Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas

dc.contributor.advisorCuellar Burgos, Alneira
dc.contributor.advisorMesa Rueda, Fabio Augusto
dc.contributor.authorValencia Eraso, Carlos David
dc.contributor.researchgroupPolímeros y Materiales Compuestosspa
dc.date.accessioned2024-01-22T14:28:30Z
dc.date.available2024-01-22T14:28:30Z
dc.date.issued2023
dc.descriptionfotografías, graficas, tablasspa
dc.description.abstractLa incorporación de compuestos poliméricos biobasados han adquirido mucha importancia y relevancia en la actualidad, debido a que permiten la reducción de los compuestos que tiene como origen el petróleo mediante la inclusión de nuevas fuentes renovables en su producción. En este trabajo se obtuvo un derivado del aceite de ricino mediante la transesterificación del aceite con el fin de reducir la funcionalidad hidroxilo y poder obtener un producto lineal para la elaboración de un elastómero de poliuretano urea (PUU). En la síntesis se utilizó aceite de ricino con dietilenglicol en exceso y KOH como catalizador. El producto obtenido fue separado y caracterizado por resonancia magnética nuclear (RMN), espectroscopia de infrarrojo por transformada de Fourier (FTIR), análisis termogravimétrico (TGA) y número hidroxilo, obteniéndose como bandas características para el ricinoleato (REG) el -OH en 1050 cm-1 del grupo hidroxilo primario y los picos 3.6 y 4.1 ppm correspondientes al –CH2 adyacente a un carbono secundario y al CH2-C-C=O-, respectivamente. El producto obtenido presentó una temperatura de degradación de 165ºC y un valor hidroxilo de 328 mg KOH/g. Posteriormente, se formuló y obtuvo un poliuretano urea biobasado (PUUR) con un segmento duro (%HS) de 40% a partir del derivado de aceite de ricino con una adición de ricinoleato de etilenglicol (REG) de 1.6% molar, una temperatura de 90ºC, catalizador DABCO y utilizando la técnica por solvente en dos pasos con un 32% de sólidos disueltos de igual forma se sintetizó un PUU estándar a las mismas condiciones con el fin de establecer las variaciones del producto biobasado. Estos productos fueron caracterizados X Poliuretano Urea Modificado con un Derivado de Aceite de Ricino con Aplicaciones Elastoméricas por RMN, FTIR, TGA, DSC y finalmente, por un ensayo de tracción para evaluar las características mecánicas de los productos. A través de la RMN se estableció que el producto REG se incorporó a la estructura a través del protón en la ubicación de 5.40 ppm (–CH) que corresponde a la insaturación del REG. Adicionalmente, se observó un cambio en el módulo de tracción del PUUR aumentando un 29% y reduciendo la elongación en un 82% con respecto al PUU estándar sintetizado, además se presenta también una reducción en 17 ºC en su estabilidad térmica, una reducción de la cristalización fría y un aumento en la temperatura de fusión del producto final con respecto al PUU estándar. Estos resultados son importantes, ya que se pudo sintetizar un producto biobasado mediante la modificación del aceite de ricino, y se pudo establecer los efectos ocasionados por el uso de este tipo de productos renovables en las propiedades finales de los poliuretanos urea lineales, adicionalmente se establecieron los procesos de síntesis y purificación de cada una de las etapas del proceso para la producción de un polímero de ingeniería como es el PUU con un derivado de fuente renovable (Texto tomado de la fuente)spa
dc.description.abstractThe incorporation of biobased polymeric compounds has acquired great importance and relevance today, because they allow the reduction of compounds that have petroleum origin by including new renewable sources in their production. In this work, a derivative of castor oil was obtained by means of transesterification of the oil in order to reduce the hydroxyl functionality and to obtain a linear product for the elaboration of a polyurethane urea elastomer. In the synthesis, castor oil was obtained with excess diethylene glycol and KOH as catalyst. The obtained product was separated and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and hydroxyl number, obtaining as characteristic bands for ricinoleate (REG) the -OH in 1050 cm-1 of the primary hydroxyl group and the 3.6 and 4.1 ppm peaks corresponding to –CH2 adjacent to a secondary carbon and to CH2-C-C=O-, respectively. The product obtained had a degradation temperature of 165°C and a hydroxyl value of 328 mg KOH/g. Subsequently, a biobased polyurethane urea (PUUR) with a hard segment (%HS) of 40% was formulated and obtained from the castor oil derivative with an addition of ethylene glycol ricinoleate (REG) of 1.6% molar, a temperature of 90ºC, DABCO catalyst and using the solvent technique in two steps with 32% dissolved solids, in the same way, a standard PUU was synthesized under the same conditions in order to establish the variations of the biobased product. These products were characterized by NMR, FTIR, TGA, DSC and finally, by a tensile test to evaluate the mechanical characteristics of the products. Through NMR it was established that the REG product was incorporated into the structure through the proton at the location of 5.40 ppm (–CH) which corresponds to the unsaturation of the REG. In addition, a change in the traction modulus of the PUUR was lost, increasing by 29% and elongation was reduced by 82% with respect to the synthesized standard PUU, in addition there is also a reduction of 17 ºC in its thermal stability, a reduction in the cold crystallization and an increase in the melting temperature of the final product with respect to standard PUU. These results are important, since it was possible to synthesize a biobased product by modifying castor oil, and it was possible to establish the effects caused by the use of this type of renewable products on the final properties of linear urea polyurethanes, additionally it suffers the synthesis and purification processes of each of the stages of the process for the production of an engineering polymer such as PUU with derivatives from renewable sources.eng
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaPolímeros y Materiales Compuestosspa
dc.format.extent147 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85386
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesJ. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj, “Polyurethane types, synthesis and applications – a review,” RSC Adv., vol. 6, no. 115, pp. 114453–114482, 2016, doi: 10.1039/C6RA14525Fspa
dc.relation.referencesHarvard Growth Lab’s, “The Atlas of Economic Complexity,” 7.0, 2022. https://atlas.cid.harvard.edu/spa
dc.relation.referencesAmerican Chemistry Council, “Polyurethane Applications,” 2022. https://www.americanchemistry.com/industry-groups/center-for-the-polyurethanes-industry-cpi/applications-benefits/polyurethane-applicationsspa
dc.relation.referencesJ. Mattia and P. Painter, “A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol),” Macromolecules, vol. 40, no. 5, pp. 1546–1554, 2007, doi: 10.1021/ma0626362.spa
dc.relation.referencesM. Lee, M. H. Heo, H. Lee, Y. Kim, and J. Shin, “Tunable Softening and Toughening of Individualized Cellulose Nanofibers-Polyurethane Urea Elastomer Composites,” Carbohydr. Polym., 2016, doi: 10.1016/j.carbpol.2016.12.019.spa
dc.relation.referencesH. K. Lee and S. W. Ko, “Structure and thermal properties of polyether polyurethaneurea elastomers,” J. Appl. Polym. Sci., vol. 50, no. 7, pp. 1269–1280, 1993, doi: 10.1002/app.1993.070500718.spa
dc.relation.referencesY. Xu, Z. Petrovic, S. Das, and G. L. Wilkes, “Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments,” Polymer (Guildf)., vol. 49, no. 19, pp. 4248–4258, 2008, doi: 10.1016/j.polymer.2008.07.027.spa
dc.relation.referencesT. A. P. Hai et al., “Renewable polyurethanes from sustainable biological precursors,” Biomacromolecules, vol. 22, no. 5, pp. 1770–1794, 2021, doi: 10.1021/acs.biomac.0c01610.spa
dc.relation.referencesS. Albeaik, M. Kaltenberg, M. Alsaleh, and C. A. Hidalgo, “Improving the Economic Complexity Index,” pp. 1–21, 2013.spa
dc.relation.referencesC. Isola et al., “Life cycle assessment of photodegradable polymeric material derived from renewable bioresources,” J. Clean. Prod., 2016, doi: 10.1016/j.jclepro.2016.10.177.spa
dc.relation.referencesministerio de agricultura y desarrollo Rural, “Red de información y comunicación del sector agropecuario colombiano,” 2020. https://www.agronet.gov.co/Paginas/inicio.aspxspa
dc.relation.referencesH. Mutlu and M. A. R. Meier, “Castor oil as a renewable resource for the chemical industry,” Eur. J. Lipid Sci. Technol., vol. 112, no. 1, pp. 10–30, 2010, doi: 10.1002/ejlt.200900138.spa
dc.relation.referencesS. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Influence of NCO/OH and transesterified castor oil on the structure and properties of polyurethane: Synthesis and characterization,” Mater. Express, vol. 5, no. 5, pp. 377–389, 2015, doi: 10.1166/mex.2015.1254.spa
dc.relation.referencesM. Sánchez, R. Castañeda, and M. Castañeda S., “Usos y potencialidad de la Higuerilla (Ricinus communis) en sistemas agroforestales en Colombia,” Pubvet, vol. 10, no. 6, pp. 507–512, 2016, doi: 10.22256/pubvet.v10n6.507-512.spa
dc.relation.referencesP. Mazo, L. a. Rios, and D. Estenoz, “Síntesis y caracterización de espumas flexibles de poliuretano obtenidas a partir de aceite de castor maleinizado,” Polímeros, vol. 19, no. 2, pp. 149–154, 2009, doi: 10.1590/S0104-14282009000200013.spa
dc.relation.referencesS. A. Madbouly, Y. Xia, and M. R. Kessler, “Rheological Behavior of Environmentally Friendly Castor Oil-Based Waterborne Polyurethane Dispersions,” 2013.spa
dc.relation.referencesM. M. Conceição, R. A. Candeia, F. C. Silva, A. F. Bezerra, V. J. Fernandes, and A. G. Souza, “Thermoanalytical characterization of castor oil biodiesel,” Renew. Sustain. Energy Rev., vol. 11, no. 5, pp. 964–975, 2007, doi: 10.1016/j.rser.2005.10.001.spa
dc.relation.referencesA. M. G. Pilonieta, F. J. I, and L. J. C. Riaño, “Poliuretanos degradables a partir de aceite de higuerilla.,” Sci. Tech. Año XIII, vol. 1, no. 36, pp. 1–6, 2007, doi: 10.22517/23447214.4855.spa
dc.relation.referencesA. Bahadur et al., “Biocompatible waterborne polyurethane-urea elastomer as intelligent anticancer drug release matrix: A sustained drug release study,” React. Funct. Polym., vol. 119, no. March, pp. 57–63, 2017, doi: 10.1016/j.reactfunctpolym.2017.08.001.spa
dc.relation.referencesJ. Chen, R. Dong, J. Ge, B. Guo, and P. X. Ma, “Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering,” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28273–28285, 2015, doi: 10.1021/acsami.5b10829.spa
dc.relation.referencesR. A. Beck and R. W. Truss, “Effect of chemical structure on the wear behaviour of polyurethane-urea elastomers,” Wear, vol. 218, no. 2, pp. 145–152, 1998, doi: 10.1016/S0043-1648(98)00219-1.spa
dc.relation.referencesA. Reghunadhan and S. Thomas, Polyurethanes: Structure, Properties, Synthesis, Characterization, and Applications. Elsevier Inc., 2017. doi: 10.1016/B978-0-12-804039-3.00001-4.spa
dc.relation.referencesE. Delebecq, J. Pascault, and B. Boutevin, “On the Versatility of Urethane: Urea Bonds/Reversibility , Blocked Isocyanate and Non-isocyanate Polyurethane,” Chem. Rev., vol. 113, pp. 80–118, 2013.spa
dc.relation.referencesD. K. Chattopadhyay and D. C. Webster, “Thermal stability and flame retardancy of polyurethanes,” Prog. Polym. Sci., vol. 34, no. 10, pp. 1068–1133, 2009, doi: 10.1016/j.progpolymsci.2009.06.002.spa
dc.relation.referencesO. Bayer and G. Farbenindustrie, “Polyurethanes 16.1,” no. 1950, 1988.spa
dc.relation.referencesA. Brocas, C. Mantzaridis, D. Tunc, and S. Carlotti, “Polyether synthesis: From activated or metal-free anionic ring-opening polymerization of epoxides to functionalization,” Prog. Polym. Sci., 2012, doi: 10.1016/j.progpolymsci.2012.09.007.spa
dc.relation.referencesA. Domanska and A. Boczkowska, “Biodegradable polyurethanes from crystalline prepolymers,” Polym. Degrad. Stab., vol. 108, pp. 175–181, 2014, doi: 10.1016/j.polymdegradstab.2014.06.017.spa
dc.relation.referencesD. K. Chattopadhyay and K. V. S. N. Ã. Raju, “Structural engineering of polyurethane coatings for high performance applications,” vol. 32, pp. 352–418, 2007, doi: 10.1016/j.progpolymsci.2006.05.003.spa
dc.relation.referencesY. Zhou, G. Yuan, and H. Saihua, “Novel CuCo 2 O 4 / graphitic Carbon Nitride Nanohybrids : Highly Effective Catalysts for Reducing CO Generation and Fire Hazards of Thermoplastic Polyurethane Nanocomposites,” Elsevier B.V., 2015, doi: 10.1016/j.jhazmat.2015.03.041.spa
dc.relation.referencesJ. W. Britain and P. G. Gemeinhardt, “Catalysis of the isocyanate‐hydroxyl reaction,” J. Appl. Polym. Sci., vol. 4, no. 11, pp. 207–211, 1960, doi: 10.1002/app.1960.070041112.spa
dc.relation.referencesS. Oprea and Æ. O. Potolinca, “Synthesis of cross-linked polyurethane elastomers with fluorescein linkages,” pp. 4181–4187, 2009, doi: 10.1007/s10853-009-3625-2.spa
dc.relation.referencesJ. T. Garrett, J. Runt, and J. S. Lin, “Microphase separation of segmented poly(urethane urea) block copolymers,” Macromolecules, vol. 33, no. 17, pp. 6353–6359, 2000, doi: 10.1021/ma000600i.spa
dc.relation.referencesP. A. Ourique et al., “Synthesis, properties, and applications of hybrid polyurethane–urea obtained from air-oxidized soybean oil,” Prog. Org. Coatings, vol. 108, no. April, pp. 15–24, 2017, doi: 10.1016/j.porgcoat.2017.04.002.spa
dc.relation.referencesZ. Yang, H. Peng, W. Wang, and T. Liu, “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” J. Appl. Polym.Sci., vol. 116, no. 5, pp. 2658–2667, 2010, doi: 10.1002/app.spa
dc.relation.referencesL. May-Hernández, F. Hernández-Sáncehz, J. L. Gomez Ribelles, and R. Sabater i Serra, “Segmented Poly(urethane-urea) Elastomers Based on Polycaprolactone: Structure and Properties,” J. ofAppliedPolymer Sci., vol. 119, p. 2093, Feb. 2011, doi: 10.1002/app.32929.spa
dc.relation.referencesA. J. Hsieh, J. A. Orlicki, and R. L. Beyer, “Molecular Design of Novel Poly ( urethane-urea ) Hybrids as Helmet Pads for Ballistic and Blast Trauma Mitigation,” ARL Tech Rep., no. March, 2009.spa
dc.relation.referencesR. Heath, “Chapter 28 - Isocyanate-Based Polymers: Polyurethanes, Polyureas, Polyisocyanurates, and their Copolymers,” M. B. T.-B. P. M. (Eighth E. Gilbert, Ed. Butterworth-Heinemann, 2017, pp. 799–835. doi: https://doi.org/10.1016/B978-0-323-35824-8.00028-1.spa
dc.relation.referencesJ. C. Ronda, G. Lligadas, and M. Galia, “Review Article Vegetable oils as platform chemicals for polymer synthesis,” pp. 46–58, 2011, doi: 10.1002/ejlt.201000103.spa
dc.relation.referencesY. Y. Li, X. Luo, and S. Hu, “Bio-based Polyols and Polyurethanes,” Bio-based Polyols and Polyurethanes, pp. 1–79, 2015, doi: 10.1007/978-3-319-21539-6.spa
dc.relation.referencesP. Taylor and Z. S. Petrovi, “Polyurethanes from Vegetable Oils Polyurethanes from Vegetable Oils,” no. December 2012, pp. 37–41, 2008, doi: 10.1080/15583720701834224.spa
dc.relation.referencesV. Ca, G. Lligadas, J. C. Ronda, and M. Galia, “Renewable polymeric materials from vegetable oils : a perspective,” vol. 16, no. 9, pp. 337–343, 2013, doi: 10.1016/j.mattod.2013.08.016.spa
dc.relation.referencesThe chemistry of oils and fats, vol. 2325. 2005. doi: 10.1002/jsfa.2337.spa
dc.relation.referencesD. S. Ogunniyi, “Castor oil: A vital industrial raw material,” Bioresour. Technol., vol. 97, no. 9, pp. 1086–1091, 2006, doi: 10.1016/j.biortech.2005.03.028.spa
dc.relation.referencesD. E. Rodríguez Arias and J. S. Duque Nieto, “Plan de negocios para el cultivo de Higuerilla, estudio de caso municipio de Balboa (Risaralda),” UniversidadTecnológica de Pereira, 2010.spa
dc.relation.referencesM. A. Mdalel and L. S. Esparza Heredia, “Análisis de factibilidad para planta de extracción de aceite de ricino,” Universidad Católica de salta, 2016. [Online]. Available: http://bibliotecavirtualoducal.uc.cl:8081/xmlui/handle/123456789/1423882spa
dc.relation.referencesS. Tips, J. Ward, W. Collins, and V. Information, Kirk-Othmer Encyclopedia of Chemical Technology 4 th Edition, no. September. 2010.spa
dc.relation.referencesF. H. Smith and A. U. Ayres, “Vegetable oil refining by the modified soda ash process,” J. Am. Oil Chem. Soc., vol. 33, no. 3, pp. 93–95, 1956, doi: 10.1007/BF02632287.spa
dc.relation.referencesI. A. Sánchez Medina and K. Huertas Greco, “Obtención y caracterización de biodiesel a partir de aceite de semillas de ricinus communis. (higuerilla) modificadas géneticamente y cultivadas en el eje cafetero,” Universidad Tecnológica de Pereira, 2012.spa
dc.relation.referencesA. Yeboah et al., “Castor oil (Ricinus communis): A review on the chemical composition and physicochemical properties,” Food Sci. Technol., vol. 41, no. December, pp. 399–413, 2021, doi: 10.1590/fst.19620.spa
dc.relation.referencesVertellus and O’Shea, “Castor oil and its chemistry,” 2000. [Online]. Available: www.groshea.comspa
dc.relation.referencesM. F. Valero, J. E. Pulido, Á. Ramírez, and Z. Cheng, “Sintesis de poliuretanos a partir de polioles obtenidos a partir del aceite de higuerilla modificado por transesterificación con pentaeritritol,” Quim. Nova, vol. 31, no. 8, pp. 2076–2082, 2008, doi: 10.1590/S0100-40422008000800031.spa
dc.relation.referencesS. Miao, P. Wang, Z. Su, and S. Zhang, “Vegetable-oil-based polymers as future polymeric biomaterials,” Acta Biomater., vol. 10, no. 4, pp. 1692–1704, 2014, doi: 10.1016/j.actbio.2013.08.040.spa
dc.relation.referencesN. R. Paluvai, S. Mohanty, and S. K. Nayak, “Fabrication and evaluation of acrylated epoxidized castor oil-toughened diglycidyl ether of bisphenol A nanocomposites,” Can. J. Chem. Eng., vol. 93, no. 12, pp. 2107–2116, 2015, doi: 10.1002/cjce.22320.spa
dc.relation.referencesM. F. Valero et al., “Poliuretanos elastomericos obtenidos a partir de aceitede ricino y almidon de yuca original y modificado con anhidrido propinico: Sinntesis, propiedades fisicoquímicas y fisicomecánicas,” Quim. Nova, vol. 33, no. 4, pp. 850–854, 2010, doi: 10.1590/S0100-40422010000400016.spa
dc.relation.referencesM. F. Valero and L. E. Díaz, “Poliuretanos obtenidos a partir de aceite de higuerilla modificado y poli-isocianatos de lisina: Sinntesis, propiedades mecanicas y termicas y degradación in vitro,” Quim. Nova, vol. 37, no. 9, pp. 1441–1445, 2014, doi: 10.5935/0100-4042.20140228.spa
dc.relation.referencesS. Pramanik, K. Sagar, B. K. Konwar, and N. Karak, “Synthesis, characterization and properties of a castor oil modified biodegradable poly(ester amide) resin,” Prog. Org. Coatings, vol. 75, no. 4, pp. 569–578, 2012, doi: 10.1016/j.porgcoat.2012.05.009.spa
dc.relation.referencesV. Cardona et al., “Obtención de monoglicéridos de aceite de ricino empleando glicerina refinada y cruda: estudio de las principales variables del proceso,” 2010.spa
dc.relation.referencesA. Franco, “Preparation flexible foam polyurethane from modifications palm oil and castor oil,” no. 36, pp. 607–612, 2007.spa
dc.relation.referencesS. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “An insight on castor oil based polyuretahne and nanocomposites: resent trends and development,” Polym. Plast. Technol. Eng., vol. 56, no. January 2016, pp. 1–30, 2017.spa
dc.relation.referencesG. Castellar, E. Angulo, and B. Cardozo, “Transesterificación de aceites vegetales empleando catalizadores heterogéneos,” Prospect, vol. 12, no. 2, pp. 90–104, 2014, doi: 10.1007/s11746-016-2798-5.spa
dc.relation.referencesK. Ramezani, S. Rowshanzamir, and M. H. Eikani, “Castor oil transesteri fi cation reaction : A kinetic study and optimization of parameters,” Energy, vol. 35, no. 10, pp. 4142–4148, 2010, doi: 10.1016/j.energy.2010.06.034.spa
dc.relation.referencesM. Belén Navas, “Estudio de catalizadores heterogéneos en la transesterificación de triglicéridos para obtener biodiesel de segunda generación,” Universidad Nacional de La Plata, 2018.spa
dc.relation.referencesA. Eladeb, A. Aydi, and I. Alenezi, “Ethanolysis of Waste Cooking oils using KOH Catalyst,” Orient. J. Chem., vol. 37, no. 6, pp. 1344–1349, 2021, doi:10.13005/ojc/370611.spa
dc.relation.referencesS. Baroutian, M. K. Aroua, A. A. A. Raman, and N. M. N. Sulaiman, “Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil,” Fuel Process. Technol., vol. 91, no. 11, pp. 1378–1385, 2010, doi: 10.1016/j.fuproc.2010.05.009.spa
dc.relation.referencesC. Cabello, S. Rincon, and A. Zeped, “Types of heterogeneous catalysts used for biodiesel production,” Afinidad, vol. 74, no. 577, pp. 51–59, 2017.spa
dc.relation.referencesZ. Helwani, M. R. Othman, N. Aziz, J. Kim, and W. J. N. Fernando, “Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review,” Applied Catalysis A: General, vol. 363, no. 1–2. pp. 1–10, 2009. doi: 10.1016/j.apcata.2009.05.021.spa
dc.relation.referencesM. Becerra, A. Centeno, and S. A. Giraldo, “Búsqueda de catalizadores sólidos básicos para la producción de biodiesel,” Inf. Tecnol., vol. 21, no. 4, pp. 57–66, 2010, doi: 10.1612/inf.tecnol.4361it.09.spa
dc.relation.referencesM. Kouzu, T. Kasuno, M. Tajika, and Y. Sugimoto, “Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production,” vol. 87, pp. 2798–2806, 2008, doi: 10.1016/j.fuel.2007.10.019.spa
dc.relation.referencesY. Meng et al., “Synthesis and Characterization of Crosslinked Castor Oil-Based Polyurethane Nanocomposites Based on Novel Silane-Modified Isocyanate and Their Potential Application in Heat Insulating Coating,” Polymers (Basel)., vol. 14, no. 9, 2022, doi: 10.3390/polym14091880.spa
dc.relation.referencesP. Saha, C. Khomlaem, H. Aloui, and B. S. Kim, “Biodegradable polyurethanes based on castor oil and poly (3-hydroxybutyrate),” Polymers (Basel)., vol. 13, no. 9, 2021, doi: 10.3390/polym13091387.spa
dc.relation.referencesJ. Pulido et al., “Síntesis y caracterización de elastómeros de poliuretano a partir de poliol-suspensiones de aceite de higuerilla y almidón de yuca Synthesis and characterization of polyurethane elastomers from polyol-suspensions of castor oil and yucca starch,” Rev. Fac. Ing. Univ. Antioquia Colomb., vol. 39, no. Marzo, pp. 100–111, 2007.spa
dc.relation.referencesS. Oprea, “Synthesis and properties of polyurethane elastomers with castor oil as crosslinker,” JAOCS, J. Am. Oil Chem. Soc., vol. 87, no. 3, pp. 313–320, 2010, doi: 10.1007/s11746-009-1501-5.spa
dc.relation.referencesJ. Chen, D. Hu, Y. Li, F. Meng, J. Zhu, and J. Zeng, “Castor oil derived poly ( urethane urea ) networks with reprocessibility and enhanced mechanical properties,” Polymer (Guildf)., vol. 143, pp. 79–86, 2018, doi: 10.1016/j.polymer.2018.04.013.spa
dc.relation.referencesT. Guan et al., “Mechanically Robust Skin-like Poly(urethane-urea) Elastomers Cross-Linked with Hydrogen-Bond Arrays and Their Application as High-Performance Ultrastretchable Conductors,” Macromolecules, vol. 55, no. 13, pp. 5816–5825, Jul. 2022, doi: 10.1021/acs.macromol.2c00492.spa
dc.relation.referencesN. Bhosale, A. Shaik, and S. K. Mandal, “Synthesis and characterization of castor oil based hybrid polymers and their polyurethane-urea/silica coatings,” RSC Adv., vol. 5, no. 125, pp. 103625–103635, 2015, doi: 10.1039/c5ra20356b.spa
dc.relation.referencesT. A. da Silva, L. P. Ramos, S. F. Zawadzki, and R. V. Barbosa, “Application of Taguchi design to produce polyols based on castor oil derivatives with diethylene glycol,” Mediterr. J. Chem., vol. 4, no. 2, pp. 93–99, 2015, doi: 10.13171/mjc.4.2.2015.11.04.15.35/barbosa.spa
dc.relation.referencesJ. Yamanis and M. Adelman, “Transesterification of dmt with ethylene glycol catalyzed by amberlyst 15,” Can. J. Chem. Eng., vol. 53, no. 5, pp. 536–540, 1975, doi: 10.1002/cjce.5450530513.spa
dc.relation.referencesG. Mendow, N. S. Veizaga, and C. A. Querini, “Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst,” Bioresour. Technol., vol. 102, no. 11, pp. 6385–6391, 2011, doi: 10.1016/j.biortech.2011.01.072.spa
dc.relation.referencesP. Mazo and L. Galeano, “Esterificación de los ácidos grasos libres (FFA) del aceite crudo de palma. Calentamiento convencional vs microondas,” Sci. Tech., vol. XIII, no. 35, pp. 461–465, 2007, [Online]. Available: http://revistas.utp.edu.co/index.php/revistaciencia/article/view/5481spa
dc.relation.referencesI. M. Atadashi, M. K. Aroua, and A. A. Aziz, “Biodiesel separation and purification: A review,” Renew. Energy, vol. 36, no. 2, pp. 437–443, 2011, doi: 10.1016/j.renene.2010.07.019.spa
dc.relation.referencesA. Cambiella, J. M. Benito, C. Pazos, and J. Coca, “Centrifugal separation efficiency in the treatment of waste emulsified oils,” Chem. Eng. Res. Des., vol. 84, no. 1 A, pp. 69–76, 2006, doi: 10.1205/cherd.05130.spa
dc.relation.referencesJ. Fang, S. H. Ye, V. Shankarraman, Y. Huang, X. Mo, and W. R. Wagner, “Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine,” Acta Biomater., vol. 10, no. 11, pp. 4639–4649, 2014, doi: 10.1016/j.actbio.2014.08.008.spa
dc.relation.referencesH. Shirasaka, S. I. Inoue, K. Asai, and H. Okamoto, “Polyurethane urea elastomer having monodisperse poly(oxytetramethylene) as a soft segment with a uniform hard segment,” Macromolecules, vol. 33, no. 7, pp. 2776–2778, 2000, doi: 10.1021/ma9917904.spa
dc.relation.referencesS. Guoliang, D. Youjia, X. U. Tiejun, F. U. Chengbi, and C. Yuannan, “Study on synthesis technology of ethylene glycol potassium,” Ind. Catal., vol. 19, no. 12, pp. 71–73, 2011, doi: 10.3969/j.issn.1008-1143.2011.12.015.spa
dc.relation.referencesM. Di Serio, R. Tesser, A. Dimiccoli, and E. Santacesaria, “Kinetics of ethoxylation and propoxylation of ethylene glycol catalyzed by KOH,” Ind. Eng. Chem. Res., vol. 41, no. 21, pp. 5196–5206, 2002, doi: 10.1021/ie020082v.spa
dc.relation.referencesCharles M. Hansen, Hansen Solubility Parameters A User’s Handbook, 2nd ed. Boca Raton, 2007. doi: https://doi.org/10.1201/9781420006834.spa
dc.relation.referencesS. Zhang, C. Campagne, and F. Salaün, “Influence of solvent selection in the electrospraying process of polycaprolactone,” Appl. Sci., vol. 9, no. 3, 2019, doi: 10.3390/app9030402.spa
dc.relation.referencesR. Subrahmanyam, P. Gurikov, P. Dieringer, M. Sun, and I. Smirnova, “On the road to biopolymer aerogels—dealing with the solvent,” Gels, vol. 1, no. 2, pp. 291–313, 2015, doi: 10.3390/gels1020291.spa
dc.relation.referencesJ. Bus, F. Groeneweg, and F. Voorst Vader, “Effect of hydrogen bonding on water in oil emulsion properties,” in Surfactants and Macromolecules: Self-Assembly at Interfaces and in Bulk, vol. 130, 2008, pp. 122–130. doi: 10.1007/bfb0118250.spa
dc.relation.referencesJ. Ma, Y. Yang, X. Li, H. Sui, and L. He, “Mechanisms on the stability and instability of water-in-oil emulsion stabilized by interfacially active asphaltenes: Role of hydrogen bonding reconstructing,” Fuel, vol. 297, no. January, p. 120763, 2021, doi: 10.1016/j.fuel.2021.120763.spa
dc.relation.referencesA. U. Hahn and K. L. Mittal, “Mechanism of demulsification of oil-in-water emulsion in the centrifuge,” Colloid Polym. Sci. Kolloid-Zeitschrift Zeitschrift für Polym., vol. 257, no. 9, pp. 959–967, 1979, doi: 10.1007/BF01520721.spa
dc.relation.referencesR. N. Mukherjea, K. K. Saha, and S. K. Sanyal, “Plasticizing Effect of Acetylated Castor Oil on Castor Oil- Based , Moisture-Cured Polyurethane Film,” J. Am. Oil Chem. Soc., vol. 29, no. 9, pp. 653–656, 1978.spa
dc.relation.referencesR. P. Wool, “4 - POLYMERS AND COMPOSITE RESINS FROM PLANT OILS,” R. P. Wool and X. S. B. T.-B.-B. P. and C. Sun, Eds. Burlington: Academic Press, 2005, pp. 56–113. doi: https://doi.org/10.1016/B978-012763952-9/50005-8.spa
dc.relation.referencesS. N. Naik, D. K. Saxena, B. R. Dole, and S. K. Khare, “Chapter 21 - Potential and Perspective of Castor Biorefinery,” T. Bhaskar, A. Pandey, S. V. Mohan, D.-J. Lee, and S. K. B. T.-W. B. Khanal, Eds. Elsevier, 2018, pp. 623–656. doi: https://doi.org/10.1016/B978-0-444-63992-9.00021-5.spa
dc.relation.referencesI. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt. J. Pet., vol. 25, no. 1, pp. 21–31, 2016, doi: 10.1016/j.ejpe.2015.06.007.spa
dc.relation.referencesH. Li, S. Niu, and C. Lu, “Pyrolysis Characteristics of Castor Oil through Thermogravimetric Coupled with Fourier Transform Infrared Spectroscopy,” in Procedia Engineering, 2017, vol. 205, pp. 3705–3710. doi: 10.1016/j.proeng.2017.10.292.spa
dc.relation.referencesG. Dwivedi and M. P. Sharma, “Experimental investigation on thermal stability of Pongamia Biodiesel by thermogravimetric analysis,” Egypt. J. Pet., vol. 25, no. 1, pp. 33–38, 2016, doi: 10.1016/j.ejpe.2015.06.008.spa
dc.relation.referencesH. Li, S. Niu, C. Lu, and Y. Wang, “Comprehensive Investigation of the Thermal Degradation Characteristics of Biodiesel and Its Feedstock Oil through TGA-FTIR,” Energy and Fuels, vol. 29, no. 8, pp. 5145–5153, 2015, doi: 10.1021/acs.energyfuels.5b01054.spa
dc.relation.referencesI. S. Ristić et al., “Thermal stability of polyurethane materials based on castor oil as polyol component,” J. Therm. Anal. Calorim., vol. 111, no. 2, pp. 1083–1091, 2013, doi: 10.1007/s10973-012-2497-x.spa
dc.relation.referencesP. Chand, C. V. Reddy, J. G. Verkade, and T. Wang, “Novel Characterization Method of Biodiesel Produced from Soybean Oil using Thermogravimetric Analysis David Grewell (corresponding author) Written for presentation at the,” Asabe, vol. 0300, no. 08, pp. 1–5, 2008.spa
dc.relation.referencesS. V. Araújo, B. S. Rocha, F. M. T. Luna, E. M. Rola, D. C. S. Azevedo, and C. L. Cavalcante, “FTIR assessment of the oxidation process of castor oil FAME submitted to PetroOXY and Rancimat methods,” Fuel Process. Technol., vol. 92, no. 5, pp. 1152–1155, 2011, doi: 10.1016/j.fuproc.2010.12.026.spa
dc.relation.referencesF. N. Habib, S. S. Kordestani, F. Afshar-Taromi, and Z. Shariatinia, “A novel topical tissue adhesive composed of urethane prepolymer modified with chitosan,” Int. J. Polym. Anal. Charact., vol. 16, no. 8, pp. 609–618, 2011, doi: 10.1080/1023666X.2011.622483.spa
dc.relation.referencesS. Ibrahim, A. Ahmad, and N. S. Mohamed, “Characterization of novel castor oil-based polyurethane polymer electrolytes,” Polymers (Basel)., vol. 7, no. 4, pp. 747–759, 2015, doi: 10.3390/polym7040747.spa
dc.relation.referencesT. Panhwar et al., “Physicochemical composition and FTIR characterization of castor seed oil,” Ukr. Food J., vol. 8, no. 4, pp. 778–787, 2019, doi: 10.24263/2304-974X-2019-8-4-9.spa
dc.relation.referencesA. Yusuf, P. Mamza, A. Ahmed, and U. Agunwa, “EXTRACTION AND CHARACTERIZATION OF CASTOR SEED OIL FROM WILD RICINUS COMMUNIS LINN,” Int. J. Sci. Environ. Technol., vol. 4, pp. 1392–1404, Oct. 2015.spa
dc.relation.referencesT. Gurunathan, S. Mohanty, and S. K. Nayak, “Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization,” Prog. Org. Coatings, vol. 80, no. 1, pp. 39–48, 2015, doi: 10.1016/j.porgcoat.2014.11.017.spa
dc.relation.referencesS. Sahoo, H. Kalita, S. Mohanty, and S. K. Nayak, “Synthesis of Vegetable Oil-Based Polyurethane: A Study on Curing Kinetics Behavior,” Int. J. Chem. Kinet., vol. 48, no. 10, pp. 622–634, 2016, doi: 10.1002/kin.21020.spa
dc.relation.referencesI. A. Mohammed, E. A. J. Al-Mulla, N. K. A. Kadar, and M. Ibrahim, “Structure-property studies of thermoplastic and thermosetting polyurethanes using palm and soya oils-based polyols,” J. Oleo Sci., vol. 62, no. 12, pp. 1059–1072, 2013, doi: 10.5650/jos.62.1059.spa
dc.relation.referencesK. M. Zia, A. Ahmad, S. Anjum, M. Zuber, and M. N. Anjum, “Synthesis and characterization of siloxane-based polyurethane elastomers using hexamethylene diisocyanate,” J. Elastomers Plast., vol. 47, no. 7, pp. 625–635, 2015, doi: 10.1177/0095244314526746.spa
dc.relation.referencesS. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Influence of NCO/OH and transesterified castor oil on the structure and properties of polyurethane: Synthesis and characterization,” Mater. Express, vol. 5, no. 5, pp. 377–389, 2015, doi: 10.1166/mex.2015.1254.spa
dc.relation.referencesHuntsman Corporation, “Technical Data Sheet RUBINATE® 1790 MDI.” 2010.spa
dc.relation.referencesA. Farkas, G. A. Mills, W. E. Erner, and J. B. Maerker, “Triethylenediamine—A New Bicyclic Intermediate and Catalyst for Making Polyurethane Foam,” Ind. Eng. Chem., vol. 51, no. 10, pp. 1299–1300, Oct. 1959, doi: 10.1021/ie50598a039.spa
dc.relation.referencesA. Farkas, R. L. Mascioli, F. Miller, and P. F. Strohm, “Derivatives of 1,4-diazabicyclo[2.2.2]octane (triethylenediamine),” J. Chem. Eng. Data, vol. 13, no. 2, pp. 278–284, Apr. 1968, doi: 10.1021/je60037a046.spa
dc.relation.referencesC. Wang, C. Ma, C. Mu, and W. Lin, “Tailor-made zwitterionic polyurethane coatings: Microstructure, mechanical property and their antimicrobial performance,” RSC Adv., vol. 7, no. 44, pp. 27522–27529, 2017, doi:10.1039/c7ra04379a.spa
dc.relation.referencesR. C. R. Nunes, R. A. Pereira, J. L. C. Fonseca, and M. R. Pereira, “X-ray studies on compositions of polyurethane and silica,” Polym. Test., vol. 20, no. 6, pp. 707–712, 2001, doi: 10.1016/S0142-9418(01)00007-1.spa
dc.relation.referencesH. Ishihara, I. Kimura, and N. Yoshihara, “Studies on Segmented Polyurethane-Urea Elastomers: Structure of Segmented Polyurethane-Urea Based on Poly(tetramethylene glycol), 4,4′-Diphenylmethane Diisocyanate, and 4,4′-Diaminodiphenylmethane,” J. Macromol. Sci. Part B, vol. 22, no. 5–6, pp. 713–733, 1983, doi: 10.1080/00222348308245751.spa
dc.relation.referencesS. Sang, Y. Li, K. Wang, and J. Tang, “Application of blocked isocyanate in preparation of polyurethane(urea) elastomers,” J. Appl. Polym. Sci., vol. 138, no. 24, 2021, doi: 10.1002/app.50582.spa
dc.relation.referencesM. Shoaib et al., “Relationship of hard segment concentration in polyurethane-urea elastomers with mechanical, thermal and drug release properties,” J. Drug Deliv. Sci. Technol., vol. 37, no. 1, pp. 88–96, 2017, doi: 10.1016/j.jddst.2016.12.003.spa
dc.relation.referencesD. K. Chattopadhyay, B. Sreedhar, and K. V. S. N. Raju, “Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea,” J. Polym. Sci. Part B Polym. Phys., vol. 44, no. 1, pp. 102–118, 2006, doi: 10.1002/polb.20586.spa
dc.relation.referencesX. Dai et al., “Study on structure and orientation action of polyurethane nanocomposites,” Macromolecules, vol. 37, no. 15, pp. 5615–5623, 2004, doi: 10.1021/ma049900g.spa
dc.relation.referencesM. Sadeghi, M. A. Semsarzadeh, M. Barikani, and B. Ghalei, “The effect of urethane and urea content on the gas permeation properties of poly(urethane-urea) membranes,” J. Memb. Sci., vol. 354, no. 1–2, pp. 40–47, 2010, doi: 10.1016/j.memsci.2010.02.070.spa
dc.relation.referencesL. C. Raghunanan, I. Martínez, C. Valencia, M. C. Sánchez, and J. M. Franco, “Unexpected Selectivity in the Functionalization of Neat Castor Oil under Benign Catalyst-Free Conditions,” ACS Sustain. Chem. Eng., vol. 6, no. 6, pp. 7212–7215, 2018, doi: 10.1021/acssuschemeng.8b00979.spa
dc.relation.referencesJ. Sheth, “Investigation of the Influence of Selected Variables on the Solid State Structure-Property Behavior of Segmented Copolymers,” 2005.spa
dc.relation.referencesA. Marcos-Fernández, A. E. Lozano, L. González, and A. Rodríguez, “Hydrogen bonding in copoly(ether-urea)s and its relationship with the physical properties,” Macromolecules, vol. 30, no. 12, pp. 3584–3592, 1997, doi: 10.1021/ma9619039.spa
dc.relation.referencesP. Cinelli, I. Anguillesi, and A. Lazzeri, “Green synthesis of flexible polyurethane foams from liquefied lignin,” Eur. Polym. J., vol. 49, no. 6, pp. 1174–1184, 2013, doi: 10.1016/j.eurpolymj.2013.04.005.spa
dc.relation.referencesS. J. Peng, Y. Jin, X. F. Cheng, T. B. Sun, R. Qi, and B. Z. Fan, “A new method to synthesize high solid content waterborne polyurethanes by strict control of bimodal particle size distribution,” Prog. Org. Coatings, vol. 86, no. 1, pp. 1–10, 2015, doi: 10.1016/j.porgcoat.2015.03.013.spa
dc.relation.referencesD. P. Queiroz, M. N. De Pinho, and C. Dias, “ATR-FTIR studies of poly(propylene oxide)/polybutadiene bi-soft segment urethane/urea membranes,” Macromolecules, vol. 36, no. 11, pp. 4195–4200, 2003, doi: 10.1021/ma034032t.spa
dc.relation.referencesA. Cuellar, “Influencia de la separación de fases en poliuretanos-urea sobre la distribucion de cargas estructurales de escala nanometrica,” Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesM. Abdelrehim, H. Komber, J. Langenwalter, B. Voit, and B. Bruchmann, “Synthesis and characterization of hyperbranched poly(urea-urethane)s based on AA* and B2B* monomers,” John Wiley & Sons, Ltd, 2004. doi: https://doi.org/10.1002/pola.20154.spa
dc.relation.referencesA. S. More, T. Lebarbé, L. Maisonneuve, B. Gadenne, C. Alfos, and H. Cramail, “Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes,” Eur. Polym. J., vol. 49, no. 4, pp. 823–833, 2013, doi: 10.1016/j.eurpolymj.2012.12.013.spa
dc.relation.referencesQ. W. Lu, T. R. Hoye, and C. W. Macosko, “Reactivity of common functional groups with urethanes: Models for reactive compatibilization of thermoplastic polyurethane blends,” J. Polym. Sci. Part A Polym. Chem., vol. 40, no. 14, pp. 2310–2328, 2002, doi: 10.1002/pola.10310.spa
dc.relation.referencesA. Kyritsis, K. Raftopoulos, M. A. Rehim, S. S. Shabaan, A. Ghoneim, and G. Turky, “Structure and molecular dynamics of hyperbranched polymeric systems with urethane and urea linkages,” Polymer (Guildf)., vol. 50, no. 16, pp. 4039–4047, 2009, doi: 10.1016/j.polymer.2009.06.037.spa
dc.relation.referencesC. N. Beecher and C. K. Larive, “1H and 15N NMR Characterization of the Amine Groups of Heparan Sulfate Related Glucosamine Monosaccharides in Aqueous Solution,” Anal. Chem., vol. 87, no. 13, pp. 6842–6848, Jul. 2015, doi: 10.1021/acs.analchem.5b01181.spa
dc.relation.referencesA. Frick and A. Rochman, “Characterization of TPU-elastomers by thermal analysis (DSC),” Polym. Test., vol. 23, no. 4, pp. 413–417, 2004, doi: 10.1016/j.polymertesting.2003.09.013.spa
dc.relation.referencesL. M. Leung and J. T. Koberstein, “DSC Annealing Study of Microphase Separation and Multiple Endothermic Behavior in Polyether-Based Polyurethane Block Copolymers,” Macromolecules, vol. 19, no. 3, pp. 706–713, 1986, doi: 10.1021/ma00157a038.spa
dc.relation.referencesJ. L. Hong, C. P. Lillya, and J. C. W. Chien, “Degree of phase separation in polyether-polyurethane copolymers with different chemical structures of hard segments,” Polymer (Guildf)., vol. 33, no. 20, pp. 4347–4351, 1992, doi: 10.1016/0032-3861(92)90278-5.spa
dc.relation.referencesJ. T. Haponiuk, A. Balas, and T. Kawka, “Application of the DSC analysis of thermoplastic polyurethane elastomers to a comparative study of their technological properties,” J. Therm. Anal., vol. 36, no. 6, pp. 2249–2252, 1990, doi: 10.1007/BF01914162.spa
dc.relation.referencesS. G. Musselman, T. M. Santosusso, J. D. Barnes, and L. H. Sperling, “Domain structure and interphase dimensions in poly(urethaneurea) elastomers using DSC and SAXS,” J. Polym. Sci. Part B Polym. Phys., vol. 37, no. 18, pp. 2586–2600, 1999, doi: 10.1002/(SICI)1099-0488(19990915)37:18<2586::AID-POLB4>3.0.CO;2-A.spa
dc.relation.referencesC. Hepburn, Polyurethane elastomers, Segunda. Nueva York: Elsevier Ltd., 2012.spa
dc.relation.referencesY. H. Que et al., “The crystallisation, microphase separation and mechanical properties of the mixture of ether-based tpu with different ester-based tpus,” Polymers (Basel)., vol. 13, no. 20, 2021, doi: 10.3390/polym13203475.spa
dc.relation.referencesP. K. Saxena et al., “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” Macromolecules, vol. 10, no. 2, pp. 149–154, 2014, doi: 10.1002/app.spa
dc.relation.referencesA. Stribeck, B. Eling, E. Pöselt, M. Malfois, and E. Schander, “Melting, Solidification, and Crystallization of a Thermoplastic Polyurethane as a Function of Hard Segment Content,” Macromol. Chem. Phys., vol. 220, no. 11, pp. 1–10, 2019, doi: 10.1002/macp.201900074.spa
dc.relation.referencesY. L. Uscátegui et al., “Candidate polyurethanes based on castor oil (ricinus communis), with polycaprolactone diol and chitosan additions, for use in biomedical applications,” Molecules, vol. 24, no. 2, pp. 237–267, 2019, doi: 10.3390/molecules24020237.spa
dc.relation.referencesY. C. Chen and W. Tai, “Castor oil-based polyurethane resin for low-density composites with bamboo charcoal,” Polymers (Basel)., vol. 10, no. 10, 2018, doi: 10.3390/polym10101100.spa
dc.relation.referencesI. Navarro-Baena et al., “Thermal Degradation Effects on Polyurethanes and Their Nanocomposites,” React. Mech. Therm. Anal. Adv. Mater., pp. 165–189, 2015, doi: 10.1002/9781119117711.ch7.spa
dc.relation.referencesY. Zhang, Z. Xia, H. Huang, and H. Chen, “Thermal degradation of polyurethane based on IPDI,” J. Anal. Appl. Pyrolysis, vol. 84, no. 1, pp. 89–94, 2009, doi: 10.1016/j.jaap.2008.11.008.spa
dc.relation.referencesF. Gaboriaud and J. P. Vantelon, “Mechanism of Thermal Degradation of Polyurethane Based on Mdi and Propoxylated Trimethylol Propane.,” J. Polym. Sci. A1., vol. 20, no. 8, pp. 2063–2071, 1982, doi: 10.1002/pol.1982.170200809.spa
dc.relation.referencesL. Jiao, H. Xiao, Q. Wang, and J. Sun, “Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR- MS,” Polym. Degrad. Stab., vol. 98, no. 12, pp. 2687–2696, 2013, doi: 10.1016/j.polymdegradstab.2013.09.032.spa
dc.relation.referencesM. F. Valero, J. E. Pulido, Á. Ramírez, D. C. Camargo, and D. Navas, “Caracterización físico-mecánica, térmica y morfológica de polímeros de redes interpenetradas con base en poliuretano obtenido a partir de aceite de ricino y almidón modificados/polimetilmetacrilato (PMMA),” Polímeros, vol. 21, no. 4, pp. 293–298, 2011, doi: 10.1590/S0104-14282011005000050.spa
dc.relation.referencesH. Sui, X. Ju, X. Liu, K. Cheng, Y. Luo, and F. Zhong, “Primary thermal degradation effects on the polyurethane film,” Polym. Degrad. Stab., vol. 101, no. 1, pp. 109–113, 2014, doi: 10.1016/j.polymdegradstab.2013.11.021.spa
dc.relation.referencesA. D. Macalino, V. A. Salen, and L. Q. Reyes, “Castor Oil Based Polyurethanes: Synthesis and Characterization,” IOP Conf. Ser. Mater. Sci. Eng., vol. 229, no. 1, 2017, doi: 10.1088/1757-899X/229/1/012016.spa
dc.relation.referencesM. Berta, C. Lindsay, G. Pans, and G. Camino, “Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites,” Polym. Degrad. Stab., vol. 91, no. 5, pp. 1179–1191, 2006, doi: 10.1016/j.polymdegradstab.2005.05.027.spa
dc.relation.referencesC. S. P. Sung and N. S. Schneider, “Infrared Studies of Hydrogen Bonding in Toluene Diisocyanate Based Polyurethanes,” Macromolecules, vol. 8, no. 1, pp. 68–73, 1975, doi: 10.1021/ma60043a015.spa
dc.relation.referencesO. Smith and S. Cristol, Organic Chemistry, Primera. Nueva York: Reinhold Publishing Corporation, 1970.spa
dc.relation.referencesF. Yeh, B. S. Hsiao, B. B. Sauer, S. Michel, and H. W. Siesler, “In-situ studies of structure development during deformation of a segmented poly(urethane-urea) elastomer,” Macromolecules, vol. 36, no. 6, pp. 1940–1954, 2003, doi: 10.1021/ma0214456.spa
dc.relation.referencesK. Madhavan and B. S. R. Reddy, “Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties,” J. Polym. Sci. Part A Polym. Chem., vol. 44, no. 9, pp. 2980–2989, May 2006, doi: https://doi.org/10.1002/pola.21401.spa
dc.relation.referencesR. Rohim, R. Ahmad, N. Ibrahim, N. Hamidin, and C. Z. Azner Abidin, “Characterization of calcium oxide catalyst from eggshell waste,” Adv. Environ. Biol., vol. 8, no. 22, pp. 35–38, 2014.spa
dc.relation.referencesA. Anantapinitwatna et al., “Water influence on the kinetics of transesterification using CaO catalyst to produce biodiesel,” Fuel, vol. 296, no. March, p. 120653, 2021, doi: 10.1016/j.fuel.2021.120653.spa
dc.relation.referencesL. Ning, W. De-Ning, and Y. Sheng-Kang, “Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers,” Polymer (Guildf)., vol. 37, no. 16, pp. 3577–3583, 1996, doi: 10.1016/0032-3861(96)00166-8.spa
dc.relation.referencesJ. Puiggalí and L. Franco, “Estudio de la cristalización y de la transición de Brill en el Nylon 5,6,” 1998.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalPoliuretano ureaspa
dc.subject.proposalAceite de ricinospa
dc.subject.proposalRicinoleato de etilenglicolspa
dc.subject.proposalElastómerosspa
dc.subject.proposalPolyurethane Ureaeng
dc.subject.proposalCastor oileng
dc.subject.proposalEthylene glycol ricinoleateeng
dc.subject.proposalElastomerseng
dc.subject.unescoQuímica
dc.subject.unescoChemistry
dc.titlePoliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricasspa
dc.title.translatedPolyurethane urea modified with a derivative of castor oil with elastomeric applicationseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053842440.2023.pdf
Tamaño:
2.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: