Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)

dc.contributor.advisorBarreto Hernández, Emiliano
dc.contributor.advisorReguero Reza, María Teresa Jesús
dc.contributor.authorCuello Mejia, Mishelle
dc.contributor.researchgroupGrupo de Bioinformáticaspa
dc.contributor.researchgroupGrupo de Epidemiología Molecularspa
dc.date.accessioned2023-07-07T13:55:45Z
dc.date.available2023-07-07T13:55:45Z
dc.date.issued2022-10-07
dc.descriptionilustraciones, fotografías, mapasspa
dc.description.abstractPseudomonas aeruginosa es uno de los principales microorganismos causantes de Infecciones Asociadas a la Atención en Salud, importante en el contexto epidemiológico actual debido a la emergencia de resistencia a los carbapenémicos. Teniendo en cuenta este planteamiento, el objetivo general del estudio consistió en realizar el seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de P. aeruginosa mediante secuenciación de genoma completo (WGS). Para ello, se planteó un estudio prospectivo, descriptivo en una institución hospitalaria de tercer nivel de complejidad en Bogotá-Colombia, durante los años 2019 y 2020; se analizaron aislamientos clínicos de P. aeruginosa provenientes de pacientes internados en los servicios de UCI y hospitalización. Se obtuvieron 43 aislamientos provenientes de 32 pacientes, secuenciados utilizando las plataformas Illumina y Oxford Nanopore. En cuanto a los genomas analizados, se anotaron 95 genes diferentes mediadores de resistencia, encontrándose la presencia del gen blaKPC-3, este es el segundo reporte de blaKPC-3 en P. aeruginosa en Colombia. Se detectó la presencia 14 secuencio-tipos (ST), siendo el ST111 el más frecuente, adicionalmente se identificaron 7 nuevos ST que a la fecha no han sido reportados. A partir de un árbol de SNP (Single Nucleotide Polymorphism), se evidenció la presencia de 3 grupos clonales. En conclusión, la investigación epidemiológica y genómica combinada permitió identificar las variaciones intrapaciente a nivel de perfiles genómicos de resistencia y la diversidad genética de los aislamientos de P. aeruginosa, lo cual posibilitó establecer posibles rutas de transmisión entre pacientes vinculados por proximidad en periodos de tiempo y espacio. (Texto tomado de la fuente)spa
dc.description.abstractPseudomonas aeruginosa is one of the main microorganisms that cause healthcare-associated infections (HAIs), important in the current epidemiological context due to the emergence of resistance to carbapenems. Taking this into consideration, the general objective of the study was to perform the epidemiological tracing of the genomic profiles of antibiotic resistance in clinical isolates of P. aeruginosa using Whole Genome Sequencing (WGS). For this, a prospective and descriptive study was proposed in a third level hospital in Bogotá-Colombia, during 2019 and 2020; clinical isolates of P. aeruginosa from patients of ICU and hospitalization services were analyzed. 43 isolates from 32 patients were obtained and sequenced using the Illumina and Oxford Nanopore platforms. Regarding the analyzed genomes, 95 different resistance mediator genes were annotated, finding the blaKPC-3 gene which is the second report of blaKPC-3 in P. aeruginosa in Colombia. The presence of 14 sequence-types (ST) were identified, being the ST111 the most frequent; in addition, 7 new STs that have not been previously reported were identified in this study. From a SNP (Single Nucleotide Polymorphism) tree, the presence of 3 clonal groups were evidenced. In conclusion, the epidemiological and genomic research allowed to identify intra-patient variations of the genomic resistance profiles and the genetic diversity of the P. aeruginosa isolates, leading to establish possible routes of transmission between patients linked by proximity in periods of time and space.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaBiología molecular de agentes infecciososspa
dc.format.extent124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84156
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAbril D, Bravo-Ojeda J, García J, Leal -Castro A, Saavedra-Trujillo C, Madroñero J, Bustos R, Márquez-Ortiz R, Corredor-Rozo Z, Vanegas-Gómez N, E.-P. J. (2022). Nuevas plataformas de movilización de blaKPC-2 y blaKPC-3 en aislamientos clínicos de Pseudomonas aeruginosa ST111 y ST235 de instituciones de Bogotá. XIII Encuentro Nacional - III Encuentro Latinoaméricano de Investigación En Enfermedades Infecciosas.spa
dc.relation.referencesAdwan, G., & Omar, G. (2021). Phenotypic and molecular characterization of fluoroquinolone resistant Pseudomonas aeruginosa isolates in Palestine. Brazilian Journal of Biology = Revista Brasleira de Biologia, 82. https://doi.org/10.1590/1519-6984.239868spa
dc.relation.referencesAkpaka, P. E., Swanston, W. H., Ihemere, H. N., Correa, A., Torres, J. A., Tafur, J. D., Montealegre, M. C., Quinn, J. P., & Villegas, M. V. (2009). Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. Journal of Clinical Microbiology, 47(8), 2670–2671. https://doi.org/10.1128/JCM.00362-09spa
dc.relation.referencesAlós, J.-I. (2015). Resistencia bacteriana a los antibióticos: una crisis global Antibiotic resistance: A global crisis. Enferm Infecc Microbiol Clin, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004spa
dc.relation.referencesAsociación Colombiana de Infectología Capítulo central. (2021). Documento de actualización de criterios de notificación de Infecciones Asociadas a la Atención en Salud (IAAS) al sistema de vigilancia epidemiológica en Bogotá D.C.spa
dc.relation.referencesAzam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today, 24(1), 350–359. https://doi.org/10.1016/J.DRUDIS.2018.07.003spa
dc.relation.referencesBalabanova, L., Shkryl, Y., Slepchenko, L., Cheraneva, D., Podvolotskaya, A., Bakunina, I., Nedashkovskaya, O., Son, O., & Tekutyeva, L. (2020). Genomic Features of a Food-Derived Pseudomonas aeruginosa Strain PAEM and Biofilm-Associated Gene Expression under a Marine Bacterial α-Galactosidase. International Journal of Molecular Sciences, 21(20), 1–25. https://doi.org/10.3390/IJMS21207666spa
dc.relation.referencesBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021spa
dc.relation.referencesBerrazeg, M., Jeannot, K., Ntsogo Enguéné, V. Y., Broutin, I., Loeffert, S., Fournier, D., & Plésiat, P. (2015). Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins.spa
dc.relation.referencesBisht, K., Baishya, J., & Wakeman, C. A. (2020). Pseudomonas aeruginosa polymicrobial interactions during lung infection. Current Opinion in Microbiology, 53, 1–8. https://doi.org/10.1016/J.MIB.2020.01.014spa
dc.relation.referencesBlanc, D. S., Magalhães, B., Koenig, I., Senn, L., & Grandbastien, B. (2020). Comparison of Whole Genome (wg-) and Core Genome (cg-) MLST (BioNumericsTM) Versus SNP Variant Calling for Epidemiological Investigation of Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 1729. https://doi.org/10.3389/FMICB.2020.01729/FULLspa
dc.relation.referencesBotelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44, 100640. https://doi.org/10.1016/J.DRUP.2019.07.002spa
dc.relation.referencesBouglé, A., Tuffet, S., Federici, L., Leone, M., Monsel, A., Dessalle, T., Amour, J., Dahyot-Fizelier, C., Barbier, F., Luyt, C.-E., Langeron, O., Cholley, B., Pottecher, J., Hissem, T., Lefrant, J.-Y., Veber, B., Legrand, M., Demoule, A., Kalfon, P., … Soussi, N. (2022). Comparison of 8 versus 15 days of antibiotic therapy for Pseudomonas aeruginosa ventilator-associated pneumonia in adults: a randomized, controlled, open-label trial. Intensive Care Medicine, 48(7). https://doi.org/10.1007/S00134-022-06690-5spa
dc.relation.referencesBoukerb, A. M., Simon, M., Pernet, E., Jouault, A., Portier, E., Persyn, E., Bouffartigues, E., Bazire, A., Chevalier, S., Feuilloley, M. G. J., Lesouhaitier, O., Caillon, J., & Dufour, A. (2020). Draft Genome Sequences of Four Pseudomonas aeruginosa Clinical Strains with Various Biofilm Phenotypes. Microbiology Resource Announcements, 9(1). https://doi.org/10.1128/MRA.01286-19spa
dc.relation.referencesBrinkman, F. S. L., Winsor, G. L., Done, R. E., Filloux, A., Francis, V. I., Goldberg, J. B., Greenberg, E. P., Han, K., Hancock, R. E. W., Haney, C. H., Häußler, S., Klockgether, J., Lamont, I. L., Levesque, R. C., Lory, S., Nikel, P. I., Porter, S. L., Scurlock, M. W., Schweizer, H. P., … Welch, M. (2021). The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Advances in Microbial Physiology, 79, 25–88. https://doi.org/10.1016/BS.AMPBS.2021.07.001spa
dc.relation.referencesCantón, R., Gijón, D., & Ruiz-Garbajosa, P. (2020). Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Current Opinion in Critical Care, 26(5), 433–441. https://doi.org/10.1097/MCC.0000000000000755spa
dc.relation.referencesChevalier, S., Bouffartigues, E., Bodilis, J., Maillot, O., Lesouhaitier, O., Feuilloley, M. G. J., Orange, N., Dufour, A., & Cornelis, P. (2017). Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiology Reviews, 41(5), 698–722. https://doi.org/10.1093/FEMSRE/FUX020spa
dc.relation.referencesChoudhury, M. A., Sidjabat, H. E., Zowawi, H. M., Marsh PhD, N., Larsen, E., Runnegar PhD, N., Paterson, D. L., McMillan, D. J., & Rickard, C. M. (2019). Skin colonization at peripheral intravenous catheter insertion sites increases the risk of catheter colonization and infection. American Journal of Infection Control, 47(12), 1484–1488. https://doi.org/10.1016/J.AJIC.2019.06.002spa
dc.relation.referencesChristaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/S00239-019-09914-3spa
dc.relation.referencesCicek, A. Ç., Ertürk, A., Ejder, N., Rakici, E., Kostakoğlu, U., Yıldız, İ. E., Özyurt, S., & Sönmez, E. (2021). Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. Infection and Drug Resistance, 14, 1517–1526. https://doi.org/10.2147/IDR.S299742spa
dc.relation.referencesColque, C. A., Orio, A. G. albarracín, Tomatis, P. E., Dotta, G., Moreno, D. M., Hedemann, L. G., Hickman, R. A., Sommer, L. M., Feliziani, S., Moyano, A. J., Bonomo, R. A., Johansen, H. K., Molin, S., Vila, A. J., & Smania, A. M. (2022). Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a Cystic Fibrosis Patient Treated with β-Lactams. MBio. https://doi.org/10.1128/MBIO.01663-22spa
dc.relation.referencesCorrea, A., Del Campo, R., Perenguez, M., Blanco, V. M., Rodríguez-Baños, M., Perez, F., Maya, J. J., Rojas, L., Cantón, R., Arias, C. A., & Villegas, M. V. (2015b). Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia. Antimicrobial Agents and Chemotherapy, 59(4), 2421. https://doi.org/10.1128/AAC.03926-14spa
dc.relation.referencesCuzon, G., Naas, T., & Nordmann, P. (2011). Functional characterization of Tn4401, a Tn3-based transposon involved in bla KPC gene mobilization. Antimicrobial Agents and Chemotherapy, 55(11), 5370–5373. https://doi.org/10.1128/AAC.05202-11/ASSET/8C7C3BCE-2C69-4925-A208-D347394DAC3B/ASSETS/GRAPHIC/ZAC9991003010003.JPEGspa
dc.relation.referencesDai, X., Zhou, D., Xiong, W., Feng, J., Luo, W., Luo, G., Wang, H., Sun, F., & Zhou, X. (2016). The IncP-6 plasmid p10265-KPC from Pseudomonas aeruginosa carries a novel ΔISEc33-associated blaKPC-2 gene cluster. Frontiers in Microbiology, 7(MAR), 310. https://doi.org/10.3389/FMICB.2016.00310/BIBTEXspa
dc.relation.referencesDe Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEGspa
dc.relation.referencesDe Sousa, T., Hébraud, M., Enes Dapkevicius, M. L. N., Maltez, L., Pereira, J. E., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2021). Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/IJMS222312892spa
dc.relation.referencesDel Barrio-Tofiño, E., López-Causapé, C., & Oliver, A. (2020). Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. International Journal of Antimicrobial Agents, 56(6),spa
dc.relation.referencesDeshpande, R., & Zou, C. (2020). Pseudomonas Aeruginosa Induced Cell Death in Acute Lung Injury and Acute Respiratory Distress Syndrome. International Journal of Molecular Sciences, 21(15), 1–17. https://doi.org/10.3390/IJMS21155356spa
dc.relation.referencesDeurenberg, R. H., Bathoorn, E., Chlebowicz, M. A., Couto, N., Ferdous, M., García-Cobos, S., Kooistra-Smid, A. M. D., Raangs, E. C., Rosema, S., Veloo, A. C. M., Zhou, K., Friedrich, A. W., & Rossen, J. W. A. (2017). Application of next generation sequencing in clinical microbiology and infection prevention. Journal of Biotechnology, 243, 16–24. https://doi.org/10.1016/J.JBIOTEC.2016.12.022spa
dc.relation.referencesEstepa, V., Rojo-Bezares, B., Torres, C., & Sáenz, Y. (2014). Faecal carriage of Pseudomonas aeruginosa in healthy humans: antimicrobial susceptibility and global genetic lineages. FEMS Microbiology Ecology, 89(1), 15–19. https://doi.org/10.1111/1574-6941.12301spa
dc.relation.referencesFabre, V., Amoah, J., Cosgrove, S. E., & Tamma, P. D. (2019). Antibiotic Therapy for Pseudomonas aeruginosa Bloodstream Infections: How Long Is Long Enough? Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 69(11), 2011–2014. https://doi.org/10.1093/CID/CIZ223spa
dc.relation.referencesFerreiro, J. L. L., Otero, J. Á., Rivo, A. S., González, L. G., Conde, I. R., Soneira, M. F., García, J. P., & de la Fuente Aguado, J. (2021). Outpatient therapy with piperacillin/tazobactam using elastomeric pumps in patients with Pseudomonas aeruginosa infection. Scientific Reports, 11(1), 1–4. https://doi.org/10.1038/s41598-021-88179-7spa
dc.relation.referencesFujiwara, M., Yamasaki, S., Morita, Y., & Nishino, K. (2022). Evaluation of efflux pump inhibitors of MexAB- or MexXY-OprM in Pseudomonas aeruginosa using nucleic acid dyes. Journal of Infection and Chemotherapy, 28(5), 595–601. https://doi.org/10.1016/J.JIAC.2022.01.003spa
dc.relation.referencesGaletti, R., Andrade, L. N., Varani, A. M., & Darini, A. L. C. (2019). A Phage-Like Plasmid Carrying blaKPC-2 Gene in Carbapenem-Resistant Pseudomonas aeruginosa. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/FMICB.2019.00572spa
dc.relation.referencesGarcía-Betancur, J. C., Appel, T. M., Esparza, G., Gales, A. C., Levy-Hara, G., Cornistein, W., Vega, S., Nuñez, D., Cuellar, L., Bavestrello, L., Castañeda-Méndez, P. F., Villalobos-Vindas, J. M., & Villegas, M. V. (2021). Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Review of Anti-Infective Therapy, 19(2), 197–213. https://doi.org/10.1080/14787210.2020.1813023spa
dc.relation.referencesGe, C., Wei, Z., Jiang, Y., Shen, P., Yu, Y., & Li, L. (2011). Identification of KPC-2-producing Pseudomonas aeruginosa isolates in China. The Journal of Antimicrobial Chemotherapy, 66(5), 1184–1186. https://doi.org/10.1093/JAC/DKR060spa
dc.relation.referencesGerver, S. M., Nsonwu, O., Thelwall, S., Brown, C. S., & Hope, R. (2022). Trends in rates of incidence, fatality and antimicrobial resistance among isolates of Pseudomonas spp. causing bloodstream infections in England between 2009 and 2018: results from a national voluntary surveillance scheme. Journal of Hospital Infection, 120,spa
dc.relation.referencesGómez, J., García-Vázquez, E., & Hernández-Torres, A. (2015). Los betalactámicos en la práctica clínica. Rev Esp Quimioter, 28(1), 1–9.spa
dc.relation.referencesGu, W., Miller, S., & Chiu, C. Y. (2019). Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annual Review of Pathology, 14, 319–338. https://doi.org/10.1146/ANNUREV-PATHMECHDIS-012418-012751spa
dc.relation.referencesGudiol, C., Albasanz-Puig, A., Laporte-Amargós, J., Pallarès, N., Mussetti, A., Ruiz-Camps, I., Puerta-Alcalde, P., Abdala, E., Oltolini, C., Akova, M., Montejo, M., Mikulska, M., Martín-Dávila, P., Herrera, F., Gasch, O., Drgona, L., Paz Morales, H., Brunel, A. S., García, E., … Sangro Del Alcázar, P. (2020). Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 64(4). https://doi.org/10.1128/AAC.02494-19spa
dc.relation.referencesGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England), 29(8), 1072–1075. https://doi.org/10.1093/BIOINFORMATICS/BTT086spa
dc.relation.referencesHadfield, J., Croucher, N. J., Goater, R. J., Abudahab, K., Aanensen, D. M., & Harris, S. R. (2018). Phandango: an interactive viewer for bacterial population genomics. Bioinformatics (Oxford, England), 34(2), 292–293. https://doi.org/10.1093/BIOINFORMATICS/BTX610spa
dc.relation.referencesHagemann, J. B., Pfennigwerth, N., Gatermann, S. G., von Baum, H., & Essig, A. (2018). KPC-2 carbapenemase-producing Pseudomonas aeruginosa reaching Germany. The Journal of Antimicrobial Chemotherapy, 73(7), 1812–1814. https://doi.org/10.1093/JAC/DKY105spa
dc.relation.referencesHassaine, H., Morghad, T., Bellifa, S., Lachachi, M., Kara-Terki, I., M’Hamedi, I., & Meziani, Z. (2019). In Vitro Inhibition Assay of Pseudomonas Aeruginosa Biofilm Formation on Urinary Catheter. Journal of Infection and Public Health, 12(1), 122. https://doi.org/10.1016/J.JIPH.2018.10.058spa
dc.relation.referencesHernández, M., Quijada, N. M., Rodríguez-Lázaro, D., & Eiros, J. M. (2020). Aplicación de la secuenciación masiva y la bioinformática al diagnóstico microbiológico clínico. Revista Argentina de Microbiología, 52(2), 150–161. https://doi.org/10.1016/J.RAM.2019.06.003spa
dc.relation.referencesHorcajada, J. P., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., Benito, N., & Grau, S. (2019). Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clinical Microbiology Reviews, 32(4), 1–52. https://doi.org/10.1128/CMR.00031-19spa
dc.relation.referencesHuemer, M., Shambat, S. M., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/EMBR.202051034spa
dc.relation.referencesHurley, J. C. (2019). Worldwide variation in Pseudomonas associated ventilator associated pneumonia. A meta-regression. Journal of Critical Care, 51, 88–93. https://doi.org/10.1016/j.jcrc.2019.02.001spa
dc.relation.referencesHyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11(1), 1–11. https://doi.org/10.1186/1471-2105-11-119/TABLES/5spa
dc.relation.referencesIllumina. (2020). Illumina DNA Prep Reference Guide Consumable. In Illumina (Issue June). https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/illumina_prep/illumina-dna-prep-reference-guide-1000000025416-09.pdfspa
dc.relation.referencesInstituto Nacional de Salud. (2021). Grupo de microbiología, Vigilancia de resistencia antimicrobia. In Boletín epidemiológico semanal. https://doi.org/10.33610/23576189.2022.03spa
dc.relation.referencesJain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2017). High-throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. BioRxiv, 225342. https://doi.org/10.1101/225342spa
dc.relation.referencesJiménez Pearson, M. A., Galas, M., Corso, A., Hormazábal, J. C., Duarte Valderrama, C., Salgado Marcano, N., Ramón-Pardo, P., & Melano, R. G. (2019). Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Rev Panam Salud Publica;43, Ago. 2019, 1–8. https://doi.org/10.26633/RPSP.2019.65spa
dc.relation.referencesJuarez, P., Broutin, I., Bordi, C., Plésiat, P., & Llanes, C. (2018). Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 62(5). https://doi.org/10.1128/AAC.02445-17spa
dc.relation.referencesJune, C. M., Vallier, B. C., Bonomo, R. A., Leonard, D. A., & Powers, R. A. (2014). Structural origins of oxacillinase specificity in class D β-lactamases. Antimicrobial Agents and Chemotherapy, 58(1), 333–341. https://doi.org/10.1128/AAC.01483-13spa
dc.relation.referencesKlockgether, J., Cramer, N., Wiehlmann, L., Davenport, C. F., & Tümmler, B. (2011). Pseudomonas aeruginosa Genomic Structure and Diversity. Frontiers in Microbiology, 0(JULY), 150. https://doi.org/10.3389/FMICB.2011.00150spa
dc.relation.referencesKolbe, D. L., & Eddy, S. R. (2011). Fast filtering for RNA homology search. Bioinformatics, 27(22), 3102–3109. https://doi.org/10.1093/BIOINFORMATICS/BTR545spa
dc.relation.referencesKrawczyk, P. S., Lipinski, L., & Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6), e35. https://doi.org/10.1093/NAR/GKX1321spa
dc.relation.referencesKumar, K. R., Cowley, M. J., & Davis, R. L. (2019). Next-Generation Sequencing and Emerging Technologies. Seminars in Thrombosis and Hemostasis, 45(7), 661–673. https://doi.org/10.1055/S-0039-1688446spa
dc.relation.referencesLagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H. H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100–3108. https://doi.org/10.1093/NAR/GKM160spa
dc.relation.referencesLangendonk, R. F., Neill, D. R., & Fothergill, J. L. (2021). The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Frontiers in Cellular and Infection Microbiology, 11, 307. https://doi.org/10.3389/FCIMB.2021.665759/BIBTEXspa
dc.relation.referencesLaslett, D., & Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research, 32(1), 11–16. https://doi.org/10.1093/NAR/GKH152spa
dc.relation.referencesLetunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/NAR/GKAB301spa
dc.relation.referencesLi, Z., Cai, Z., Cai, Z., Zhang, Y., Fu, T., Jin, Y., Cheng, Z., Jin, S., Wu, W., Yang, L., & Bai, F. (2020). Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. Journal of Antimicrobial Chemotherapy, 75(6), 1443–1452. https://doi.org/10.1093/JAC/DKAA063spa
dc.relation.referencesLister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582–610. https://doi.org/10.1128/CMR.00040-09/ASSET/48C39C97-08B3-4013-BC8C-294A69C85D08/ASSETS/GRAPHIC/ZCM0040922970008.JPEGspa
dc.relation.referencesLiu, M., BZ D, Zeng W, Cheng X, Tao CM, M Kang, & W-X. Jia. (2008). Research on the distribution of OXA-50 gene in carbapenems-resistant Pseudomonas aeruginosas. Chinese Journal of Antibiotics , 33, 733–735. https://www.researchgate.net/publication/289023594_Research_on_the_distribution_of_OXA-50_gene_in_carbapenems-resistant_Pseudomonas_aeruginosaspa
dc.relation.referencesLoyola-Cruz, M. Á., Durán-Manuel, E. M., Cruz-Cruz, C., Marquez-Valdelamar, L. M., Bravata-Alcantara, J. C., Cortés-Ortíz, I. A., Cureño-Díaz, M. A., Ibáñez-Cervantes, G., Fernández-Sánchez, V., Castro-Escarpulli, G., & Bello-López, J. M. (2022). ESKAPE bacteria characterization reveals the presence of Acinetobacter baumannii and Pseudomonas aeruginosa outbreaks in COVID-19/VAP patients. American Journal of Infection Control. https://doi.org/10.1016/J.AJIC.2022.08.012spa
dc.relation.referencesLugo, L., & Barreto- Hernández, E. (2021). A Recurrent Neural Network approach for whole genome bacteria identification. Https://Doi.Org/10.1080/08839514.2021.1922842, 35(9), 642–656. https://doi.org/10.1080/08839514.2021.1922842spa
dc.relation.referencesMadaha, E. L., Mienie, C., Gonsu, H. K., Bughe, R. N., Fonkoua, M. C., Mbacham, W. F., Alayande, K. A., Bezuidenhout, C. C., & Ateba, C. N. (2020). Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human broncho-alveolar lavage, Yaoundé, Cameroon. PLOS ONE, 15(9), e0238390. https://doi.org/10.1371/JOURNAL.PONE.0238390spa
dc.relation.referencesMcArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., Bhullar, K., Canova, M. J., De Pascale, G., Ejim, L., Kalan, L., King, A. M., Koteva, K., Morar, M., Mulvey, M. R., O’Brien, J. S., Pawlowski, A. C., Piddock, L. J. V., Spanogiannopoulos, P., … Wright, G. D. (2013). The Comprehensive Antibiotic Resistance Database. Antimicrobial Agents and Chemotherapy, 57(7), 3348.spa
dc.relation.referencesMielko, K. A., Jabłoński, S. J., Milczewska, J., Sands, D., Łukaszewicz, M., & Młynarz, P. (2019). Metabolomic studies of Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 35(11), 1–11. https://doi.org/10.1007/s11274-019-2739-1spa
dc.relation.referencesMinisterio de Salud y Protección Social. (n.d.). Guía Técnica: Buenas prácticas para la seguridad del paciente en la Atención en Salud. Retrieved February 15, 2022, from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/CA/Detectar-Infecciones.pdfspa
dc.relation.referencesMoloney, E. M., Deasy, E. C., Swan, J. S., Brennan, G. I., O’Donnell, M. J., & Coleman, D. C. (2020). Whole-genome sequencing identifies highly related Pseudomonas aeruginosa strains in multiple washbasin U-bends at several locations in one hospital: evidence for trafficking of potential pathogens via wastewater pipes. Journal of Hospital Infection, 104(4), 484–491. https://doi.org/10.1016/J.JHIN.2019.11.005spa
dc.relation.referencesMoradali, M. F., Ghods, S., & Rehm, B. H. A. (2017). Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7(FEB), 39. https://doi.org/10.3389/FCIMB.2017.00039/BIBTEXspa
dc.relation.referencesMunita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2), 464–472. https://doi.org/10.1128/MICROBIOLSPEC.VMBF-0016-2015spa
dc.relation.referencesMurray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(21)02724-0/ATTACHMENT/29526A6B-96B7-4673-99F3-A624169C1B92/MMC1.PDFspa
dc.relation.referencesNaas, T., Bonnin, R. A., Cuzon, G., Villegas, M. V., & Nordmann, P. (2013). Complete sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa. The Journal of Antimicrobial Chemotherapy, 68(8), 1757–1762. https://doi.org/10.1093/JAC/DKT094spa
dc.relation.referencesNakayama, R., Inoue-Tsuda, M., Matsui, H., Ito, T., & Hanaki, H. (2022). Classification of the metallo β-lactamase subtype produced by the carbapenem-resistant Pseudomonas aeruginosa isolates in Japan. Journal of Infection and Chemotherapy, 28(2), 170–175. https://doi.org/10.1016/J.JIAC.2021.04.005spa
dc.relation.referencesNicolau, C. J., & Oliver, A. (2010). Carbapenemasas en especies del género Pseudomonas. Enfermedades Infecciosas y Microbiologia Clinica, 28(SUPPL. 1), 19–28. https://doi.org/10.1016/S0213-005X(10)70004-5spa
dc.relation.referencesOnorato, L., Macera, M., Calò, F., Cirillo, P., Di Caprio, G., & Coppola, N. (2022). Beta-lactam monotherapy or combination therapy for bloodstream infections or pneumonia due to Pseudomonas aeruginosa: a meta-analysis. International Journal of Antimicrobial Agents, 59(3), 106512. https://doi.org/10.1016/J.IJANTIMICAG.2021.106512spa
dc.relation.referencesOxford Nanopore Technologies. (2021). Native barcoding genomic DNA (with EXP-NBD196 and SQK-LSK109) (Vol. 24, Issue 05386273, pp. 2–17).spa
dc.relation.referencesPage, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., Fookes, M., Falush, D., Keane, J. A., & Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3693. https://doi.org/10.1093/BIOINFORMATICS/BTV421spa
dc.relation.referencesPalzkill, T. (2013). Metallo-β-lactamase structure and function. Annals of the New York Academy of Sciences, 1277(1), 91–104. https://doi.org/10.1111/J.1749-6632.2012.06796.Xspa
dc.relation.referencesPan, Y. ping, Xu, Y. hong, Wang, Z. xin, Fang, Y. ping, & Shen, J. lu. (2016). Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Archives of Microbiology 2016 198:6, 198(6), 565–571. https://doi.org/10.1007/S00203-016-1215-7spa
dc.relation.referencesPang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/J.BIOTECHADV.2018.11.013spa
dc.relation.referencesPeleg, A. Y., & Hooper, D. C. (2010). Hospital-Acquired Infections Due to Gram-Negative Bacteria. The New England Journal of Medicine, 362(19), 1804. https://doi.org/10.1056/NEJMRA0904124spa
dc.relation.referencesPenaranda, C., Chumbler, N. M., & Hung, D. T. (2021). Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathogens, 17(4). https://doi.org/10.1371/JOURNAL.PPAT.1009534spa
dc.relation.referencesPesingi, P. V., Singh, B. R., Pesingi, P. K., Bhardwaj, M., Singh, S. V., Kumawat, M., Sinha, D. K., & Gandham, R. K. (2019). MexAB-OprM Efflux Pump of Pseudomonas aeruginosa Offers Resistance to Carvacrol: A Herbal Antimicrobial Agent. Frontiers in Microbiology, 10, 2664. https://doi.org/10.3389/FMICB.2019.02664/BIBTEXspa
dc.relation.referencesPetersen, T. N., Brunak, S., Von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/NMETH.1701spa
dc.relation.referencesPeterson, L. R. (2009). Bad Bugs, No Drugs: No ESCAPE Revisited. Clinical Infectious Diseases, 49(6), 992–993. https://doi.org/10.1086/605539spa
dc.relation.referencesPetrova, A., Feodorova, Y., Miteva-Katrandzhieva, T., Petrov, M., & Murdjeva, M. (2019). First detected OXA-50 carbapenem-resistant clinical isolates Pseudomonas aeruginosa from Bulgaria and interplay between the expression of main efflux pumps, OprD and intrinsic AmpC. Journal of Medical Microbiology, 68(12), 1723–1731. https://doi.org/10.1099/JMM.0.001106/CITE/REFWORKSspa
dc.relation.referencesRaman, G., Avendano, E. E., Chan, J., Merchant, S., & Puzniak, L. (2018). Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrobial Resistance & Infection Control 2018 7:1, 7(1), 1–14. https://doi.org/10.1186/S13756-018-0370-9spa
dc.relation.referencesRice, L. B. (2008). Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081. https://doi.org/10.1086/533452spa
dc.relation.referencesRoy, P. H., Tetu, S. G., Larouche, A., Elbourne, L., Tremblay, S., Ren, Q., Dodson, R., Harkins, D., Shay, R., Watkins, K., Mahamoud, Y., & Paulsen, I. T. (2010). Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE, 5(1), 1–10. https://doi.org/10.1371/journal.pone.0008842spa
dc.relation.referencesSader, H. S., Castanheira, M., Duncan, L. R., & Mendes, R. E. (2021). Antimicrobial activities of ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam, meropenem/vaborbactam, and comparators against Pseudomonas aeruginosa from patients with skin and soft tissue infections. International Journal of Infectious Diseases, 113, 279–281. https://doi.org/10.1016/J.IJID.2021.10.022spa
dc.relation.referencesSaini, H., Vadekeetil, A., Chhibber, S., & Harjai, K. (2017). Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 61(3). https://doi.org/10.1128/AAC.01906-16spa
dc.relation.referencesSeemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 30(14), 2068–2069. https://doi.org/10.1093/BIOINFORMATICS/BTU153spa
dc.relation.referencesShortridge, D., Gales, A. C., Streit, J. M., Huband, M. D., Tsakris, A., & Jones, R. N. (2019). Geographic and temporal patterns of antimicrobial resistance in pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open Forum Infectious Diseases, 6(Suppl 1), S63–S68. https://doi.org/10.1093/ofid/ofy343spa
dc.relation.referencesSingh, S., Pulusu, C. P., Pathak, A., Pradeep, B. E., & Prasad, K. N. (2021). Complete genome sequence of an extensively drug-resistant Pseudomonas aeruginosa ST773 clinical isolate from North India. Journal of Global Antimicrobial Resistance, 27, 244–246. https://doi.org/10.1016/J.JGAR.2021.10.010spa
dc.relation.referencesSood, U., Hira, P., Kumar, R., Bajaj, A., Rao, D. L. N., Lal, R., & Shakarad, M. (2019). Comparative genomic analyses reveal core-genome-wide genes under positive selection and major regulatory hubs in outlier strains of Pseudomonas aeruginosa. Frontiers in Microbiology, 10(FEB), 53. https://doi.org/10.3389/FMICB.2019.00053/BIBTEXspa
dc.relation.referencesSpernovasilis, N., Psichogiou, M., & Poulakou, G. (2021). Skin manifestations of Pseudomonas aeruginosa infections. Current Opinion in Infectious Diseases, 34(2), 2–79. https://doi.org/10.1097/QCO.0000000000000717spa
dc.relation.referencesStamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/BIOINFORMATICS/BTU033spa
dc.relation.referencesStover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowallk, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., … Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000 406:6799, 406(6799), 959–964. https://doi.org/10.1038/35023079spa
dc.relation.referencesSun, Y., Han, R., Ding, L., Yang, Y., Guo, Y., Wu, S., Hu, F., & Yin, D. (2021). First Report of blaOXA-677 with Enhanced Meropenem-Hydrolyzing Ability in Pseudomonas aeruginosa in China. Infection and Drug Resistance, 14, 5725. https://doi.org/10.2147/IDR.S340662spa
dc.relation.referencesTavare, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Some Mathematical Questions in Biology / DNA Sequence Analysis Edited by Robert M. Miura. https://doi.org/10.3/JQUERY-UI.JSspa
dc.relation.referencesTsay, T. Bin, Jiang, Y. Z., Hsu, C. M., & Chen, L. W. (2016). Pseudomonas aeruginosa colonization enhances ventilator-associated pneumonia-induced lung injury. Respiratory Research, 17(1). https://doi.org/10.1186/S12931-016-0417-5spa
dc.relation.referencesVanegas, J. M., Cienfuegos, A. V., Ocampo, A. M., López, L., Del Corral, H., Roncancio, G., Sierra, P., Echeverri-Toro, L., Ospina, S., Maldonado, N., Robledo, C., Restrepo, A., & Jiménez, J. N. (2014). Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. Journal of Clinical Microbiology, 52(11), 3978–3986. https://doi.org/10.1128/JCM.01879-14spa
dc.relation.referencesVillegas, M. V., Lolans, K., Correa, A., Kattan, J. N., Lopez, J. A., & Quinn, J. P. (2007). First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrobial Agents and Chemotherapy, 51(4), 1553–1555. https://doi.org/10.1128/AAC.01405-06spa
dc.relation.referencesWei, L., Wu, Q., Zhang, J., Guo, W., Gu, Q., Wu, H., Wang, J., Lei, T., Xue, L., Zhang, Y., Wei, X., & Zeng, X. (2020). Prevalence, Virulence, Antimicrobial Resistance, and Molecular Characterization of Pseudomonas aeruginosa Isolates From Drinking Water in China. Frontiers in Microbiology, 11, 544653. https://doi.org/10.3389/FMICB.2020.544653/FULLspa
dc.relation.referencesWencewicz, T. A., & Drive, O. B. (2020). Crossroads of Antibiotic Resistance and Biosynthesis Timothy. J Mol Biol., 431(18), 3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033.Crossroadsspa
dc.relation.referencesWHO. (2017). World Health Organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://doi.org/10.4103/jms.jms_25_17spa
dc.relation.referencesWick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/JOURNAL.PCBI.1005595spa
dc.relation.referencesYang, K., Xiao, T., Shi, Q., Zhu, Y., Ye, J., Zhou, Y., & Xiao, Y. (2021). Socioeconomic burden of bloodstream infections caused by carbapenem-resistant and carbapenem-susceptible Pseudomonas aeruginosa in China. Journal of Global Antimicrobial Resistance, 26, 101–107. https://doi.org/10.1016/J.JGAR.2021.03.032spa
dc.relation.referencesYoon, E. J., & Jeong, S. H. (2021). Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Frontiers in Microbiology, 12, 30. https://doi.org/10.3389/FMICB.2021.614058/BIBTEXspa
dc.relation.referencesYoshinaga, Y., Daum, C., He, G., & O’Malley, R. (2018). Genome Sequencing. Methods in Molecular Biology (Clifton, N.J.), 1775, 37–52. https://doi.org/10.1007/978-1-4939-7804-5_4spa
dc.relation.referencesYuan, M., Guan, H., Sha, D., Cao, W., Song, X., Che, J., Kan, B., & Li, J. (2021). Characterization of blakpc-2-carrying plasmid pr31-kpc from a pseudomonas aeruginosa strain isolated in china. Antibiotics, 10(10). https://doi.org/10.3390/ANTIBIOTICS10101234/S1spa
dc.relation.referencesZahedi, A., Rahbar, M., Hamidi-farahani, R., & Asgari, A. (2021). Microbial Pathogenesis Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microbial Pathogenesis, 153(January), 104789. https://doi.org/10.1016/j.micpath.2021.104789spa
dc.relation.referencesZhao, W. H., & Hu, Z. Q. (2010). β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa. Http://Dx.Doi.Org/10.3109/1040841X.2010.481763, 36(3), 245–258. https://doi.org/10.3109/1040841X.2010.481763spa
dc.relation.referencesZubyk, H. L., & Wright, G. D. (2021). CrpP Is Not a Fluoroquinolone-Inactivating Enzyme. Antimicrobial Agents and Chemotherapy, 65(8). https://doi.org/10.1128/AAC.00773-21spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.decsBacteriasspa
dc.subject.decsBacteriaeng
dc.subject.decsMonitoreo epidemiológicoepa
dc.subject.decsEpidemiological Monitoringeng
dc.subject.proposalPseudomonas aeruginosaspa
dc.subject.proposalInfecciones Asociadas a la Atención en Saludspa
dc.subject.proposalResistencia a antibióticosspa
dc.subject.proposalSeguimiento epidemiológicospa
dc.subject.proposalSecuenciación de Genoma Completospa
dc.subject.proposalGrupos clonalesspa
dc.subject.proposalSecuencio-tipos (ST)spa
dc.subject.proposalHealthcare-Associated Infections (HAIs)eng
dc.subject.proposalAntibiotic resistanceeng
dc.subject.proposalEpidemiological tracingeng
dc.subject.proposalWhole Genome Sequencing (WGS)eng
dc.subject.proposalSequence-types (ST)eng
dc.subject.proposalClonal groupseng
dc.titleSeguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)spa
dc.title.translatedEpidemiological tracing of the genomic profiles of antibiotic resistance in clinical isolates of P. aeruginosa using Whole Genome Sequencing (WGS)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1065651232.2023.pdf
Tamaño:
3.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: