.referencesChen, Bosheng et al. 2016. “Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis.” Nature (July): 1–14. http://dx.doi.org/10.1038/srep29505.spa
dc.relation.referencesChen, X., Peiffer, M., Tan, C. W., & Felton, G. W. (2020). Fungi from the black cutworm Agrotis ipsilon oral secretions mediate plant–insect interactions. Arthropod-Plant Interactions, 14(4), 423-432.spa
dc.relation.referencesCherif, A.; Rezgui, W.; Raddadi, N.; Daffonchio, D.; Boudabous, A. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110.Microbiol. Res. 2008, 163, 684–692.spa
dc.relation.referencesChong, J., Liu, P., Zhou, G., and Xia. J. (2020) "Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data" Nature Protocols (DOI: 10.1038/s41596-019-0264-1)spa
dc.relation.referencesCock, Matthew J W et al. 2017. “Molecular Methods to Detect Spodoptera Frugiperda in Ghana , and Implications for Monitoring the Spread of Invasive Species in Developing Countries.” (February): 1–10.spa
dc.relation.referencesCole, J R et al. 2009. “The Ribosomal Database Project : Improved Alignments and New Tools for rRNA Analysis.” 37(November 2008): 141–45.spa
dc.relation.referencesCombe, B.E.; Defaye, A.; Bozonnet, N.; Puthier, D.; Royet, J.; Leulier, F. Drosophila microbiota modulates host metabolic gene expression via IMD/NF-kappa B signaling. PLoS ONE 2014, 9, e94729.spa
dc.relation.referencesCruz-Esteban, S., Hernández-Ledesma, P., Malo, E. A., & Rojas, J. C. (2020). Cebos feromonales para la captura de Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) en cultivos de maíz adyacentes a cultivos de fresas. Acta zoológica mexicana, 36.spa
dc.relation.referencesCuellar Castro, Y. C. (2015). Análisis normativo de los cultivos transgénicos en Colombia y propuesta de un modelo agroalimentario protector de los derechos de los campesinos y consumidores.spa
dc.relation.referencesDangal, Vikash. 2014. “Characterization of Cry1F Resistance in Fall Armyworm , Spodoptera Frugiperda ( J . E . Smith ) Obtained from Puerto Rico and Florida.”spa
dc.relation.referencesDarriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. Doi:10.1038/nmeth.2109spa
dc.relation.referencesDemanèche, S., Sanguin, H., Poté, J., Navarro, E., Bernillon, D., Mavingui, P., ... & Simonet, P. (2008). Antibiotic-resistant soil bacteria in transgenic plant fields. Proceedings of the National Academy of Sciences, 105(10), 3957-3962.spa
dc.relation.referencesDeshmukh, Sharanabasappa et al. 2018. “First Report of the Fall Armyworm, Spodoptera Frugiperda (J E Smith) (Lepidoptera: Noctuidae), an Alien Invasive Pest on Maize in India.” (September).spa
dc.relation.referencesDhariwal, A., Chong, J., Habib, S., King, I., Agellon, LB., and Xia. J. (2017) "MicrobiomeAnalyst - a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data" Nucleic Acids Research 45 W180-188 (DOI: 10.1093/nar/gkx295)spa
dc.relation.referencesDillon, R J, and V M Dillon. 2004. “T HE G UT B ACTERIA OF I NSECTS : Nonpathogenic Interactions.” (98): 71–92.spa
dc.relation.referencesDubovskiy, I. M., Grizanova, E. V., Whitten, M. M., Mukherjee, K., Greig, C., Alikina, T., et al. (2016). Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence 7, 860–870.doi: 10.1080/21505594.2016.1164367spa
dc.relation.referencesDumas, Pascaline, Fabrice Legeai, Claire Lemaitre, and Erwan Scaon. 2015. “Spodoptera Frugiperda (Lepidoptera : Noctuidae ) Host-Plant Variants : Two Host Strains or Two Distinct Species ?” : 305–16.spa
dc.relation.referencesDuplouy, A., & Hornett, E. A. (2018). Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ, 6, e4629.spa
dc.relation.referencesPioneer Du Pont. Manejo de Gusano Cogollero en cultivos de Maíz.Boletín. (Internet). 2014, set. Disponible en: https://www.pioneer.com/CMRoot/international/Argentina_Intl/AGRONOMIA/MANEJO_DE_GUSANO_COGOLLERO_EN_MAIZ.pdfspa
dc.relation.referencesEcheverri florez, Fernando, Carlos Eduardo Loaiza Marin, and Magnolia del Pilar Cano Ortiz. 2004. “Reconocimiento E Identificacion de Trips Fitofagos (Thysanoptera: Thripidae) Y Depredadores (Thysanoptera: Phlaeothripidae) Asociados a Cultivos Comerciales de Aguacate.”spa
dc.relation.referencesEmery, O., Schmidt, K., & Engel, P. (2017). Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Molecular ecology, 26(9), 2576-2590.spa
dc.relation.referencesFerree, P. M., Avery, A., Azpurua, J., Wilkes, T., & Werren, J. H. (2008). A bacterium targets maternally inherited centrosomes to kill males in Nasonia. Current Biology, 18(18), 1409-1414.spa
dc.relation.referencesFrago, Enric, Marcel Dicke, and H Charles J Godfray. 2012. “Insect Symbionts as Hidden Players in Insect – Plant Interactions.” Trends in Ecology & Evolution 27(12): 705–11. http://dx.doi.org/10.1016/j.tree.2012.08.013.spa
dc.relation.referencesFraher, Marianne H, Paul W O Toole, and Eamonn M M Quigley. 2012. “Techniques Used to Characterize the Gut Microbiota : A Guide for the Clinician.” Nature Reviews Gastroenterology & Hepatology 9(6): 312–22. http://dx.doi.org/10.1038/nrgastro.2012.44.spa
dc.relation.referencesFranz, C. M., Stiles, M. E., Schleifer, K. H., & Holzapfel, W. H. (2003). Enterococci in foods—a conundrum for food safety. International journal of food microbiology, 88(2-3), 105-122.spa
dc.relation.referencesFarnsworth, C. A., M. A. Teese, G. Yuan, Y. Li, C. Scott, X. Zhang, Y. Wu, R. J. Russell, and J. G. Oakeshott. 2010. Esterase-based metabolic resistance in heliothine and spodopteran pest. J. Pestic. Sci.spa
dc.relation.referencesFunke, M., Büchler, R., Mahobia, V., Schneeberg, A., Ramm, M., & Boland, W. (2008). Rapid hydrolysis of quorum‐sensing molecules in the gut of lepidopteran larvae. ChemBioChem, 9(12), 1953-1959.spa
dc.relation.referencesGaurav S. Kandlikar ranacapa: An R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations., 2018.spa
dc.relation.referencesGomez, A. M., Yannarell, A. C., Sims, G. K., Cadavid-Restrepo, G., & Moreno Herrera, C. X. (2011). Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biology and Biochemistry, 43, 1275– 1284. https://doi.org/10.1016/j.soilbio.2011.02.018spa
dc.relation.referencesGraham, R. I., Grzywacz, D., Mushobozi, W. L., & Wilson, K. (2012). W olbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecology letters, 15(9), 993-1000.spa
dc.relation.referencesGrau, T., Vilcinskas, A., & Joop, G. (2017). Probiotic Enterococcus mundtii isolate protects the model insect Tribolium castaneum against Bacillus thuringiensis. Frontiers in microbiology, 8, 1261.spa
dc.relation.referencesHarumoto, T., Anbutsu, H., Lemaitre, B., & Fukatsu, T. (2016). Male-killing symbiont damages host’s dosage-compensated sex chromosome to induce embryonic apoptosis. Nature communications, 7(1), 1-12.spa
dc.relation.referencesHasegawa M, Kishino H, Yano T. Dating of human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol., 1985, vol. 22 (pg. 160-174)spa
dc.relation.referencesHeckel, D. G. (2020). How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Archives of insect biochemistry and physiology, 104(2), e21673.spa
dc.relation.referencesHernandez-Martinez, P.; Naseri, B.; Navarro-Cerrillo, G.; Escriche, B.; Ferre, J.; Herrero, S. Increase in midgutmicrobiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ. Microbiol. 2010,12, 2730–2737spa
dc.relation.referencesHiguita Palacio, M. F., Montoya, O. I., Saldamando, C. I., García-Bonilla, E., Junca, H., Cadavid-Restrepo, G. E., & Moreno-Herrera, C. X. (2021). Dry and Rainy Seasons Significantly Alter the Gut Microbiome Composition and Reveal a Key Enterococcus sp.(Lactobacillales: Enterococcaceae) Core Component in Spodoptera frugiperda (Lepidoptera: Noctuidae) Corn Strain From Northwestern Colombia. Journal of Insect Science, 21(6), 10.spa
dc.relation.referencesHuang, F., Qureshi, J. A., Meagher Jr, R. L., Reisig, D. D., Head, G. P., Andow, D. A., ... & Dangal, V. (2014). Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PloS one, 9(11), e112958.spa
dc.relation.referencesHuelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754-755.spa
dc.relation.referencesIbrahim, M.A.; Griko, N.; Junker, M.; Bulla, L.A. Bacillus thuringiensis: A genomics and proteomics perspective.Bioeng. Bugs 2010, 1, 31–50.spa
dc.relation.referencesInstituto Colombiano Agropecuario ICA, 2012. REsolucion 232 autorizacion al ICA para utilizar el maiz BT11*MIR162*MIR604*GA21spa
dc.relation.referencesJensen, P R, and W Fenical. 1994. “Strategies for the Discovery of Secondary Metabolites from Marine Bacteria: Ecological Perspectives.” Annual Review of Microbiology 48(1): 559–84.spa
dc.relation.referencesJohnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., ... & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature communications, 10(1), 1-11.spa
dc.relation.referencesJones, C. M., Lim, K. S., Chapman, J. W., and Bass, C. (2018). Genome-wide characterization of DNA methylation in an invasive lepidopteran pest, the cotton bollworm Helicoverpa armigera. G3 (Bethesda). 8, 779–787. doi: 10. 1534/g3.117.1112spa
dc.relation.referencesJoos, L., Beirinckx, S., Haegeman, A., Debode, J., Vandecasteele, B., Baeyen, S., & De Tender, C. (2020). Daring to be differential: metabarcoding analysis of soil and plant-related microbial communities using amplicon sequence variants and operational taxonomical units. BMC genomics, 21(1), 1-17.spa
dc.relation.referencesKaur, R., & Singh, D. (2020). MOLECULAR MARKERS A VALUABLE TOOL FOR SPECIES IDENTIFICATION OF INSECTS: A REVIEW. Ann. Entomol, 38(01-02), 01-02.spa
dc.relation.referencesKwong, W.K.; Mancenido, A.L.; Moran, N.A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 2017, 4, 170003.spa
dc.relation.referencesLarson, Z., Subramanyam, B., Zurek, L., & Herrman, T. (2008). Diversity and antibiotic resistance of enterococci associated with stored-product insects collected from feed mills. Journal of stored products research, 44(2), 198-203.spa
dc.relation.referencesLemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743.spa
dc.relation.referencesLevy, Hazel C, Alejandra Garcia-maruniak, and James E Maruniak. 2002. “STRAIN IDENTIFICATION OF SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) INSECTS AND CELL LINE: PCR-RFLP OF CYTOCHROME OXIDASE C SUBUNIT I GENE.” 85(1): 186–90.spa
dc.relation.referencesLi, S., De Mandal, S., Xu, X., & Jin, F. (2020). The Tripartite interaction of host immunity–Bacillus thuringiensis infection–gut microbiota. Toxins, 12(8), 514.spa
dc.relation.referencesLi, S., Xu, X., De Mandal, S., Shakeel, M., Hua, Y., Shoukat, R. F., & Jin, F. (2021). Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response. Environmental Pollution, 271, 116271.spa
dc.relation.referencesLiu, L., Li, Z., Luo, X., Zhang, X., Chou, S. H., Wang, J., & He, J. (2021). Which Is Stronger? A Continuing Battle Between Cry Toxins and Insects. Frontiers in microbiology, 12, 665101. https://doi.org/10.3389/fmicb.2021.665101spa
dc.relation.referencesLogin, F. H., Balmand, S., Vallier, A., Vincent-Monégat, C., Vigneron, A., Weiss-Gayet, M., ... & Heddi, A. (2011). Antimicrobial peptides keep insect endosymbionts under control. Science, 334(6054), 362-365.spa
dc.relation.referencesLópez - Edwards, Marilu et al. 1999. “Biological Differences between Five Populations of Fall Armyworm ( Lepidoptera : Noctuidae ) Collected from Corn in Mexico.” (June).spa
dc.relation.referencesLuginbill, P. (1928). The fall army worm (No. 34). US Department of Agriculture.spa
dc.relation.referencesMallet, James, and Michele Dres. 2002. “Host Races in Plant-Feeding Insects and Their Importance in Sympatric Speciation.” (October 2001): 471–92.spa
dc.relation.referencesMcLaren, Michael R., & Callahan, Benjamin J. (2021). Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4587955spa
dc.relation.referencesMason, C. J., Ray, S., Shikano, I., Peiffer, M., Jones, A. G., Luthe, D. S.,... & Felton, G. W. (2019). Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proceedings of the National Academy of Sciences, 116(32), 15991-15996.spa
dc.relation.referencesMason, C. J. (2020). Complex relationships at the intersection of insect gut microbiomes and plant defenses. Journal of Chemical Ecology, 46(8), 793-807.spa
dc.relation.referencesMereghetti, V., Chouaia, B., & Montagna, M. (2017). New insights into the microbiota of moth pests. International Journal of Molecular Sciences, 18(11), 2450.spa
dc.relation.referencesMontoya-Porras, L. M., Omar, T. C., Alzate, J. F., Moreno-Herrera, C. X., & Cadavid-Restrepo, G. E. (2018). 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Tropica, 178, 327-332.spa
dc.relation.referencesMurúa, M G, M T Vera, S Abraham, and M L Juare. 2009. “Fitness and Mating Compatibility of Spodoptera Frugiperda ( Lepidoptera : Noctuidae ) Populations from Different Host Plant Species and Regions in Argentina Fitness and Mating Compatibility of Spodoptera Frugiperda ( Lepidoptera : Noctuidae ) Populations.” (May).spa
dc.relation.referencesNagoshi, R. N. (2010). The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Annals of the Entomological Society of America, 103(2), 283-292.spa
dc.relation.referencesNagoshi, R. N. (2012). Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Annals of the Entomological Society of America, 105(2), 351-358.spa
dc.relation.referencesOliveira, N. C. D. Gut microbiota of the rice and corn strains of Spodoptera frugiperda: diversity and function (Doctoral dissertation, Universidade de São Paulo) 2021.spa
dc.relation.referencesOliveira, N. C., Rodrigues, P. A., & Cônsoli, F. L. (2021). Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. bioRxiv.spa
dc.relation.referencesOrozco-flores, Alonso A et al. 2017. “Regulation by Gut Bacteria of Immune Response , Bacillus Thuringiensis Susceptibility and Hemolin Expression in Plodia Interpunctella.” Journal of Insect Physiology 98: 275–83. http://dx.doi.org/10.1016/j.jinsphys.2017.01.020.spa
dc.relation.referencesPaddock, K.J., Pereira, A.E., Finke, D.L., Ericsson, A.C., Hibbard, B.E. and Shelby, K.S. (2021), Host resistance to Bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore. Mol Ecol, 30: 5438-5453. https://doi.org/10.1111/mec.15875spa
dc.relation.referencesPardo-Lopez, L., Soberon, M., & Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS microbiology reviews, 37(1), 3-22.spa
dc.relation.referencesPatil, C. D., Borase, H. P., Salunke, B. K., & Patil, S. V. (2013). Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Parasitology research, 112(9), 3283-3288.spa
dc.relation.referencesPaul J. McMurdie phyloseq: An R package for reproducible interactive analysis and graphics of microbiome censos data., 2013, R package version 1.19spa
dc.relation.referencesPeterson, B., Bezuidenhout, C. C., & Van den Berg, J. (2017). An overview of mechanisms of Cry toxin resistance in lepidopteran insects. Journal of Economic Entomology, 110(2), 362-377.spa
dc.relation.referencesPeyronnet, O., Vachon, V., Brousseau, R., Baines, D., Schwartz, J. L., & Laprade, R. (1997). Effect of Bacillus thuringiensis toxins on the membrane potential of lepidopteran insect midgut cells. Applied and Environmental Microbiology, 63(5), 1679-1684.spa
dc.relation.referencesProwell, Dorothy Pashley, and Margaret M C Michael. 2004. “Multilocus Genetic Analysis of Host Use , Introgression , and Speciation in Host Strains of Fall Armyworm ( Lepidoptera : Noctuidae ).” : 1034–44.spa
dc.relation.referencesQu, LY., Lou, YH., Fan, HW. et al. Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens . Symbiosis 61, 47–53 (2013). https://doi.org/10.1007/s13199-013-0256-9spa
dc.relation.referencesRahman, M., Glatz, R., Roush, R., and Schmidt, O. (2011). Developmental penalties associated with inducible tolerance in Helicoverpa armigera to insecticidal toxins from Bacillus thuringiensis. Appl. Environ. Microbiol. 77, 1443–1448.doi: 10.1128/AEM.01467-10spa
dc.relation.referencesRambaut, A. (2010) FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/spa
dc.relation.referencesRao, X.J.; Yu, X.Q. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression inthe tobacco hornwormManduca sexta.Dev. Comp. Immunol.2010,34, 1119–1128spa
dc.relation.referencesRaymann, K., Shaffer, Z., & Moran, N. A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS biology, 15(3), e2001861.spa
dc.relation.referencesRaymond, B., Johnston, P. R., Wright, D. J., Ellis, R. J., Crickmore, N., & Bonsall, M. B. (2009). A mid‐gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environmental microbiology, 11(10), 2556-2563.spa
dc.relation.referencesRazze, J. M., Mason, C. E., & Pizzolato, T. D. (2011). Feeding behavior of neonate Ostrinia nubilalis (Lepidoptera: Crambidae) on Cry1Ab Bt corn: Implications for resistance management. Journal of economic entomology, 104(3), 806-813.spa
dc.relation.referencesRiesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet., 38, 525-552.spa
dc.relation.referencesRíos-Díez, J. D., Siegfried, B., & Saldamando-Benjumea, C. I. (2012). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to Cry1Ab and Cry1Ac entotoxins of Bacillus thuringiensis. Southwestern Entomologist, 37(3), 281-293.spa
dc.relation.referencesRiparbelli, M. G., Giordano, R., Ueyama, M., & Callaini, G. (2012). Wolbachia-mediated male killing is associated with defective chromatin remodeling. PloS one, 7(1), e30045.spa
dc.relation.referencesRonquist, F., M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M.A. Suchard, and J.P. Huelsenbeck. 2012. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61:539-542.spa
dc.relation.referencesRosero, D. A., Gutiérrez, L. A., Cienfuegos, A. V., Jaramillo, L. M., & Correa, M. M. (2010). Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. Rev Colomb Entomol, 36, 260-263.spa
dc.relation.referencesSalinas-Hernandez, H., & Saldamando-Benjumea, C. I. (2011). Haplotype identification within Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) corn and rice strains from Colombia. Neotropical Entomology, 40(4), 421-430.spa
dc.relation.referencesSarangi, Aditya N, Amit Goel, and Rakesh Aggarwal. 2019. “Methods for Studying Gut Microbiota :” Journal of Clinical and Experimental Hepatology 9(1): 62–73. https://doi.org/10.1016/j.jceh.2018.04.016.spa
dc.relation.referencesSchnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., & Dean, D. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and molecular biology reviews, 62(3), 775-806.spa
dc.relation.referencesShao, Y.Q.; Arias-Cordero, E.; Guo, H.J.; Bartram, S.; Boland, W. In Vivo Pyro-SIP Assessing Active GutMicrobiota of the Cotton Leafworm, Spodoptera littoralis.PLoS ONE2014,9, e85948spa
dc.relation.referencesShao, Y.; Chen, B.; Sun, C.; Ishida, K.; Hertweck, C.; Boland, W. Symbiont-derived antimicrobials contributeto the control of the lepidopteran gut microbiota.Cell Chem. Biol.2017,24, 66–75spa
dc.relation.referencesShi, Weibing, Ryan Syrenne, Jian-zhong Sun, and Joshua S Yuan. 2010. “Molecular Approaches to Study the Insect Gut Symbiotic Microbiota at the ‘ Omics ’ Age.” : 199–219.spa
dc.relation.referencesSparks, A. N. (1979). Fall Armyworm Symposium: A review of the biology of the fall armyworm. Florida Entomologist, 62(2), 82-87.spa
dc.relation.referencesStorelli, G.; Defaye, A.; Erkosar, B.; Hols, P.; Royet, J.; Leulier, F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab.2011, 14, 403–414spa
dc.relation.referencesSweby, D. L., Martin, L. A., Govender, S., Conlong, D. E., & Rutherford, R. S. (2010). The presence of Wolbachia in Eldana saccharina Walker (Lepidoptera: Pyralidae): implications for biological control. In Proc S Afr Sug Technol Ass (Vol. 83, pp. 257-261).spa
dc.relation.referencesTabashnik, B., Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35, 926–935 (2017). https://doi.org/10.1038/nbt.3974spa
dc.relation.referencesTalaei-hassanloui, Reza, Raziyeh Bakhshaei, Vahid Hosseininaveh, and Ayda Khorramnezhad. 2014. “Effect of Midgut Proteolytic Activity on Susceptibility of Lepidopteran Larvae to Bacillus Thuringiensis Subsp . Kurstaki.” 4(January): 4–9.spa
dc.relation.referencesTang, X.; Freitak, D.; Vogel, H.; Ping, L.; Shao, Y.; Cordero, E.A.; Andersen, G.; Westermann, M.; Heckel, D.G.;Boland, W.; et al. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 2012, 7, e36978spa
dc.relation.referencesTavaré S. Miura RM. Some probabilistic and statistical problems in the analysis of DNA sequences, Lectures on mathematics in the life sciences, 1986, vol. Volume 17 Providence (RI)American Mathematical Society(pg. 57-86)spa
dc.relation.referencesTetreau, G., Grizard, S., Patil, C. D., Tran, F. H., Stalinski, R., Laporte, F., & Moro, C. V. (2018). Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasites & vectors, 11(1), 1-12.spa
dc.relation.referencesThakur A, Dhammi P, Saini HS, Kaur S. Pathogenicity of bacteria isolated from gut of Spodoptera litura (Lepidoptera: Noctuidae) and fitness costs of insect associated with consumption of bacteria. J Invertebr Pathol. 2015 May;127:38-46. doi: 10.1016/j.jip.2015.02.007. Epub 2015 Feb 25. PMID: 25725116.spa
dc.relation.referencesThakur, A.; Dhammi, P.; Saini, H.S.; Kaur, S. Effect of antibiotic on survival and development of Spodoptera litura (Lepidoptera: Noctuidae) and its gut microbial diversity. Bull. Entomol. Res. 2016, 106, 387–394.spa
dc.relation.referencesTORRES, L., & COTES, A. (2005). Efecto de la crioconservación sobre la viabilidad y actividad biocontroladora de Nomuraea rileyi contra Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista Colombiana de Entomología, 31(2), 133-138.spa
dc.relation.referencesVan Rie, J. Bacillus thuringiensis and its use in transgenic insect control technologies. Int. J. Med. Microbiol.2000, 290, 463–469.spa
dc.relation.referencesvan Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. 63(1):39 –59. https://doi.org/10.1007/s10526-017-9801-4spa
dc.relation.referencesVásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., & Olofsson, T. C. (2012). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PloS one, 7(3), e33188.spa
dc.relation.referencesVélez-arango, A N A María et al. 2008. “( Lepidoptera : Noctuidae ) Mediante Marcadores Mitocondriales Y Nucleares.” 34(63): 145–50.spa
dc.relation.referencesVisweshwar, R., Sharma, H. C., Akbar, S. M. D., & Sreeramulu, K. (2015). Elimination of gut microbes with antibiotics confers resistance to Bacillus thuringiensis toxin proteins in Helicoverpa armigera (Hubner). Applied biochemistry and biotechnology, 177(8), 1621-1637.spa
dc.relation.referencesVivero, Rafael José, Natalia Gil Jaramillo, Gloria Cadavid-restrepo, and Sandra I Uribe Soto. 2016. “Structural Differences in Gut Bacteria Communities in Developmental Stages of Natural Populations of Lutzomyia Evansi from Colombia â€TM S Caribbean Coast.” Parasites & Vectors: 1–20. http://dx.doi.org/10.1186/s13071-016-1766-0.spa
dc.relation.referencesVries, Egbert J De, Gerrit Jacobs, and Johannes A J Breeuwer. 2011. “Growth and Transmission of Gut Bacteria in the Western Flower Thrips , Frankliniella Occidentalis.” 137(2001): 129–37.spa
dc.relation.referencesWang, L. T., Lee, F. L., Tai, C. J., & Kasai, H. (2007). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. International journal of systematic and evolutionary microbiology, 57(8), 1846-1850.spa
dc.relation.referencesWang, Q.; Ren, M.; Liu, X.; Xia, H.; Chen, K. Peptidoglycan recognition proteins in insect immunity.Mol. Immunol.2019,106, 69–76spa
dc.relation.referencesYamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and environmental microbiology, 61(3), 1104-1109.spa
dc.relation.referencesZhu, Y. C., Kramer, K. J., Oppert, B., & Dowdy, A. K. (2000). cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins. Insect Biochemistry and Molecular Biology, 30(3), 215-224spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembMaíz - Enfermedades y plagas
dc.subject.proposalSpodoptera frugiperda
dc.subject.proposalBiotipo maízspa
dc.subject.proposalEndotoxinas BTspa
dc.subject.proposalMicrobiota intestinalspa
dc.subject.proposalResistenciaspa
dc.subject.proposalCorn Straineng
dc.subject.proposalBt toxinseng
dc.subject.proposalGut microbiotaeng
dc.subject.proposalResistanceeng
dc.subject.proposalArsenophonus
dc.titleEvaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensisspa
dc.title.translatedEvaluation of Spodoptera frugiperda (corn strain) gut microbiota in presence of Bacillus thuringiensis endotoxinseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCódigo QUIPU: 2020100134spa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033687052_2021.pdf
Tamaño:
4.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: