Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)
dc.contributor.advisor | Barreto Hernández, Emiliano | |
dc.contributor.advisor | Reguero Reza, María Teresa Jesús | |
dc.contributor.author | Cuello Mejia, Mishelle | |
dc.contributor.researchgroup | Grupo de Bioinformática | spa |
dc.contributor.researchgroup | Grupo de Epidemiología Molecular | spa |
dc.date.accessioned | 2023-07-07T13:55:45Z | |
dc.date.available | 2023-07-07T13:55:45Z | |
dc.date.issued | 2022-10-07 | |
dc.description | ilustraciones, fotografías, mapas | spa |
dc.description.abstract | Pseudomonas aeruginosa es uno de los principales microorganismos causantes de Infecciones Asociadas a la Atención en Salud, importante en el contexto epidemiológico actual debido a la emergencia de resistencia a los carbapenémicos. Teniendo en cuenta este planteamiento, el objetivo general del estudio consistió en realizar el seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de P. aeruginosa mediante secuenciación de genoma completo (WGS). Para ello, se planteó un estudio prospectivo, descriptivo en una institución hospitalaria de tercer nivel de complejidad en Bogotá-Colombia, durante los años 2019 y 2020; se analizaron aislamientos clínicos de P. aeruginosa provenientes de pacientes internados en los servicios de UCI y hospitalización. Se obtuvieron 43 aislamientos provenientes de 32 pacientes, secuenciados utilizando las plataformas Illumina y Oxford Nanopore. En cuanto a los genomas analizados, se anotaron 95 genes diferentes mediadores de resistencia, encontrándose la presencia del gen blaKPC-3, este es el segundo reporte de blaKPC-3 en P. aeruginosa en Colombia. Se detectó la presencia 14 secuencio-tipos (ST), siendo el ST111 el más frecuente, adicionalmente se identificaron 7 nuevos ST que a la fecha no han sido reportados. A partir de un árbol de SNP (Single Nucleotide Polymorphism), se evidenció la presencia de 3 grupos clonales. En conclusión, la investigación epidemiológica y genómica combinada permitió identificar las variaciones intrapaciente a nivel de perfiles genómicos de resistencia y la diversidad genética de los aislamientos de P. aeruginosa, lo cual posibilitó establecer posibles rutas de transmisión entre pacientes vinculados por proximidad en periodos de tiempo y espacio. (Texto tomado de la fuente) | spa |
dc.description.abstract | Pseudomonas aeruginosa is one of the main microorganisms that cause healthcare-associated infections (HAIs), important in the current epidemiological context due to the emergence of resistance to carbapenems. Taking this into consideration, the general objective of the study was to perform the epidemiological tracing of the genomic profiles of antibiotic resistance in clinical isolates of P. aeruginosa using Whole Genome Sequencing (WGS). For this, a prospective and descriptive study was proposed in a third level hospital in Bogotá-Colombia, during 2019 and 2020; clinical isolates of P. aeruginosa from patients of ICU and hospitalization services were analyzed. 43 isolates from 32 patients were obtained and sequenced using the Illumina and Oxford Nanopore platforms. Regarding the analyzed genomes, 95 different resistance mediator genes were annotated, finding the blaKPC-3 gene which is the second report of blaKPC-3 in P. aeruginosa in Colombia. The presence of 14 sequence-types (ST) were identified, being the ST111 the most frequent; in addition, 7 new STs that have not been previously reported were identified in this study. From a SNP (Single Nucleotide Polymorphism) tree, the presence of 3 clonal groups were evidenced. In conclusion, the epidemiological and genomic research allowed to identify intra-patient variations of the genomic resistance profiles and the genetic diversity of the P. aeruginosa isolates, leading to establish possible routes of transmission between patients linked by proximity in periods of time and space. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Microbiología | spa |
dc.description.researcharea | Biología molecular de agentes infecciosos | spa |
dc.format.extent | 124 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84156 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá,Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
dc.relation.references | Abril D, Bravo-Ojeda J, García J, Leal -Castro A, Saavedra-Trujillo C, Madroñero J, Bustos R, Márquez-Ortiz R, Corredor-Rozo Z, Vanegas-Gómez N, E.-P. J. (2022). Nuevas plataformas de movilización de blaKPC-2 y blaKPC-3 en aislamientos clínicos de Pseudomonas aeruginosa ST111 y ST235 de instituciones de Bogotá. XIII Encuentro Nacional - III Encuentro Latinoaméricano de Investigación En Enfermedades Infecciosas. | spa |
dc.relation.references | Adwan, G., & Omar, G. (2021). Phenotypic and molecular characterization of fluoroquinolone resistant Pseudomonas aeruginosa isolates in Palestine. Brazilian Journal of Biology = Revista Brasleira de Biologia, 82. https://doi.org/10.1590/1519-6984.239868 | spa |
dc.relation.references | Akpaka, P. E., Swanston, W. H., Ihemere, H. N., Correa, A., Torres, J. A., Tafur, J. D., Montealegre, M. C., Quinn, J. P., & Villegas, M. V. (2009). Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. Journal of Clinical Microbiology, 47(8), 2670–2671. https://doi.org/10.1128/JCM.00362-09 | spa |
dc.relation.references | Alós, J.-I. (2015). Resistencia bacteriana a los antibióticos: una crisis global Antibiotic resistance: A global crisis. Enferm Infecc Microbiol Clin, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004 | spa |
dc.relation.references | Asociación Colombiana de Infectología Capítulo central. (2021). Documento de actualización de criterios de notificación de Infecciones Asociadas a la Atención en Salud (IAAS) al sistema de vigilancia epidemiológica en Bogotá D.C. | spa |
dc.relation.references | Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today, 24(1), 350–359. https://doi.org/10.1016/J.DRUDIS.2018.07.003 | spa |
dc.relation.references | Balabanova, L., Shkryl, Y., Slepchenko, L., Cheraneva, D., Podvolotskaya, A., Bakunina, I., Nedashkovskaya, O., Son, O., & Tekutyeva, L. (2020). Genomic Features of a Food-Derived Pseudomonas aeruginosa Strain PAEM and Biofilm-Associated Gene Expression under a Marine Bacterial α-Galactosidase. International Journal of Molecular Sciences, 21(20), 1–25. https://doi.org/10.3390/IJMS21207666 | spa |
dc.relation.references | Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 | spa |
dc.relation.references | Berrazeg, M., Jeannot, K., Ntsogo Enguéné, V. Y., Broutin, I., Loeffert, S., Fournier, D., & Plésiat, P. (2015). Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. | spa |
dc.relation.references | Bisht, K., Baishya, J., & Wakeman, C. A. (2020). Pseudomonas aeruginosa polymicrobial interactions during lung infection. Current Opinion in Microbiology, 53, 1–8. https://doi.org/10.1016/J.MIB.2020.01.014 | spa |
dc.relation.references | Blanc, D. S., Magalhães, B., Koenig, I., Senn, L., & Grandbastien, B. (2020). Comparison of Whole Genome (wg-) and Core Genome (cg-) MLST (BioNumericsTM) Versus SNP Variant Calling for Epidemiological Investigation of Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 1729. https://doi.org/10.3389/FMICB.2020.01729/FULL | spa |
dc.relation.references | Botelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44, 100640. https://doi.org/10.1016/J.DRUP.2019.07.002 | spa |
dc.relation.references | Bouglé, A., Tuffet, S., Federici, L., Leone, M., Monsel, A., Dessalle, T., Amour, J., Dahyot-Fizelier, C., Barbier, F., Luyt, C.-E., Langeron, O., Cholley, B., Pottecher, J., Hissem, T., Lefrant, J.-Y., Veber, B., Legrand, M., Demoule, A., Kalfon, P., … Soussi, N. (2022). Comparison of 8 versus 15 days of antibiotic therapy for Pseudomonas aeruginosa ventilator-associated pneumonia in adults: a randomized, controlled, open-label trial. Intensive Care Medicine, 48(7). https://doi.org/10.1007/S00134-022-06690-5 | spa |
dc.relation.references | Boukerb, A. M., Simon, M., Pernet, E., Jouault, A., Portier, E., Persyn, E., Bouffartigues, E., Bazire, A., Chevalier, S., Feuilloley, M. G. J., Lesouhaitier, O., Caillon, J., & Dufour, A. (2020). Draft Genome Sequences of Four Pseudomonas aeruginosa Clinical Strains with Various Biofilm Phenotypes. Microbiology Resource Announcements, 9(1). https://doi.org/10.1128/MRA.01286-19 | spa |
dc.relation.references | Brinkman, F. S. L., Winsor, G. L., Done, R. E., Filloux, A., Francis, V. I., Goldberg, J. B., Greenberg, E. P., Han, K., Hancock, R. E. W., Haney, C. H., Häußler, S., Klockgether, J., Lamont, I. L., Levesque, R. C., Lory, S., Nikel, P. I., Porter, S. L., Scurlock, M. W., Schweizer, H. P., … Welch, M. (2021). The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Advances in Microbial Physiology, 79, 25–88. https://doi.org/10.1016/BS.AMPBS.2021.07.001 | spa |
dc.relation.references | Cantón, R., Gijón, D., & Ruiz-Garbajosa, P. (2020). Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Current Opinion in Critical Care, 26(5), 433–441. https://doi.org/10.1097/MCC.0000000000000755 | spa |
dc.relation.references | Chevalier, S., Bouffartigues, E., Bodilis, J., Maillot, O., Lesouhaitier, O., Feuilloley, M. G. J., Orange, N., Dufour, A., & Cornelis, P. (2017). Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiology Reviews, 41(5), 698–722. https://doi.org/10.1093/FEMSRE/FUX020 | spa |
dc.relation.references | Choudhury, M. A., Sidjabat, H. E., Zowawi, H. M., Marsh PhD, N., Larsen, E., Runnegar PhD, N., Paterson, D. L., McMillan, D. J., & Rickard, C. M. (2019). Skin colonization at peripheral intravenous catheter insertion sites increases the risk of catheter colonization and infection. American Journal of Infection Control, 47(12), 1484–1488. https://doi.org/10.1016/J.AJIC.2019.06.002 | spa |
dc.relation.references | Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/S00239-019-09914-3 | spa |
dc.relation.references | Cicek, A. Ç., Ertürk, A., Ejder, N., Rakici, E., Kostakoğlu, U., Yıldız, İ. E., Özyurt, S., & Sönmez, E. (2021). Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. Infection and Drug Resistance, 14, 1517–1526. https://doi.org/10.2147/IDR.S299742 | spa |
dc.relation.references | Colque, C. A., Orio, A. G. albarracín, Tomatis, P. E., Dotta, G., Moreno, D. M., Hedemann, L. G., Hickman, R. A., Sommer, L. M., Feliziani, S., Moyano, A. J., Bonomo, R. A., Johansen, H. K., Molin, S., Vila, A. J., & Smania, A. M. (2022). Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a Cystic Fibrosis Patient Treated with β-Lactams. MBio. https://doi.org/10.1128/MBIO.01663-22 | spa |
dc.relation.references | Correa, A., Del Campo, R., Perenguez, M., Blanco, V. M., Rodríguez-Baños, M., Perez, F., Maya, J. J., Rojas, L., Cantón, R., Arias, C. A., & Villegas, M. V. (2015b). Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia. Antimicrobial Agents and Chemotherapy, 59(4), 2421. https://doi.org/10.1128/AAC.03926-14 | spa |
dc.relation.references | Cuzon, G., Naas, T., & Nordmann, P. (2011). Functional characterization of Tn4401, a Tn3-based transposon involved in bla KPC gene mobilization. Antimicrobial Agents and Chemotherapy, 55(11), 5370–5373. https://doi.org/10.1128/AAC.05202-11/ASSET/8C7C3BCE-2C69-4925-A208-D347394DAC3B/ASSETS/GRAPHIC/ZAC9991003010003.JPEG | spa |
dc.relation.references | Dai, X., Zhou, D., Xiong, W., Feng, J., Luo, W., Luo, G., Wang, H., Sun, F., & Zhou, X. (2016). The IncP-6 plasmid p10265-KPC from Pseudomonas aeruginosa carries a novel ΔISEc33-associated blaKPC-2 gene cluster. Frontiers in Microbiology, 7(MAR), 310. https://doi.org/10.3389/FMICB.2016.00310/BIBTEX | spa |
dc.relation.references | De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEG | spa |
dc.relation.references | De Sousa, T., Hébraud, M., Enes Dapkevicius, M. L. N., Maltez, L., Pereira, J. E., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2021). Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/IJMS222312892 | spa |
dc.relation.references | Del Barrio-Tofiño, E., López-Causapé, C., & Oliver, A. (2020). Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. International Journal of Antimicrobial Agents, 56(6), | spa |
dc.relation.references | Deshpande, R., & Zou, C. (2020). Pseudomonas Aeruginosa Induced Cell Death in Acute Lung Injury and Acute Respiratory Distress Syndrome. International Journal of Molecular Sciences, 21(15), 1–17. https://doi.org/10.3390/IJMS21155356 | spa |
dc.relation.references | Deurenberg, R. H., Bathoorn, E., Chlebowicz, M. A., Couto, N., Ferdous, M., García-Cobos, S., Kooistra-Smid, A. M. D., Raangs, E. C., Rosema, S., Veloo, A. C. M., Zhou, K., Friedrich, A. W., & Rossen, J. W. A. (2017). Application of next generation sequencing in clinical microbiology and infection prevention. Journal of Biotechnology, 243, 16–24. https://doi.org/10.1016/J.JBIOTEC.2016.12.022 | spa |
dc.relation.references | Estepa, V., Rojo-Bezares, B., Torres, C., & Sáenz, Y. (2014). Faecal carriage of Pseudomonas aeruginosa in healthy humans: antimicrobial susceptibility and global genetic lineages. FEMS Microbiology Ecology, 89(1), 15–19. https://doi.org/10.1111/1574-6941.12301 | spa |
dc.relation.references | Fabre, V., Amoah, J., Cosgrove, S. E., & Tamma, P. D. (2019). Antibiotic Therapy for Pseudomonas aeruginosa Bloodstream Infections: How Long Is Long Enough? Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 69(11), 2011–2014. https://doi.org/10.1093/CID/CIZ223 | spa |
dc.relation.references | Ferreiro, J. L. L., Otero, J. Á., Rivo, A. S., González, L. G., Conde, I. R., Soneira, M. F., García, J. P., & de la Fuente Aguado, J. (2021). Outpatient therapy with piperacillin/tazobactam using elastomeric pumps in patients with Pseudomonas aeruginosa infection. Scientific Reports, 11(1), 1–4. https://doi.org/10.1038/s41598-021-88179-7 | spa |
dc.relation.references | Fujiwara, M., Yamasaki, S., Morita, Y., & Nishino, K. (2022). Evaluation of efflux pump inhibitors of MexAB- or MexXY-OprM in Pseudomonas aeruginosa using nucleic acid dyes. Journal of Infection and Chemotherapy, 28(5), 595–601. https://doi.org/10.1016/J.JIAC.2022.01.003 | spa |
dc.relation.references | Galetti, R., Andrade, L. N., Varani, A. M., & Darini, A. L. C. (2019). A Phage-Like Plasmid Carrying blaKPC-2 Gene in Carbapenem-Resistant Pseudomonas aeruginosa. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/FMICB.2019.00572 | spa |
dc.relation.references | García-Betancur, J. C., Appel, T. M., Esparza, G., Gales, A. C., Levy-Hara, G., Cornistein, W., Vega, S., Nuñez, D., Cuellar, L., Bavestrello, L., Castañeda-Méndez, P. F., Villalobos-Vindas, J. M., & Villegas, M. V. (2021). Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Review of Anti-Infective Therapy, 19(2), 197–213. https://doi.org/10.1080/14787210.2020.1813023 | spa |
dc.relation.references | Ge, C., Wei, Z., Jiang, Y., Shen, P., Yu, Y., & Li, L. (2011). Identification of KPC-2-producing Pseudomonas aeruginosa isolates in China. The Journal of Antimicrobial Chemotherapy, 66(5), 1184–1186. https://doi.org/10.1093/JAC/DKR060 | spa |
dc.relation.references | Gerver, S. M., Nsonwu, O., Thelwall, S., Brown, C. S., & Hope, R. (2022). Trends in rates of incidence, fatality and antimicrobial resistance among isolates of Pseudomonas spp. causing bloodstream infections in England between 2009 and 2018: results from a national voluntary surveillance scheme. Journal of Hospital Infection, 120, | spa |
dc.relation.references | Gómez, J., García-Vázquez, E., & Hernández-Torres, A. (2015). Los betalactámicos en la práctica clínica. Rev Esp Quimioter, 28(1), 1–9. | spa |
dc.relation.references | Gu, W., Miller, S., & Chiu, C. Y. (2019). Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annual Review of Pathology, 14, 319–338. https://doi.org/10.1146/ANNUREV-PATHMECHDIS-012418-012751 | spa |
dc.relation.references | Gudiol, C., Albasanz-Puig, A., Laporte-Amargós, J., Pallarès, N., Mussetti, A., Ruiz-Camps, I., Puerta-Alcalde, P., Abdala, E., Oltolini, C., Akova, M., Montejo, M., Mikulska, M., Martín-Dávila, P., Herrera, F., Gasch, O., Drgona, L., Paz Morales, H., Brunel, A. S., García, E., … Sangro Del Alcázar, P. (2020). Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 64(4). https://doi.org/10.1128/AAC.02494-19 | spa |
dc.relation.references | Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England), 29(8), 1072–1075. https://doi.org/10.1093/BIOINFORMATICS/BTT086 | spa |
dc.relation.references | Hadfield, J., Croucher, N. J., Goater, R. J., Abudahab, K., Aanensen, D. M., & Harris, S. R. (2018). Phandango: an interactive viewer for bacterial population genomics. Bioinformatics (Oxford, England), 34(2), 292–293. https://doi.org/10.1093/BIOINFORMATICS/BTX610 | spa |
dc.relation.references | Hagemann, J. B., Pfennigwerth, N., Gatermann, S. G., von Baum, H., & Essig, A. (2018). KPC-2 carbapenemase-producing Pseudomonas aeruginosa reaching Germany. The Journal of Antimicrobial Chemotherapy, 73(7), 1812–1814. https://doi.org/10.1093/JAC/DKY105 | spa |
dc.relation.references | Hassaine, H., Morghad, T., Bellifa, S., Lachachi, M., Kara-Terki, I., M’Hamedi, I., & Meziani, Z. (2019). In Vitro Inhibition Assay of Pseudomonas Aeruginosa Biofilm Formation on Urinary Catheter. Journal of Infection and Public Health, 12(1), 122. https://doi.org/10.1016/J.JIPH.2018.10.058 | spa |
dc.relation.references | Hernández, M., Quijada, N. M., Rodríguez-Lázaro, D., & Eiros, J. M. (2020). Aplicación de la secuenciación masiva y la bioinformática al diagnóstico microbiológico clínico. Revista Argentina de Microbiología, 52(2), 150–161. https://doi.org/10.1016/J.RAM.2019.06.003 | spa |
dc.relation.references | Horcajada, J. P., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., Benito, N., & Grau, S. (2019). Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clinical Microbiology Reviews, 32(4), 1–52. https://doi.org/10.1128/CMR.00031-19 | spa |
dc.relation.references | Huemer, M., Shambat, S. M., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/EMBR.202051034 | spa |
dc.relation.references | Hurley, J. C. (2019). Worldwide variation in Pseudomonas associated ventilator associated pneumonia. A meta-regression. Journal of Critical Care, 51, 88–93. https://doi.org/10.1016/j.jcrc.2019.02.001 | spa |
dc.relation.references | Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11(1), 1–11. https://doi.org/10.1186/1471-2105-11-119/TABLES/5 | spa |
dc.relation.references | Illumina. (2020). Illumina DNA Prep Reference Guide Consumable. In Illumina (Issue June). https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/illumina_prep/illumina-dna-prep-reference-guide-1000000025416-09.pdf | spa |
dc.relation.references | Instituto Nacional de Salud. (2021). Grupo de microbiología, Vigilancia de resistencia antimicrobia. In Boletín epidemiológico semanal. https://doi.org/10.33610/23576189.2022.03 | spa |
dc.relation.references | Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2017). High-throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. BioRxiv, 225342. https://doi.org/10.1101/225342 | spa |
dc.relation.references | Jiménez Pearson, M. A., Galas, M., Corso, A., Hormazábal, J. C., Duarte Valderrama, C., Salgado Marcano, N., Ramón-Pardo, P., & Melano, R. G. (2019). Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Rev Panam Salud Publica;43, Ago. 2019, 1–8. https://doi.org/10.26633/RPSP.2019.65 | spa |
dc.relation.references | Juarez, P., Broutin, I., Bordi, C., Plésiat, P., & Llanes, C. (2018). Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 62(5). https://doi.org/10.1128/AAC.02445-17 | spa |
dc.relation.references | June, C. M., Vallier, B. C., Bonomo, R. A., Leonard, D. A., & Powers, R. A. (2014). Structural origins of oxacillinase specificity in class D β-lactamases. Antimicrobial Agents and Chemotherapy, 58(1), 333–341. https://doi.org/10.1128/AAC.01483-13 | spa |
dc.relation.references | Klockgether, J., Cramer, N., Wiehlmann, L., Davenport, C. F., & Tümmler, B. (2011). Pseudomonas aeruginosa Genomic Structure and Diversity. Frontiers in Microbiology, 0(JULY), 150. https://doi.org/10.3389/FMICB.2011.00150 | spa |
dc.relation.references | Kolbe, D. L., & Eddy, S. R. (2011). Fast filtering for RNA homology search. Bioinformatics, 27(22), 3102–3109. https://doi.org/10.1093/BIOINFORMATICS/BTR545 | spa |
dc.relation.references | Krawczyk, P. S., Lipinski, L., & Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6), e35. https://doi.org/10.1093/NAR/GKX1321 | spa |
dc.relation.references | Kumar, K. R., Cowley, M. J., & Davis, R. L. (2019). Next-Generation Sequencing and Emerging Technologies. Seminars in Thrombosis and Hemostasis, 45(7), 661–673. https://doi.org/10.1055/S-0039-1688446 | spa |
dc.relation.references | Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H. H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100–3108. https://doi.org/10.1093/NAR/GKM160 | spa |
dc.relation.references | Langendonk, R. F., Neill, D. R., & Fothergill, J. L. (2021). The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Frontiers in Cellular and Infection Microbiology, 11, 307. https://doi.org/10.3389/FCIMB.2021.665759/BIBTEX | spa |
dc.relation.references | Laslett, D., & Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research, 32(1), 11–16. https://doi.org/10.1093/NAR/GKH152 | spa |
dc.relation.references | Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/NAR/GKAB301 | spa |
dc.relation.references | Li, Z., Cai, Z., Cai, Z., Zhang, Y., Fu, T., Jin, Y., Cheng, Z., Jin, S., Wu, W., Yang, L., & Bai, F. (2020). Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. Journal of Antimicrobial Chemotherapy, 75(6), 1443–1452. https://doi.org/10.1093/JAC/DKAA063 | spa |
dc.relation.references | Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582–610. https://doi.org/10.1128/CMR.00040-09/ASSET/48C39C97-08B3-4013-BC8C-294A69C85D08/ASSETS/GRAPHIC/ZCM0040922970008.JPEG | spa |
dc.relation.references | Liu, M., BZ D, Zeng W, Cheng X, Tao CM, M Kang, & W-X. Jia. (2008). Research on the distribution of OXA-50 gene in carbapenems-resistant Pseudomonas aeruginosas. Chinese Journal of Antibiotics , 33, 733–735. https://www.researchgate.net/publication/289023594_Research_on_the_distribution_of_OXA-50_gene_in_carbapenems-resistant_Pseudomonas_aeruginosa | spa |
dc.relation.references | Loyola-Cruz, M. Á., Durán-Manuel, E. M., Cruz-Cruz, C., Marquez-Valdelamar, L. M., Bravata-Alcantara, J. C., Cortés-Ortíz, I. A., Cureño-Díaz, M. A., Ibáñez-Cervantes, G., Fernández-Sánchez, V., Castro-Escarpulli, G., & Bello-López, J. M. (2022). ESKAPE bacteria characterization reveals the presence of Acinetobacter baumannii and Pseudomonas aeruginosa outbreaks in COVID-19/VAP patients. American Journal of Infection Control. https://doi.org/10.1016/J.AJIC.2022.08.012 | spa |
dc.relation.references | Lugo, L., & Barreto- Hernández, E. (2021). A Recurrent Neural Network approach for whole genome bacteria identification. Https://Doi.Org/10.1080/08839514.2021.1922842, 35(9), 642–656. https://doi.org/10.1080/08839514.2021.1922842 | spa |
dc.relation.references | Madaha, E. L., Mienie, C., Gonsu, H. K., Bughe, R. N., Fonkoua, M. C., Mbacham, W. F., Alayande, K. A., Bezuidenhout, C. C., & Ateba, C. N. (2020). Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human broncho-alveolar lavage, Yaoundé, Cameroon. PLOS ONE, 15(9), e0238390. https://doi.org/10.1371/JOURNAL.PONE.0238390 | spa |
dc.relation.references | McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., Bhullar, K., Canova, M. J., De Pascale, G., Ejim, L., Kalan, L., King, A. M., Koteva, K., Morar, M., Mulvey, M. R., O’Brien, J. S., Pawlowski, A. C., Piddock, L. J. V., Spanogiannopoulos, P., … Wright, G. D. (2013). The Comprehensive Antibiotic Resistance Database. Antimicrobial Agents and Chemotherapy, 57(7), 3348. | spa |
dc.relation.references | Mielko, K. A., Jabłoński, S. J., Milczewska, J., Sands, D., Łukaszewicz, M., & Młynarz, P. (2019). Metabolomic studies of Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 35(11), 1–11. https://doi.org/10.1007/s11274-019-2739-1 | spa |
dc.relation.references | Ministerio de Salud y Protección Social. (n.d.). Guía Técnica: Buenas prácticas para la seguridad del paciente en la Atención en Salud. Retrieved February 15, 2022, from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/CA/Detectar-Infecciones.pdf | spa |
dc.relation.references | Moloney, E. M., Deasy, E. C., Swan, J. S., Brennan, G. I., O’Donnell, M. J., & Coleman, D. C. (2020). Whole-genome sequencing identifies highly related Pseudomonas aeruginosa strains in multiple washbasin U-bends at several locations in one hospital: evidence for trafficking of potential pathogens via wastewater pipes. Journal of Hospital Infection, 104(4), 484–491. https://doi.org/10.1016/J.JHIN.2019.11.005 | spa |
dc.relation.references | Moradali, M. F., Ghods, S., & Rehm, B. H. A. (2017). Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7(FEB), 39. https://doi.org/10.3389/FCIMB.2017.00039/BIBTEX | spa |
dc.relation.references | Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2), 464–472. https://doi.org/10.1128/MICROBIOLSPEC.VMBF-0016-2015 | spa |
dc.relation.references | Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(21)02724-0/ATTACHMENT/29526A6B-96B7-4673-99F3-A624169C1B92/MMC1.PDF | spa |
dc.relation.references | Naas, T., Bonnin, R. A., Cuzon, G., Villegas, M. V., & Nordmann, P. (2013). Complete sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa. The Journal of Antimicrobial Chemotherapy, 68(8), 1757–1762. https://doi.org/10.1093/JAC/DKT094 | spa |
dc.relation.references | Nakayama, R., Inoue-Tsuda, M., Matsui, H., Ito, T., & Hanaki, H. (2022). Classification of the metallo β-lactamase subtype produced by the carbapenem-resistant Pseudomonas aeruginosa isolates in Japan. Journal of Infection and Chemotherapy, 28(2), 170–175. https://doi.org/10.1016/J.JIAC.2021.04.005 | spa |
dc.relation.references | Nicolau, C. J., & Oliver, A. (2010). Carbapenemasas en especies del género Pseudomonas. Enfermedades Infecciosas y Microbiologia Clinica, 28(SUPPL. 1), 19–28. https://doi.org/10.1016/S0213-005X(10)70004-5 | spa |
dc.relation.references | Onorato, L., Macera, M., Calò, F., Cirillo, P., Di Caprio, G., & Coppola, N. (2022). Beta-lactam monotherapy or combination therapy for bloodstream infections or pneumonia due to Pseudomonas aeruginosa: a meta-analysis. International Journal of Antimicrobial Agents, 59(3), 106512. https://doi.org/10.1016/J.IJANTIMICAG.2021.106512 | spa |
dc.relation.references | Oxford Nanopore Technologies. (2021). Native barcoding genomic DNA (with EXP-NBD196 and SQK-LSK109) (Vol. 24, Issue 05386273, pp. 2–17). | spa |
dc.relation.references | Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., Fookes, M., Falush, D., Keane, J. A., & Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3693. https://doi.org/10.1093/BIOINFORMATICS/BTV421 | spa |
dc.relation.references | Palzkill, T. (2013). Metallo-β-lactamase structure and function. Annals of the New York Academy of Sciences, 1277(1), 91–104. https://doi.org/10.1111/J.1749-6632.2012.06796.X | spa |
dc.relation.references | Pan, Y. ping, Xu, Y. hong, Wang, Z. xin, Fang, Y. ping, & Shen, J. lu. (2016). Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Archives of Microbiology 2016 198:6, 198(6), 565–571. https://doi.org/10.1007/S00203-016-1215-7 | spa |
dc.relation.references | Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/J.BIOTECHADV.2018.11.013 | spa |
dc.relation.references | Peleg, A. Y., & Hooper, D. C. (2010). Hospital-Acquired Infections Due to Gram-Negative Bacteria. The New England Journal of Medicine, 362(19), 1804. https://doi.org/10.1056/NEJMRA0904124 | spa |
dc.relation.references | Penaranda, C., Chumbler, N. M., & Hung, D. T. (2021). Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathogens, 17(4). https://doi.org/10.1371/JOURNAL.PPAT.1009534 | spa |
dc.relation.references | Pesingi, P. V., Singh, B. R., Pesingi, P. K., Bhardwaj, M., Singh, S. V., Kumawat, M., Sinha, D. K., & Gandham, R. K. (2019). MexAB-OprM Efflux Pump of Pseudomonas aeruginosa Offers Resistance to Carvacrol: A Herbal Antimicrobial Agent. Frontiers in Microbiology, 10, 2664. https://doi.org/10.3389/FMICB.2019.02664/BIBTEX | spa |
dc.relation.references | Petersen, T. N., Brunak, S., Von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/NMETH.1701 | spa |
dc.relation.references | Peterson, L. R. (2009). Bad Bugs, No Drugs: No ESCAPE Revisited. Clinical Infectious Diseases, 49(6), 992–993. https://doi.org/10.1086/605539 | spa |
dc.relation.references | Petrova, A., Feodorova, Y., Miteva-Katrandzhieva, T., Petrov, M., & Murdjeva, M. (2019). First detected OXA-50 carbapenem-resistant clinical isolates Pseudomonas aeruginosa from Bulgaria and interplay between the expression of main efflux pumps, OprD and intrinsic AmpC. Journal of Medical Microbiology, 68(12), 1723–1731. https://doi.org/10.1099/JMM.0.001106/CITE/REFWORKS | spa |
dc.relation.references | Raman, G., Avendano, E. E., Chan, J., Merchant, S., & Puzniak, L. (2018). Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrobial Resistance & Infection Control 2018 7:1, 7(1), 1–14. https://doi.org/10.1186/S13756-018-0370-9 | spa |
dc.relation.references | Rice, L. B. (2008). Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081. https://doi.org/10.1086/533452 | spa |
dc.relation.references | Roy, P. H., Tetu, S. G., Larouche, A., Elbourne, L., Tremblay, S., Ren, Q., Dodson, R., Harkins, D., Shay, R., Watkins, K., Mahamoud, Y., & Paulsen, I. T. (2010). Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE, 5(1), 1–10. https://doi.org/10.1371/journal.pone.0008842 | spa |
dc.relation.references | Sader, H. S., Castanheira, M., Duncan, L. R., & Mendes, R. E. (2021). Antimicrobial activities of ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam, meropenem/vaborbactam, and comparators against Pseudomonas aeruginosa from patients with skin and soft tissue infections. International Journal of Infectious Diseases, 113, 279–281. https://doi.org/10.1016/J.IJID.2021.10.022 | spa |
dc.relation.references | Saini, H., Vadekeetil, A., Chhibber, S., & Harjai, K. (2017). Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 61(3). https://doi.org/10.1128/AAC.01906-16 | spa |
dc.relation.references | Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 30(14), 2068–2069. https://doi.org/10.1093/BIOINFORMATICS/BTU153 | spa |
dc.relation.references | Shortridge, D., Gales, A. C., Streit, J. M., Huband, M. D., Tsakris, A., & Jones, R. N. (2019). Geographic and temporal patterns of antimicrobial resistance in pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open Forum Infectious Diseases, 6(Suppl 1), S63–S68. https://doi.org/10.1093/ofid/ofy343 | spa |
dc.relation.references | Singh, S., Pulusu, C. P., Pathak, A., Pradeep, B. E., & Prasad, K. N. (2021). Complete genome sequence of an extensively drug-resistant Pseudomonas aeruginosa ST773 clinical isolate from North India. Journal of Global Antimicrobial Resistance, 27, 244–246. https://doi.org/10.1016/J.JGAR.2021.10.010 | spa |
dc.relation.references | Sood, U., Hira, P., Kumar, R., Bajaj, A., Rao, D. L. N., Lal, R., & Shakarad, M. (2019). Comparative genomic analyses reveal core-genome-wide genes under positive selection and major regulatory hubs in outlier strains of Pseudomonas aeruginosa. Frontiers in Microbiology, 10(FEB), 53. https://doi.org/10.3389/FMICB.2019.00053/BIBTEX | spa |
dc.relation.references | Spernovasilis, N., Psichogiou, M., & Poulakou, G. (2021). Skin manifestations of Pseudomonas aeruginosa infections. Current Opinion in Infectious Diseases, 34(2), 2–79. https://doi.org/10.1097/QCO.0000000000000717 | spa |
dc.relation.references | Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/BIOINFORMATICS/BTU033 | spa |
dc.relation.references | Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowallk, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., … Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000 406:6799, 406(6799), 959–964. https://doi.org/10.1038/35023079 | spa |
dc.relation.references | Sun, Y., Han, R., Ding, L., Yang, Y., Guo, Y., Wu, S., Hu, F., & Yin, D. (2021). First Report of blaOXA-677 with Enhanced Meropenem-Hydrolyzing Ability in Pseudomonas aeruginosa in China. Infection and Drug Resistance, 14, 5725. https://doi.org/10.2147/IDR.S340662 | spa |
dc.relation.references | Tavare, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Some Mathematical Questions in Biology / DNA Sequence Analysis Edited by Robert M. Miura. https://doi.org/10.3/JQUERY-UI.JS | spa |
dc.relation.references | Tsay, T. Bin, Jiang, Y. Z., Hsu, C. M., & Chen, L. W. (2016). Pseudomonas aeruginosa colonization enhances ventilator-associated pneumonia-induced lung injury. Respiratory Research, 17(1). https://doi.org/10.1186/S12931-016-0417-5 | spa |
dc.relation.references | Vanegas, J. M., Cienfuegos, A. V., Ocampo, A. M., López, L., Del Corral, H., Roncancio, G., Sierra, P., Echeverri-Toro, L., Ospina, S., Maldonado, N., Robledo, C., Restrepo, A., & Jiménez, J. N. (2014). Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. Journal of Clinical Microbiology, 52(11), 3978–3986. https://doi.org/10.1128/JCM.01879-14 | spa |
dc.relation.references | Villegas, M. V., Lolans, K., Correa, A., Kattan, J. N., Lopez, J. A., & Quinn, J. P. (2007). First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrobial Agents and Chemotherapy, 51(4), 1553–1555. https://doi.org/10.1128/AAC.01405-06 | spa |
dc.relation.references | Wei, L., Wu, Q., Zhang, J., Guo, W., Gu, Q., Wu, H., Wang, J., Lei, T., Xue, L., Zhang, Y., Wei, X., & Zeng, X. (2020). Prevalence, Virulence, Antimicrobial Resistance, and Molecular Characterization of Pseudomonas aeruginosa Isolates From Drinking Water in China. Frontiers in Microbiology, 11, 544653. https://doi.org/10.3389/FMICB.2020.544653/FULL | spa |
dc.relation.references | Wencewicz, T. A., & Drive, O. B. (2020). Crossroads of Antibiotic Resistance and Biosynthesis Timothy. J Mol Biol., 431(18), 3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033.Crossroads | spa |
dc.relation.references | WHO. (2017). World Health Organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://doi.org/10.4103/jms.jms_25_17 | spa |
dc.relation.references | Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/JOURNAL.PCBI.1005595 | spa |
dc.relation.references | Yang, K., Xiao, T., Shi, Q., Zhu, Y., Ye, J., Zhou, Y., & Xiao, Y. (2021). Socioeconomic burden of bloodstream infections caused by carbapenem-resistant and carbapenem-susceptible Pseudomonas aeruginosa in China. Journal of Global Antimicrobial Resistance, 26, 101–107. https://doi.org/10.1016/J.JGAR.2021.03.032 | spa |
dc.relation.references | Yoon, E. J., & Jeong, S. H. (2021). Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Frontiers in Microbiology, 12, 30. https://doi.org/10.3389/FMICB.2021.614058/BIBTEX | spa |
dc.relation.references | Yoshinaga, Y., Daum, C., He, G., & O’Malley, R. (2018). Genome Sequencing. Methods in Molecular Biology (Clifton, N.J.), 1775, 37–52. https://doi.org/10.1007/978-1-4939-7804-5_4 | spa |
dc.relation.references | Yuan, M., Guan, H., Sha, D., Cao, W., Song, X., Che, J., Kan, B., & Li, J. (2021). Characterization of blakpc-2-carrying plasmid pr31-kpc from a pseudomonas aeruginosa strain isolated in china. Antibiotics, 10(10). https://doi.org/10.3390/ANTIBIOTICS10101234/S1 | spa |
dc.relation.references | Zahedi, A., Rahbar, M., Hamidi-farahani, R., & Asgari, A. (2021). Microbial Pathogenesis Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microbial Pathogenesis, 153(January), 104789. https://doi.org/10.1016/j.micpath.2021.104789 | spa |
dc.relation.references | Zhao, W. H., & Hu, Z. Q. (2010). β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa. Http://Dx.Doi.Org/10.3109/1040841X.2010.481763, 36(3), 245–258. https://doi.org/10.3109/1040841X.2010.481763 | spa |
dc.relation.references | Zubyk, H. L., & Wright, G. D. (2021). CrpP Is Not a Fluoroquinolone-Inactivating Enzyme. Antimicrobial Agents and Chemotherapy, 65(8). https://doi.org/10.1128/AAC.00773-21 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.decs | Bacterias | spa |
dc.subject.decs | Bacteria | eng |
dc.subject.decs | Monitoreo epidemiológico | epa |
dc.subject.decs | Epidemiological Monitoring | eng |
dc.subject.proposal | Pseudomonas aeruginosa | spa |
dc.subject.proposal | Infecciones Asociadas a la Atención en Salud | spa |
dc.subject.proposal | Resistencia a antibióticos | spa |
dc.subject.proposal | Seguimiento epidemiológico | spa |
dc.subject.proposal | Secuenciación de Genoma Completo | spa |
dc.subject.proposal | Grupos clonales | spa |
dc.subject.proposal | Secuencio-tipos (ST) | spa |
dc.subject.proposal | Healthcare-Associated Infections (HAIs) | eng |
dc.subject.proposal | Antibiotic resistance | eng |
dc.subject.proposal | Epidemiological tracing | eng |
dc.subject.proposal | Whole Genome Sequencing (WGS) | eng |
dc.subject.proposal | Sequence-types (ST) | eng |
dc.subject.proposal | Clonal groups | eng |
dc.title | Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS) | spa |
dc.title.translated | Epidemiological tracing of the genomic profiles of antibiotic resistance in clinical isolates of P. aeruginosa using Whole Genome Sequencing (WGS) | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1065651232.2023.pdf
- Tamaño:
- 3.51 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: