Detección y tipificación molecular de Metapneumovirus Aviar en aves comerciales y silvestres de Colombia

dc.contributor.advisorGómez Ramírez, Arlen Patriciaspa
dc.contributor.advisorÁlvarez Mira, Diana Marcelaspa
dc.contributor.authorEscobar Alfonso, David Santiagospa
dc.contributor.googlescholarSantiago Escobar-Alfonsospa
dc.coverage.countryColombiaspa
dc.date.accessioned2025-05-21T14:24:27Z
dc.date.available2025-05-21T14:24:27Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractLa industria avícola global, como principal productora de proteína de origen animal, enfrenta desafíos importantes en salud y producción debido a la alta densidad de aves alojadas y los riesgos asociados con enfermedades. Uno de los principales problemas es el Complejo Respiratorio Aviar (CRA), una afección multifactorial que involucra patógenos como el Metapneumovirus Aviar (aMPV), el cual es frecuentemente subdiagnosticado en múltiples regiones del mundo. El virus tiene la capacidad de afectar principalmente aves comerciales, mientras que las aves silvestres se consideran reservorios y vectores del mismo. Este estudio tuvo como objetivo identificar la presencia y el subtipo de aMPV en muestras de aves comerciales y silvestres en Colombia. Se recolectaron 273 muestras que incluían hisopos de las vías respiratorias superiores y del tracto reproductivo, tanto de aves comerciales como silvestres. En primera instancia se empleó un protocolo de RT- PCR convencional para identificar el gen N del virus en las muestras. En la segunda fase utilizó un protocolo de RT-PCR anidada dirigida al gen G, lo que permitió detectar el subtipo B de aMPV en 23 muestras (8.42%). La región amplificada y secuenciada del gen G mostró una alta similitud genética con cepas vacunales, clasificando todos los virus como 'vaccine-like' o derivados de vacuna. Sin embargo, la secuenciación del gen G completo o del genoma completo (WGS) ofrecería una comprensión más integral de la identidad de las cepas detectadas. En aves comerciales, aMPV-B se identificó en 21 muestras, independientemente de la presencia de síntomas o posibles comorbilidades, y en pruebas solicitadas para detectar otros agentes del CRA, lo que indica una posible falta de información específica sobre su prevalencia y añade complejidad al diagnóstico, debido a las dificultades para diferenciarlo de otras infecciones. En aves silvestres, dos muestras dieron positivo, indicando una posible circulación entre aves silvestres y domésticas. Estos resultados resaltan la importancia de implementar estrategias diagnósticas y de investigar al aMPV y su impacto en la salud aviar. Este estudio, por lo tanto, sienta las bases para futuras investigaciones y acciones de control que contribuirán a mejorar la salud avícola y la conservación de especies silvestres en Colombia (Texto tomado de la fuente).spa
dc.description.abstractThe global poultry industry, as the leading producer of animal-derived protein, faces significant health and production challenges due to the high density of housed birds and the risks associated with diseases. One of the main issues is the Avian Respiratory Complex (ARC), a multifactorial condition involving pathogens such as Avian Metapneumovirus (aMPV), a frequently underdiagnosed agent in various regions worldwide. The virus primarily affects commercial birds, while wild birds are considered reservoirs and vectors of the virus. This study aimed to identify the presence and subtype of aMPV in samples from both commercial and wild birds in Colombia. A total of 273 samples were collected, including swabs from the upper respiratory tract and reproductive tract from both commercial and wild birds. A 2-phase detection and typing strategy was employed. In the first phase, conventional RT-PCR was used to identify the N gene of the virus in the samples. Then, in the second phase, a nested RT-PCR protocol targeting the G gene was used, allowing the detection of the aMPV subtype B in 23 samples (8.42%). The amplified and sequenced region of the G gene showed high genetic similarity to vaccine strains, classifying all viruses as 'vaccine-like' or vaccine-derived. However, amplifying the full G gene or conducting whole genome sequencing would provide a more comprehensive understanding of the identity of the detected strains. In commercial birds, aMPV-B was identified in 21 samples, regardless of the presence of symptoms or possible comorbidities, and in tests requested to detect other ARC agents, suggesting a potential lack of specific information regarding its prevalence and adding complexity to the diagnosis due to difficulties in distinguishing it from other infections. In wild birds, two samples tested positive, indicating possible circulation between wild and domestic birds. These findings highlight the importance of implementing diagnostic strategies and further investigating aMPV and its impact on avian health. This study, therefore, lays the groundwork for future research and control measures that will contribute to improving poultry health and the conservation of wild species in Colombia.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Salud y Producción Animalspa
dc.description.methodsSe realizó un estudio transversal con un muestreo por conveniencia que incluyó un total de 273 muestras. En primer lugar, se llevó a cabo una exploración del banco de muestras de diagnóstico del Laboratorio de Biología Molecular y Virología (LBMV) de la FMVZ, de donde se seleccionaron 184 muestras, provenientes de granjas de pollo de engorde (n=7), ponedoras comerciales (n=72) y aves reproductoras (n=105) de 10 departamentos de Colombia (tabla 2- 1 y figura 2-1). El análisis se realizó sobre el ARN extraído de hisopados de tracto respiratorio superior, pool de órganos respiratorios (tráqueas y pulmones), hisopados de tracto reproductivo e improntas de tracto reproductivo, remitidas al LBMV entre enero de 2017 y diciembre de 2023 para diagnóstico molecular de diferentes agentes del CRA, ya sea excluyendo al aMPV (n=124), exclusivamente para aMPV (n=76) o para aMPV en combinación con otros agentes (n=4).spa
dc.description.researchareaMicrobiología e inmunologíaspa
dc.format.extent98 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88178
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAli, M. Z., J. E. Park, and H. J. Shin. 2019. Serological Survey of Avian Metapneumovirus Infection in Chickens in Bangladesh. J Appl Poultry Res 28(4):1330–1334. https://doi.org/10.3382/japr/pfz050.spa
dc.relation.referencesArias, N. P. C., M. J. R. Machuca, and M. Á. Petruccelli. 2015. Metapneumovirus aviar : revisión sobre aspectos etiológicos, clínicos, anatomopatológicos y epidemiológicos. Analecta Vet 35: 12-20spa
dc.relation.referencesBall, C., B. Manswr, A. Herrmann, S. Lemiere, and K. Ganapathy. 2022. Avian metapneumovirus subtype B vaccination in commercial broiler chicks: heterologous protection and selected host transcription responses to subtype A or B challenge. Avian Pathol 51:181–196 Available at https://doi.org/10.1080/03079457.2022.2036697spa
dc.relation.referencesBao, X., D. Kolli, D. Esham, T. S. Velayutham, and A. Casola. 2018. Human Metapneumovirus Small Hydrophobic Protein Inhibits Interferon Induction in Plasmacytoid Dendritic Cells. Viruses 10(6), 278; https://doi.org/10.3390/v10060278spa
dc.relation.referencesBao, X., T. Liu, Y. Shan, K. Li, R. P. Garofalo, and A. Casola. 2008a. Human Metapneumovirus Glycoprotein G Inhibits Innate Immune Responses. PLOS Pathogens 4(5). https://doi.org/10.1371/journal.ppat.1000077.spa
dc.relation.referencesBaxter-Jones, C., M. Grant, G. P. Wilding, and R. C. Jones. 1989. A comparison of three methods for detecting antibodies to turkey rhinotracheitis virus. Avian Pathol. 1989 Jan;18(1):91-8. doi: 10.1080/03079458908418582.spa
dc.relation.referencesBayon-Auboyer, M. H., C. Arnauld, D. Toquin, and N. Eterradossi. 2000. Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup. J Gen Virol. 2000 Nov;81(Pt 11):2723-2733. doi: 10.1099/0022-1317-81-11-2723.spa
dc.relation.referencesBäyon-Auboyer, M. H., V. Jestin, D. Toquin, M. Cherbonnel, and N. Eterradossi. 1999. Comparison of F-, G- and N-based RT-PCR protocols with conventional virological procedures for the detection and typing of turkey rhinotracheitis virus. Arch Virol 144:1091–1109.spa
dc.relation.referencesBrown, P. A., C. Allée, C. Courtillon, N. Szerman, E. Lemaitre, D. Toquin, J. M. Mangart, M. Amelot, and N. Eterradossi. 2019. Host specificity of avian metapneumoviruses. Avian Pathol. 48(4):311-318. doi: 10.1080/03079457.2019.1584390.spa
dc.relation.referencesBrown, P. A., E. Lemaitre, F. X. Briand, C. Courtillon, O. Guionie, C. Allée, D. Toquin, M. H. Bayon-Auboyer, V. Jestin, and N. Eterradossi. 2014. Molecular comparisons of full length metapneumovirus (MPV) genomes, including newly determined french AMPV-C and -D isolates, further supports possible subclassification within the MPV genus. PLoS One. 2014 Jul 18;9(7):e102740. doi: 10.1371/journal.pone.0102740spa
dc.relation.referencesBrown, P. A., C. Lupini, E. Catelli, J. Clubbe, E. Ricchizzi, and C. J. Naylor. 2011. A single polymerase (L) mutation in avian metapneumovirus increased virulence and partially maintained virus viability at an elevated temperature. J Gen Virol. 2011 Feb;92(Pt 2):346-54. doi: 10.1099/vir.0.026740-0.spa
dc.relation.referencesBuys, S. B., J. H. du Preez, and H. J. Els. 1989a. The isolation and attenuation of a virus causing rhinotracheitis in turkeys in South Africa. Onderstepoort J Vet Res. 1989 Jun;56(2):87-98. PMID: 2748138.spa
dc.relation.referencesBuys, S. B., J. H. du Preez, and H. J. Els. 1989b. Swollen head syndrome in chickens: a preliminary report on the isolation of a possible aetiological agent. J S Afr Vet Assoc. 1989 Dec;60(4):221-2. PMID: 2487733.spa
dc.relation.referencesCanuti, M., A. N. K. Kroyer, D. Ojkic, H. G. Whitney, G. J. Robertson, and A. S. Lang. 2019. Discovery and characterization of novel RNA viruses in aquatic North American wild birds. Viruses. 2019 Aug 21;11(9):768. doi: 10.3390/v11090768. PMID: 31438486; PMCID: PMC6784231.spa
dc.relation.referencesCecchinato, M., E. Catelli, C. Lupini, E. Ricchizzi, S. Prosperi, and C. J. Naylor. 2014. Reversion to virulence of a subtype B avian metapneumovirus vaccine: Is it time for regulators to require availability of vaccine progenitors? Vaccine 32:4660–4664 Available at http://dx.doi.org/10.1016/j.vaccine.2014.06.030.spa
dc.relation.referencesCecchinato, M., C. Lupini, O. S. Munoz Pogoreltseva, V. Listorti, A. Mondin, M. Drigo, and E. Catelli. 2013. Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B. Avian Pathol 42:283–289.spa
dc.relation.referencesChacón, J. L., P. E. Brandão, M. Buim, L. Villarreal, and A. J. P. Ferreira. 2007. Detection by reverse transcriptase-polymerase chain reaction and molecular characterization of subtype B avian metapneumovirus isolated in Brazil. Avian Pathol. 2007 Oct;36(5):383-7. doi: 10.1080/03079450701589142. PMID: 17899462.spa
dc.relation.referencesChacón, J. L., M. Mizuma, M. P. Vejarano, D. Toquín, N. Eterradossi, D. P. Patnayak, S. M. Goyal, and A. J. Piantino Ferreira. 2011. Avian metapneumovirus subtypes circulating in Brazilian vaccinated and nonvaccinated chicken and turkey farms. Avian Dis. 2011 Mar;55(1):82-9. doi: 10.1637/9501-081310-Reg.1. PMID: 21500641.spa
dc.relation.referencesCook, J. K. A. 2000a. Avian Pneumovirus Infections of Turkeys and Chickens. Vet J. 2000 Sep;160(2):118-25. doi: 10.1053/tvjl.2000.0486. PMID: 10985803.spa
dc.relation.referencesCook, J. K. 2000b. Avian rhinotracheitis. Rev Sci Tech. 2000 Aug;19(2):602-13. doi: 10.20506/rst.19.2.1233. PMID: 10935282.spa
dc.relation.referencesCook, J. K. A., J. Chesher, F. Orthel, M. A. Woods, S. J. Orbell, W. Baxendale, and M. B. Huggins. 2000. Avian pneumovirus infection of laying hens: Experimental studies. Avian Pathol 29:545–556. doi: 10.1080/03079450020016788. PMID: 19184850spa
dc.relation.referencesCook, J. K. A., C. A. Dolby, D. J. Southee, and A. P. A. Mockett. 1988. Demonstration of antibodies to turkey rhinotracheitis virus in serum from commercially reared flocks of chickens. Avian Pathol 17(2):403-10. doi: 10.1080/03079458808436458. PMID: 18766697.spa
dc.relation.referencesCook, J. K. A., M. M. Ellis, and M. B. Huggins. 1991. The pathogenesis of turkey rhinotracheitis virus in turkey poults inoculated with the virus alone or together with two strains of bacteria. Avian Pathol 20(1):155-66. doi: 10.1080/03079459108418750. PMID: 18680008.spa
dc.relation.referencesCroville, G., C. Foret, P. Heuillard, A. Senet, M. Delpont, M. Mouahid, M. F. Ducatez, F. Kichou, and J. L. Guerin. 2018. Disclosing respiratory co-infections: a broad-range panel assay for avian respiratory pathogens on a nanofluidic PCR platform. Avian Pathol 2018 Jun;47(3):253-260. doi: 10.1080/03079457.2018.1430891. Epub 2018 Feb 27. PMID: 29350071.spa
dc.relation.referencesCurland, N., F. Gethöffer, A. van Neer, L. Ziegler, U. Heffels-Redmann, M. Lierz, W. Baumgärtner, P. Wohlsein, I. Völker, S. Lapp, A. Bello, V. M. Pfankuche, S. Braune, M. Runge, A. Moss, S. Rautenschlein, A. Jung, L. Teske, C. Strube, J. Schulz, R. Bodewes, A. D. M. E. Osterhaus, and U. Siebert. 2018. Investigation into diseases in free-ranging ring-necked pheasants (Phasianus colchicus) in northwestern Germany during population decline with special reference to infectious pathogens. Eur J Wildl Res. 2018;64(2):12. doi: 10.1007/s10344-018-1173-2. Epub 2018 Feb 6. PMID: 32214944; PMCID: PMC7087779.spa
dc.relation.referencesFalchieri, M. 2016. Avian metapneumovirus infection in poultry- an overview. Worlds Poult Sci J 72:833–845.spa
dc.relation.referencesFelippe, P. A., L. H. A. da Silva, M. B. dos Santos, S. T. Sakata, and C. W. Arns. 2011. Detection of and phylogenetic studies with avian metapneumovirus recovered from feral pigeons and wild birds in Brazil. Avian Pathol 2011 Oct;40(5):445-52. doi: 10.1080/03079457.2011.596812. Epub 2011 Jul 21. PMID: 21777083.spa
dc.relation.referencesFranzo, G., M. Legnardi, G. Mescolini, C. M. Tucciarone, C. Lupini, G. Quaglia, E. Catelli, and M. Cecchinato. 2020. Avian Metapneumovirus subtype B around Europe: a phylodynamic reconstruction. Vet Res 51:1–10 Available at https://doi.org/10.1186/s13567-020-00817-6.spa
dc.relation.referencesGanapathy, K., P. Cargill, E. Montiel, and R. C. Jones. 2005. Interaction between live avian pneumovirus and Newcastle disease virus vaccines in specific pathogen free chickens. Avian Pathol 2005 Aug;34(4):297-302. doi: 10.1080/03079450500178824. PMID: 16147565spa
dc.relation.referencesGharaibeh, S. M., and G. R. Algharaibeh. 2007. Serological and molecular detection of avian pneumovirus in chickens with respiratory disease in Jordan. Poult Sci 86:1677–1681 Available at http://dx.doi.org/10.1093/ps/86.8.1677.spa
dc.relation.referencesGoraichuk, I. V., Torchetti, M. K., Killian, M. L., Kapczynski, D. R., Sary, K., Kulkarni, A., and D. L. Suarez. 2024. Introduction of Avian metapneumovirus subtype A to the United States: molecular insights and implications. Front Microbiol 15. Available at https://doi.org/10.3389/fmicb.2024.1428248.spa
dc.relation.referencesGough, R. E., M. S. Collins, W. J. Cox, and N. J. Chettle. 1988. Experimental infection of turkeys, chickens, ducks, geese, guinea fowl, pheasants and pigeons with turkey rhinotracheitis virus. Vet Rec 1988 Jul 9;123(2):58-9. doi: 10.1136/vr.123.2.58. PMID: 2842928.spa
dc.relation.referencesGovindarajan, D., S. Kim, S. K. Samal, D. Govindarajan, A. S. Kim, and S. K. S. B. 2010. Contribution of the Attachment G Glycoprotein to Pathogenicity and Immunogenicity of Avian Metapneumovirus Subgroup C Contribution of the Attachment G Glycoprotein to Pathogenicity and Immunogenicity of Avian Metapneumovirus Subgroup C. Avian Dis. 2010 Mar;54(1):59-66. doi: 10.1637/8991-071409-Reg.1. PMID: 20408400.spa
dc.relation.referencesGoyal, S. M., S. J. Chiang, A. M. Dar, K. V. Nagaraja, D. P. Shaw, D. A. Halvorson, and V. Kapur. 2000. Isolation of avian pneumovirus from an outbreak of respiratory illness in Minnesota turkeys. J Vet Diagn Invest. 2000 Mar;12(2):166-8. doi: 10.1177/104063870001200214. PMID: 10730950spa
dc.relation.referencesGraaf, M. De, E. J. A. Schrauwen, S. Herfst, G. Van Amerongen, A. D. M. E. Osterhaus, and R. A. M. Fouchier. 2009. Fusion protein is the main determinant of metapneumovirus host tropism. J Gen Virol. 2009 Jun;90(Pt 6):1408-1416. doi: 10.1099/vir.0.009688-0. Epub 2009 Mar 4. PMID: 19264630.spa
dc.relation.referencesGraziosi, G., C. Lupini, and E. Catelli. 2022. Disentangling the role of wild birds in avian metapneumovirus (aMPV) epidemiology: A systematic review and meta-analysis. Transbound Emerg Dis. 2022 Nov;69(6):3285-3299. doi: 10.1111/tbed.14680spa
dc.relation.referencesHafez, H. M. 1992. Comparative investigation on different turkey rhinotracheitis (TRT) virus isolates from different countries. Dtsch Tierarztl Wochenschr. 1992 Dec;99(12):486-8. PMID: 1289042.spa
dc.relation.referencesHartmann, S., H. Sid, and S. Rautenschlein. 2015. Avian metapneumovirus infection of chicken and turkey tracheal organ cultures: comparison of virus–host interactions. Avian Pathol. 2015;44(6):480-9. doi: 10.1080/03079457.2015.1086974spa
dc.relation.referencesvan den Hoogen, B. G., J. C. de Jong, J. Groen, T. Kuiken, R. de Groot, R. A. M. Fouchier, and A. D. M. E. Osterhaus. 2001. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001 Jun;7(6):719-24. doi: 10.1038/89098spa
dc.relation.referencesHou, L., Y. Shi, J. Guo, T. Sun, D. Wang, X. Yang, C. Liu, Y. Cui, and N. Zhu. 2022. Avian Metapneumovirus Subgroup C Phosphoprotein Suppresses Type I Interferon Production by Blocking Interferon. Microbiol Spectr. 2023 Feb 14;11(1):e0341322. doi: 10.1128/spectrum.03413-22.spa
dc.relation.referencesHu, H., J. P. Roth, C. N. Estevez, L. Zsak, B. Liu, and Q. Yu. 2011. Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys. Vaccine 29:8624–8633 Available at http://dx.doi.org/10.1016/j.vaccine.2011.09.007.spa
dc.relation.referencesJardine, C. M. 2018. Avian metapneumovirus subtype C in Wild Waterfowl in Ontario , Canada. Transbound Emerg Dis. 2018 Aug;65(4):1098-1102. doi: 10.1111/tbed.12832.spa
dc.relation.referencesJesse, S. T., M. Ludlow, and A. D. M. E. Osterhaus. 2022a. Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses. 2022 Mar 25;14(4):677. doi: 10.3390/v14040677. PMID: 35458407; PMCID: PMC9028271spa
dc.relation.referencesJesse, S. T., P. Ribó-Molina, W. K. Jo, S. Rautenschlein, O. Vuong, R. A. M. Fouchier, M. Ludlow, and A. D. M. E. Osterhaus. 2022b. Molecular characterization of avian metapneumovirus subtype C detected in wild mallards (Anas platyrhynchos) in The Netherlands. Transbound Emerg Dis. 2022 Nov;69(6):3360-3370. doi: 10.1111/tbed.14688.spa
dc.relation.referencesJirjis, F. F., S. L. Noll, D. A. Halvorson, K. V Nagaraja, and D. P. Shaw. 2002. Pathogenesis of Avian Pneumovirus Infection in Turkeys. Vet Pathol 39:300–310 Available at https://doi.org/10.1354/vp.39-3-300.spa
dc.relation.referencesJirjis, F. F., S. L. Noll, D. A. Halvorson, K. V. Nagaraja, E. L. Townsend, A. M. Sheikh, and D. P. Shaw. 2000. Avian pneumovirus infection in Minnesota turkeys: Experimental reproduction of the disease. Avian Dis. 2000 Jan-Mar;44(1):222-6. PMID: 10737667.spa
dc.relation.referencesJones, R. C. 1996. Avian pneumovirus infection: Questions still unanswered. Avian Pathol. 1996 Dec;25(4):639-48. doi: 10.1080/03079459608419171.spa
dc.relation.referencesJones, R. C., and S. Rautenschlein. 2013. Avian metapneumovirus. Diseases of Poultry. 13th. Ames, Iowa:125–138.spa
dc.relation.referencesJuhasz, K., and A. J. Easton. 1994. Extensive sequence variation in the attachment (G) protein gene of avian pneumovirus: Evidence for two distinct subgroups. J Gen Virol. 1994 Nov;75 ( Pt 11):2873-80. doi: 10.1099/0022-1317-75-11-2873.spa
dc.relation.referencesKaboudi, K., and J. Lachheb. 2021. Avian metapneumovirus infection in turkeys: a review on turkey rhinotracheitis. J Appl Poultry Res 30:100211 Available at https://doi.org/10.1016/j.japr.2021.100211.spa
dc.relation.referencesKumar, N., S. Sharma, S. Barua, B. N. Tripathi, and B. T. Rouse. 2018. Virological and immunological outcomes of coinfections. Clin Microbiol Rev. 2018 Jul 5;31(4):e00111-17. doi: 10.1128/CMR.00111-17.spa
dc.relation.referencesLee, E. ho, M. S. Song, J. Y. Shin, Y. M. Lee, C. J. Kim, Y. S. Lee, H. Kim, and Y. K. Choi. 2007. Genetic characterization of avian metapneumovirus subtype C isolated from pheasants in a live bird market. Virus Res. 2007 Sep;128(1-2):18-25. doi: 10.1016/j.virusres.2007.03.029spa
dc.relation.referencesLemaitre, E., C. Allée, A. Vabret, N. Eterradossi, and P. A. Brown. 2018. Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses. Virol Methods. 2018 Jan;251:61-68. doi: 10.1016/j.jviromet.2017.10.010spa
dc.relation.referencesLiman, M., and S. Rautenschlein. 2007. Induction of local and systemic immune reactions following infection of turkeys with avian Metapneumovirus (aMPV) subtypes A and B. Vet Immunol Immunopathol. 2007 Feb 15;115(3-4):273-85. doi: 10.1016/j.vetimm.2006.12.001.spa
dc.relation.referencesLipkind, M. A., Y. Weisman, E. Shihmanter, D. Shoham, and A. Aronovici. 1979. The isolation of yucaipa-like paramyxoviruses from epizootics of a respiratory disease in turkey poultry farms in Israel. Vet Rec. 1979 Dec 22-29;105(25-26):577-8. PMID: 532076.spa
dc.relation.referencesLupini, C., C. M. Tucciarone, G. Mescolini, G. Quaglia, G. Graziosi, V. Turblin, P. Brown, M. Cecchinato, M. Legnardi, T. Delquigny, S. Lemiere, G. Perreul, and E. Catelli. 2023. Longitudinal Survey on aMPV Circulation in French Broiler Flocks following Different Vaccination Strategies. Animals 2022 Dec 23;13(1):57. doi: 10.3390/ani13010057spa
dc.relation.referencesLuqman, M., N. Duhan, G. Temeeyasen, M. Selim, S. Jangra, and S. K. Mor. 2024. Geographical Expansion of Avian Metapneumovirus Subtype B: First Detection and Molecular Characterization of Avian Metapneumovirus Subtype B in US Poultry. Viruses 16:508 Available at https://www.mdpi.com/1999-4915/16/4/508.spa
dc.relation.referencesMajó, N., G. M. Allan, C. J. O’Loan, A. Pagès, and A. J. Ramis. 1995. A sequential histopathologic and immunocytochemical study of chickens, turkey poults, and broiler breeders experimentally infected with turkey rhinotracheitis virus. Avian Dis. 1995 Oct-Dec;39(4):887-96. PMID: 8719225.spa
dc.relation.referencesMasante, C., F. El Najjar, A. Chang, A. Jones, C. L. Moncman, and R. E. Dutch. 2014. The Human Metapneumovirus Small Hydrophobic Protein Has Properties Consistent with Those of a Viroporin and Can Modulate Viral Fusogenic Activity. J Virol. 2014 Jun;88(11):6423-33. doi: 10.1128/JVI.02848-13.spa
dc.relation.referencesMcDougall, J. S., and J. K. Cook. 1986. Turkey rhinotracheitis: preliminary investigations. Vet Rec. 1986 Feb 22;118(8):206-7. doi: 10.1136/vr.118.8.206spa
dc.relation.referencesMernizi, A., A. Ghram, and M. Bouslikhane. 2023. Avian Metapneumovirus Review : A Focus on Broilers. Poultry Science Journal, 11(1), 1-17. doi: 10.22069/psj.2022.20165.1814spa
dc.relation.referencesNaylor, C. J., A. R. Al Ankari, A. I. Al Afaleq, J. M. Bradbury, R. C. Jones, A. R. Al Ankari, A. I. Al Afaleq, J. M. Bradbury, and R. C. Jones. 2007. Exacerbation of Mycoplasma gallisepticum infection in Turkeys by rhinotracheitis virus Exacerbation of Mycoplasma gallisepticum infection in turkeys by rhinotracheitis virus. Avian Pathol. 1992;21(2):295-305. doi: 10.1080/03079459208418844.spa
dc.relation.referencesNguyen, V. G., H. C. Chung, H. Q. Do, T. T. Nguyen, T. B. P. Cao, H. T. Truong, T. N. Mai, T. T. Le, T. H. Nguyen, T. L. Le, and T. M. Le Huynh. 2021. Serological and molecular characterization of avian metapneumovirus in chickens in Northern Vietnam. Vet Sci. 2021 Sep 24;8(10):206. doi: 10.3390/vetsci8100206.spa
dc.relation.referencesOIE. 2022. Turkey Rhinotracheitis - avian metapneumovirus infections. OIE Terrestrial Manual:1–18 Available at https://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjK1v6n77nQAhVFFZAKHV16CuQQFggiMAA&url=http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.03.15_TURKEY_RHINO.pdf&usg=AFQjCNGoxCzv1dkcxUtObWCGKraR2k8dTA&sig2=PrtGt0ONZq.spa
dc.relation.referencesRa, M. C., M. Khatri, and J. M. Sharma. 2007. B-cell infiltration in the respiratory mucosa of Turkeys exposed to subtype C avian metapneumovirus. Avian Dis. 2007 Sep;51(3):764-70. doi: 10.1637/0005-2086(2007)51[764:BIITRM]2.0.CO;2.spa
dc.relation.referencesRautenschlein, S. 2020. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections.Pages 135–143 in Diseases of Poultry. Swayne D.E., ed. 14th Editi. John Wiley & Sonsr, Hoboken, NJ, USAspa
dc.relation.referencesRetallack, H., S. Clubb, and J. L. DeRisi. 2019. Genome Sequence of a Divergent Avian Metapneumovirus from a Monk Parakeet (Myiopsitta monachus). Microbiol Resour Announc. 2019 Apr 18;8(16):e00284-19. doi: 10.1128/MRA.00284-19.spa
dc.relation.referencesRima, B., P. Collins, A. Easton, R. Fouchier, G. Kurath, R. A. Lamb, B. Lee, A. Maisner, P. Rota, and L. Wang. 2017. ICTV virus taxonomy profile: Pneumoviridae. Journal of General Virology 98:2912–2913.spa
dc.relation.referencesRivera-Benitez, J. F., R. Martínez-Bautista, F. Ríos-Cambre, and H. Ramírez-Mendoza. 2014. Molecular detection and isolation of avian metapneumovirus in Mexico. Avian Pathol 43:217–223 Available at http://dx.doi.org/10.1080/03079457.2014.903557.spa
dc.relation.referencesRizotto, L. S., R. M. Simão, G. P. Scagion, A. A. Simasaki, L. C. Caserta, J. C. Benassi, C. W. Arns, and H. L. Ferreira. 2019. Detection of avian metapneumovirus subtype a from wild birds in the state of São Paulo, Brazil. Pesq Vet Bras. 39(03). https://doi.org/10.1590/1678-5150-PVB-602spa
dc.relation.referencesRubbenstroth, D., and S. Rautenschlein. 2009. Investigations on the protective role of passively transferred antibodies against avian metapneumovirus infection in turkeys. Avian Pathol. 2009 Dec;38(6):427-36. doi: 10.1080/03079450903349204.spa
dc.relation.referencesSalles, G. B. C., G. V. T. Pilati, E. C. Muniz, A. J. de Lima Neto, J. R. Vogt, M. Dahmer, B. P. Savi, D. A. Padilha, and G. Fongaro. 2023. Trends and Challenges in the Surveillance and Control of Avian Metapneumovirus. Viruses. 2023 Sep 20;15(9):1960. doi: 10.3390/v15091960.spa
dc.relation.referencesSalles, G. B. C., G. V. T. Pilati, B. P. Savi, E. C. Muniz, M. Dahmer, J. R. Vogt, A. J. de Lima Neto, and G. Fongaro. 2024. Surveillance of Avian Metapneumovirus in Non-Vaccinated Chickens and Co-Infection with Avian Pathogenic Escherichia coli. Microorganisms. 2023 Dec 28;12(1):56. doi: 10.3390/microorganisms12010056.spa
dc.relation.referencesSeal, B. S. 1998. Matrix protein gene nucleotide and predicted amino acid sequence demonstrate that the first US avian pneumovirus isolate is distinct from European strains. Virus Res. 1998 Nov;58(1-2):45-52. doi: 10.1016/s0168-1702(98)00098-7.spa
dc.relation.referencesSharifi, A., M. Allymehr, and A. Talebi. 2022. Concurrent Occurrence of Infectious Bursal Disease and Multicausal Respiratory Infections Caused by Newcastle Disease and Avian Metapneumovirus in Broilers. Arch Razi Inst. 2022 Jun 30;77(3):1007-1016. doi: 10.22092/ARI.2021.354272.1631.spa
dc.relation.referencesShin, H. J., K. T. Cameron, J. A. Jacobs, E. A. Turpin, D. A. Halvorson, S. M. Goyal, K. V. Nagaraja, M. C. Kumar, D. C. Lauer, B. S. Seal, and M. K. Njenga. 2002a. Molecular epidemiology of subgroup C avian pneumoviruses isolated in the United States and comparison with subgroup A and B viruses. J Clin Microbiol. 2002 May;40(5):1687-93. doi: 10.1128/JCM.40.5.1687-1693.2002.spa
dc.relation.referencesShin, H. J., K. V. Nagaraja, B. McComb, D. A. Halvorson, F. F. Jirjis, D. P. Shaw, B. S. Seal, and M. K. Njenga. 2002b. Isolation of avian pneumovirus from mallard ducks that is genetically similar to viruses isolated from neighboring commercial turkeys. Virus Res. 2002 Feb 26;83(1-2):207-12. doi: 10.1016/s0168-1702(01)00402-6.spa
dc.relation.referencesShin, H.-J., M. Njenga, D. Halvorson, D. Shaw, and K. Nagaraja. 2001. Susceptibility of ducks to avian pneumovirus of turkey origin. Am J Vet Res. 2001 Jul;62(7):991-4. doi: 10.2460/ajvr.2001.62.991.spa
dc.relation.referencesShin, H.-J., M. K. Njenga, B. McComb, D. A. Halvorson, and K. V. Nagaraja. 2000. Avian pneumovirus (APV) RNA from wild and sentinel birds in the United States has genetic homology with RNA from APV isolates from domestic turkeys. J Clin Microbiol. 2000 Nov;38(11):4282-4. doi: 10.1128/JCM.38.11.4282-4284.2000.spa
dc.relation.referencesSkiadopoulos, M. H., U. J. Buchholz, S. R. Surman, P. L. Collins, and B. R. Murphy. 2006. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology. 2006 Feb 20;345(2):492-501. doi: 10.1016/j.virol.2005.10.016.spa
dc.relation.referencesSun, S., F. Chen, S. Cao, J. Liu, W. Lei, G. Li, Y. Song, and J. Lu. 2014. Isolation and characterization of a subtype C avian metapneumovirus circulating in Muscovy ducks in China. Vet Res. 2014 Jul 25;45(1):74. doi: 10.1186/s13567-014-0074-y.spa
dc.relation.referencesToquin, D., M. H. Bäyon-Auboyer, N. Eterradossi, V. Jestin, and H. Morin. 1999. Isolation of a pneumovirus from a Muscovy duck. Vet Rec. 1999 Dec 4;145(23):680. PMID: 25705778.spa
dc.relation.referencesTucciarone, C. M., G. Franzo, M. Legnardi, D. Pasotto, C. Lupini, E. Catelli, G. Quaglia, G. Graziosi, E. Dal Molin, F. Gobbo, and M. Cecchinato. 2022. Molecular Survey on A, B, C and New Avian Metapneumovirus (aMPV) Subtypes in Wild Birds of Northern-Central Italy. Vet Sci. 2022 Jul 20;9(7):373. doi: 10.3390/vetsci9070373spa
dc.relation.referencesUmar, S., H. Sabir, A. Ahmed, and S. Subhan. 2016. Avian metapneumovirus infection in poultry. World’s Poultry Science Journal. 2016;72(4):833-846. doi:10.1017/S0043933916000738spa
dc.relation.referencesVelayudhan, B. T., B. McComb, R. S. Bennett, V. C. Lopes, D. Shaw, D. A. Halvorson, and K. V. Nagaraja. 2005. Emergence of a virulent type C avian metapneumovirus in turkeys in Minnesota. Avian Dis. 2005 Dec;49(4):520-6. doi: 10.1637/7388-052805R.1.spa
dc.relation.referencesWang, S., N. Jiang, L. Jiang, Q. Zhuang, Q. Chen, G. Hou, Z. Xiao, R. Zhao, Y. Li, C. Zhao, F. Zhang, J. Yu, J. Li, H. Liu, F. Sun, and K. Wang. 2022. Establishment and application of a quadruple real-time RT-PCR for detecting avian metapneumovirus. PLoS One. 2022 Jun 28;17(6):e0270708. doi: 10.1371/journal.pone.0270708.spa
dc.relation.referencesWei, L., S. Zhu, X. Yan, J. Wang, C. Zhang, S. Liu, R. She, F. Hu, R. Quan, J. Liu, B. Here, and T. Study. 2013. Avian Metapneumovirus Subgroup C Infection in Chickens, China. Emerg Infect Dis. 2013 Jul;19(7):1092-4. doi: 10.3201/eid1907.121126spa
dc.relation.referencesWyeth, P. J., R. E. Gough, N. Chettle, and R. Eddy. 1986. Preliminary observations on a virus associated with turkey rhinotracheitis. Vet Rec. 1986 Aug 9;119(6):139. doi: 10.1136/vr.119.6.139-a. PMID: 3765317.spa
dc.relation.referencesXu, W., M. Suderman, J. Koziuk, D. Ojkic, and Y. Berhane. 2021. Development of A recombinant nucleocapsid based indirect ELISA for the detection of antibodies to avian metapneumovirus subtypes, A, B, and C. Vet Immunol Immunopathol 231:110151 Available at https://doi.org/10.1016/j.vetimm.2020.110151.spa
dc.relation.referencesYun, B. L., X. L. Guan, Y. Z. Liu, Y. Zhang, Y. Q. Wang, X. Le Qi, H. Y. Cui, C. J. Liu, Y. P. Zhang, H. L. Gao, L. Gao, K. Li, Y. L. Gao, and X. M. Wang. 2016. Integrin αvβ1 modulation affects subtype B avian metapneumovirus fusion protein-mediated cell-cell fusion and virus infection. Journal of Biological Chemistry 291:14815–14825 Available at http://dx.doi.org/10.1074/jbc.M115.711382.spa
dc.relation.referencesAndreopoulou, M., G. Franzo, C. M. Tucciarone, Z. Prentza, K. C. Koutoulis, M. Cecchinato, and I. Chaligianni. 2019. Molecular epidemiology of infectious bronchitis virus and avian metapneumovirus in Greece. Poult Sci 98:5374–5384 Available at http://dx.doi.org/10.3382/ps/pez360.spa
dc.relation.referencesBall, C., B. Manswr, A. Herrmann, S. Lemiere, and K. Ganapathy. 2022. Avian metapneumovirus subtype B vaccination in commercial broiler chicks: heterologous protection and selected host transcription responses to subtype A or B challenge. Avian Pathol 51:181–196 Available at https://doi.org/10.1080/03079457.2022.2036697.spa
dc.relation.referencesBayon-Auboyer, M. H., C. Arnauld, D. Toquin, and N. Eterradossi. 2000. Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup. J Gen Virol. 2000 Nov;81(Pt 11):2723-2733. doi: 10.1099/0022-1317-81-11-2723spa
dc.relation.referencesBäyon-Auboyer, M. H., V. Jestin, D. Toquin, M. Cherbonnel, and N. Eterradossi. 1999. Comparison of F-, G- and N-based RT-PCR protocols with conventional virological procedures for the detection and typing of turkey rhinotracheitis virus. Arch Virol. 1999;144(6):1091-109. doi: 10.1007/s007050050572.spa
dc.relation.referencesBrown, P. A., E. Lemaitre, F. X. Briand, C. Courtillon, O. Guionie, C. Allée, D. Toquin, M. H. Bayon-Auboyer, V. Jestin, and N. Eterradossi. 2014. Molecular comparisons of full length metapneumovirus (MPV) genomes, including newly determined french AMPV-C and -D isolates, further supports possible subclassification within the MPV genus. PLoS One. 2014 Jul 18;9(7):e102740. doi: 10.1371/journal.pone.0102740spa
dc.relation.referencesCatelli, E., C. Lupini, V. Listorti, A. Marziali, P. D. Matteo, J. N. Clive, and M. Cecchinato. 2012. The pigeon (Columba livia) is not sensitive to avian metapneumovirus subtype B and does not play any role in virus spread in experimental conditions.Pages 285–291 in Druckerei Schröder., ed. VII. International symposium on avian corona-and pneumoviruses and complicating pathogens, Rauischholzhausen, Germany.spa
dc.relation.referencesCecchinato, M., C. Lupini, E. Ricchizzi, M. Falchieri, A. Meini, R. C. Jones, and E. Catelli. 2012. Italian Field Survey Reveals a High Diffusion of Avian Metapneumovirus Subtype B in Layers and Weaknesses in the Vaccination Strategy Applied. Avian Dis. 2012 Dec;56(4):720-4. doi: 10.1637/10202-041312-Reg.1.spa
dc.relation.referencesChacón, J. L., P. E. Brandão, M. Buim, L. Villarreal, and A. J. P. Ferreira. 2007. Detection by reverse transcriptase-polymerase chain reaction and molecular characterization of subtype B avian metapneumovirus isolated in Brazil. Avian Pathol. 2007 Oct;36(5):383-7. doi: 10.1080/03079450701589142. PMID: 17899462spa
dc.relation.referencesChacón, J. L., M. Mizuma, M. P. Vejarano, D. Toquín, N. Eterradossi, D. P. Patnayak, S. M. Goyal, and A. J. Piantino Ferreira. 2011. Avian metapneumovirus subtypes circulating in Brazilian vaccinated and nonvaccinated chicken and turkey farms. Avian Dis. 2011 Mar;55(1):82-9. doi: 10.1637/9501-081310-Reg.1. PMID: 21500641Cook, J. K. 2000. Avian rhinotracheitis. Rev Sci Tech 19:602–613.spa
dc.relation.referencesCook, J. K. A., J. Chesher, F. Orthel, M. A. Woods, S. J. Orbell, W. Baxendale, and M. B. Huggins. 2000. Avian pneumovirus infection of laying hens: Experimental studies. Avian Pathol 29:545–556. doi: 10.1080/03079450020016788. PMID: 19184850spa
dc.relation.referencesCroville, G., C. Foret, P. Heuillard, A. Senet, M. Delpont, M. Mouahid, M. F. Ducatez, F. Kichou, and J. L. Guerin. 2018. Disclosing respiratory co-infections: a broad-range panel assay for avian respiratory pathogens on a nanofluidic PCR platform. Avian Pathol 2018 Jun;47(3):253-260. doi: 10.1080/03079457.2018.1430891. Epub 2018 Feb 27. PMID: 29350071.spa
dc.relation.referencesDani, M. A. C., C. W. Arns, and E. L. Durigon. 1999. Molecular characterization of Brazilian avian pneumovirus isolates using reverse transcription-polymerase chain reaction, restriction endonuclease analysis and sequencing of a G gene fragment. Avian Pathol. 1999 Oct;28(5):473-6. doi: 10.1080/03079459994498spa
dc.relation.referencesFAO. 1998. FAOSTAT statistical database. Available at https://search.library.wisc.edu/catalog/999890171702121.spa
dc.relation.referencesFelippe, P. A., L. H. A. da Silva, M. B. dos Santos, S. T. Sakata, and C. W. Arns. 2011. Detection of and phylogenetic studies with avian metapneumovirus recovered from feral pigeons and wild birds in Brazil. Avian Pathol 2011 Oct;40(5):445-52. doi: 10.1080/03079457.2011.596812. Epub 2011 Jul 21. PMID: 21777083.spa
dc.relation.referencesGharaibeh, S. M., and G. R. Algharaibeh. 2007. Serological and molecular detection of avian pneumovirus in chickens with respiratory disease in Jordan. Poult Sci 86:1677–1681 Available at http://dx.doi.org/10.1093/ps/86.8.1677.spa
dc.relation.referencesGharaibeh, S., and M. Shamoun. 2012. Avian Metapneumovirus Subtype B Experimental Infection and Tissue Distribution in Chickens, Sparrows, and Pigeons. Vet Pathol. 2012 Jul;49(4):704-9. doi: 10.1177/0300985811402845.spa
dc.relation.referencesGobbo, F., M. Moronato, G. Franzo, M. Cecchinato, and M. Martini. 2017. Real-time PCR data express the different distribution of avian Metapneumovirus and Mycoplasma synoviae in broiler chickens experimentally infected with one or both pathogens. Preliminary results. 20th World Veterinary Poultry Association Congress – Abstracts book:345–345 Available at https://www.research.unipd.it/handle/11577/3240852?mode=complete (verified 4 March 2024).spa
dc.relation.referencesHananeh, W. M., M. Q. Al-Natour, A. R. Alaboudi, M. N. Abo-Shehada, and Z. A. Bani Ismail. 2021. Congenital abnormalities in dead-in-shell chicks associated with mixed bacterial infections. Heliyon. 2021 Feb 14;7(2):e06272. doi: 10.1016/j.heliyon.2021.e06272.spa
dc.relation.referencesJesse, S. T., M. Ludlow, and A. D. M. E. Osterhaus. 2022. Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses. 2022 Mar 25;14(4):677. doi: 10.3390/v14040677.spa
dc.relation.referencesJirjis, F. F., S. L. Noll, D. A. Halvorson, K. V. Nagaraja, E. L. Townsend, A. M. Sheikh, and D. P. Shaw. 2000. Avian pneumovirus infection in Minnesota turkeys: Experimental reproduction of the disease. Avian Dis. 2000 Jan-Mar;44(1):222-6. PMID: 10737667.spa
dc.relation.referencesJones, R. C., and S. Rautenschlein. 2013. Avian metapneumovirus. Diseases of Poultry. 13th. Ames, Iowa:125–138.spa
dc.relation.referencesKaboudi, K., and J. Lachheb. 2021. Avian metapneumovirus infection in turkeys: a review on turkey rhinotracheitis. J Appl Poultry Res 30:100211 Available at https://doi.org/10.1016/j.japr.2021.100211.spa
dc.relation.referencesLiman, M., and S. Rautenschlein. 2007. Induction of local and systemic immune reactions following infection of turkeys with avian Metapneumovirus (aMPV) subtypes A and B. Vet Immunol Immunopathol. 2007 Feb 15;115(3-4):273-85. doi: 10.1016/j.vetimm.2006.12.001.spa
dc.relation.referencesLupini, C., C. M. Tucciarone, G. Mescolini, G. Quaglia, G. Graziosi, V. Turblin, P. Brown, M. Cecchinato, M. Legnardi, T. Delquigny, S. Lemiere, G. Perreul, and E. Catelli. 2023. Longitudinal Survey on aMPV Circulation in French Broiler Flocks following Different Vaccination Strategies. Animals (Basel). 2022 Dec 23;13(1):57. doi: 10.3390/ani13010057.spa
dc.relation.referencesNaylor, C. J., A. R. Al Al-Ankari, A. I. Al-Afaleq, J. M. Bradbury, and R. C. Jones. 1992. Exacerbation of Mycoplasma gallisepticum infection in Turkeys by rhinotracheitis virus. Avian Pathol. 1992;21(2):295-305. doi: 10.1080/03079459208418844.spa
dc.relation.referencesNguyen, V. G., H. C. Chung, H. Q. Do, T. T. Nguyen, T. B. P. Cao, H. T. Truong, T. N. Mai, T. T. Le, T. H. Nguyen, T. L. Le, and T. M. Le Huynh. 2021. Serological and molecular characterization of avian metapneumovirus in chickens in Northern Vietnam. Vet Sci. 2021 Sep 24;8(10):206. doi: 10.3390/vetsci8100206.spa
dc.relation.referencesOECD-FAO. 2023. OECD-FAO Agricultural Outlook 2023-2032. OECD.spa
dc.relation.referencesRestrepo-Cardona, J. S., J. D. Ocampo-Velásquez, A. Delgado, H. Mikkola, and D. R. Rodríguez-Villamil. 2021. Feeding habits of the Stygian Owl (Asio stygius) and the Short-eared Owl (A. flammeus) in the southwest of Bogotá savanna, Cundinamarca, Colombia. Ornitol Neotrop 32:92–96. DOI: 10.58843/ornneo.v32i2.727spa
dc.relation.referencesRivera-Benitez, J. F., R. Martínez-Bautista, F. Ríos-Cambre, and H. Ramírez-Mendoza. 2014. Molecular detection and isolation of avian metapneumovirus in Mexico. Avian Pathol 43:217–223 Available at http://dx.doi.org/10.1080/03079457.2014.903557.spa
dc.relation.referencesRizotto, L. S., R. M. Simão, G. P. Scagion, A. A. Simasaki, L. C. Caserta, J. C. Benassi, C. W. Arns, and H. L. Ferreira. 2019. Detection of avian metapneumovirus subtype a from wild birds in the state of São Paulo, Brazil. Pesq Vet Bras. 39(03). https://doi.org/10.1590/1678-5150-PVB-602spa
dc.relation.referencesRüger, N., H. Sid, J. Meens, M. P. Szostak, W. Baumgärtner, F. Bexter, and S. Rautenschlein. 2021. New insights into the host–pathogen interaction of mycoplasma gallisepticum and avian metapneumovirus in tracheal organ cultures of chicken. Microorganisms. 2021 Nov 22;9(11):2407. doi: 10.3390/microorganisms9112407.spa
dc.relation.referencesSalles, G. B. C., G. V. T. Pilati, E. C. Muniz, A. J. de Lima Neto, J. R. Vogt, M. Dahmer, B. P. Savi, D. A. Padilha, and G. Fongaro. 2023. Trends and Challenges in the Surveillance and Control of Avian Metapneumovirus. Viruses. 2023 Sep 20;15(9):1960. doi: 10.3390/v15091960.spa
dc.relation.referencesSalles, G. B. C., G. V. T. Pilati, B. P. Savi, E. C. Muniz, M. Dahmer, J. R. Vogt, A. J. de Lima Neto, and G. Fongaro. 2024. Surveillance of Avian Metapneumovirus in Non-Vaccinated Chickens and Co-Infection with Avian Pathogenic Escherichia coli. Microorganisms. 2023 Dec 28;12(1):56. doi: 10.3390/microorganisms12010056.spa
dc.relation.referencesSamy, A., and M. M. Naguib. 2018. Avian respiratory coinfection and impact on avian influenza pathogenicity in domestic poultry: Field and experimental findings. Vet Sci. 2018 Feb 24;5(1):23. doi: 10.3390/vetsci5010023.spa
dc.relation.referencesSharifi, A., M. Allymehr, and A. Talebi. 2022. Concurrent Occurrence of Infectious Bursal Disease and Multicausal Respiratory Infections Caused by Newcastle Disease and Avian Metapneumovirus in Broilers. Arch Razi Inst. 2022 Jun 30;77(3):1007-1016. doi: 10.22092/ARI.2021.354272.1631.spa
dc.relation.referencesShin, H. J., M. K. Njenga, B. McComb, D. A. Halvorson, and K. V. Nagaraja. 2000. Avian pneumovirus (APV) RNA from wild and sentinel birds in the United States has genetic homology with RNA from APV isolates from domestic turkeys. J Clin Microbiol. 2000 Nov;38(11):4282-4. doi: 10.1128/JCM.38.11.4282-4284.2000.spa
dc.relation.referencesSun, S., F. Chen, S. Cao, J. Liu, W. Lei, G. Li, Y. Song, and J. Lu. 2014. Isolation and characterization of a subtype C avian metapneumovirus circulating in Muscovy ducks in China. Vet Res. 2014 Jul 25;45(1):74. doi: 10.1186/s13567-014-0074-y. PMID: 25060776; PMCID: PMC4222263.spa
dc.relation.referencesTegegne, D., Y. Deneke, T. Sori, M. Abdurahaman, N. Kebede, M. Cecchinato, and G. Franzo. 2020. Molecular epidemiology and genotyping of infectious bronchitis virus and avian metapneumovirus in backyard and commercial chickens in Jimma Zone, Southwestern Ethiopia. Vet Sci. 2020 Nov 25;7(4):187. doi: 10.3390/vetsci7040187.spa
dc.relation.referencesTucciarone, C. M., G. Franzo, M. Legnardi, D. Pasotto, C. Lupini, E. Catelli, G. Quaglia, G. Graziosi, E. Dal Molin, F. Gobbo, and M. Cecchinato. 2022. Molecular Survey on A, B, C and New Avian Metapneumovirus (aMPV) Subtypes in Wild Birds of Northern-Central Italy. Vet Sci. 2022 Jul 20;9(7):373. doi: 10.3390/vetsci9070373.spa
dc.relation.referencesTucciarone, C. M., G. Franzo, C. Lupini, C. T. Alejo, V. Listorti, G. Mescolini, P. E. Brandão, M. Martini, E. Catelli, and M. Cecchinato. 2018. Avian Metapneumovirus circulation in Italian broiler farms. Poult Sci. 2018 Feb 1;97(2):503-509. doi: 10.3382/ps/pex350.spa
dc.relation.referencesWOAH. 2022. HIGH PATHOGENICITY AVIAN INFLUENZA (HPAI) – SITUATION REPORT. World Animal Health Information System of the World Organisation for Animal Health (WAHIS):1–5.spa
dc.relation.referencesBanet-Noach, C., Simanov, L., Laham-Karam, N., Perk, S., & Bacharach, E. (2009). Longitudinal Survey of Avian Metapneumoviruses in Poultry in Israel: Infiltration of Field Strains into Vaccinated Flocks. Avian Diseases, 53(2), 184–189. https://doi.org/10.1637/8466-090408-Reg.1spa
dc.relation.referencesBennett, R. S., Nezworski, J., Velayudhan, B. T., Nagaraja, K. V, Zeman, D. H., Dyer, N., Graham, T., Lauer, D. C., Njenga, M. K., & Halvorson, D. A. (2004). Evidence of Avian Pneumovirus Spread Beyond Minnesota Among Wild and Domestic Birds in Central North America. Avian Diseases, 48(4), 902–908. https://doi.org/10.1637/7208-051804Rspa
dc.relation.referencesBrown, P. A., Allée, C., Courtillon, C., Szerman, N., Lemaitre, E., Toquin, D., Mangart, J. M., Amelot, M., & Eterradossi, N. (2019). Host specificity of avian metapneumoviruses. Avian Pathol, 48(4), 311–318. https://doi.org/10.1080/03079457.2019.1584390spa
dc.relation.referencesBrown, P. A., Lemaitre, E., Briand, F. X., Courtillon, C., Guionie, O., Allée, C., Toquin, D., Bayon-Auboyer, M. H., Jestin, V., & Eterradossi, N. (2014). Molecular comparisons of full length metapneumovirus (MPV) genomes, including newly determined french AMPV-C and -D isolates, further supports possible subclassification within the MPV genus. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102740spa
dc.relation.referencesCanuti, M., Kroyer, A. N. K., Ojkic, D., Whitney, H. G., Robertson, G. J., & Lang, A. S. (2019). Discovery and characterization of novel rna viruses in aquatic North American wild birds. Viruses, 11(9), 1–14. https://doi.org/10.3390/v11090768spa
dc.relation.referencesCatelli, E., Cecchinato, M., Savage, C. E., Jones, R. C., & Naylor, C. J. (2006). Demonstration of loss of attenuation and extended field persistence of a live avian metapneumovirus vaccine. Vaccine, 24(42–43), 6476–6482. https://doi.org/10.1016/j.vaccine.2006.06.076spa
dc.relation.referencesCavanagh, D., Mawditt, K., Britton, P., & Naylor, C. J. (1999). Longitudinal field studies of infectious bronchitis virus and avian pneumovirus in broilers using type-specific polymerase chain reactions. Avian Pathol, 28(6), 593–605. https://doi.org/10.1080/03079459994399spa
dc.relation.referencesCecchinato, M., Catelli, E., Lupini, C., Ricchizzi, E., Prosperi, S., & Naylor, C. J. (2014). Reversion to virulence of a subtype B avian metapneumovirus vaccine: Is it time for regulators to require availability of vaccine progenitors? Vaccine, 32(36), 4660–4664. https://doi.org/10.1016/j.vaccine.2014.06.030spa
dc.relation.referencesCecchinato, M., C. Lupini, E. Ricchizzi, M. Falchieri, A. Meini, R. C. Jones, and E. Catelli. 2012. Italian Field Survey Reveals a High Diffusion of Avian Metapneumovirus Subtype B in Layers and Weaknesses in the Vaccination Strategy Applied. Avian Dis. 2012 Dec;56(4):720-4. doi: 10.1637/10202-041312-Reg.1.spa
dc.relation.referencesChacón, J. L., Brandão, P. E., Buim, M., Villarreal, L., & Ferreira, A. J. P. (2007). Detection by reverse transcriptase-polymerase chain reaction and molecular characterization of subtype B avian metapneumovirus isolated in Brazil. Avian Pathol, 36(5), 383–387. https://doi.org/10.1080/03079450701589142spa
dc.relation.referencesChacón, J. L., Mizuma, M., Vejarano, M. P., Toquín, D., Eterradossi, N., Patnayak, D. P., Goyal, S. M., & Piantino Ferreira, A. J. (2011). Avian metapneumovirus subtypes circulating in Brazilian vaccinated and nonvaccinated chicken and turkey farms. Avian Diseases, 55(1), 82–89. https://doi.org/10.1637/9501-081310-Reg.1spa
dc.relation.referencesCook, J. K. A. (2000). Avian Pneumovirus Infections of Turkeys and Chickens. Veterinary Journal, 160(2), 118–125. https://doi.org/10.1053/tvjl.2000.0486spa
dc.relation.referencesCroville, G., Foret, C., Heuillard, P., Senet, A., Delpont, M., Mouahid, M., Ducatez, M. F., Kichou, F., & Guerin, J. L. (2018). Disclosing respiratory co-infections: a broad-range panel assay for avian respiratory pathogens on a nanofluidic PCR platform. Avian Pathol, 47(3), 253–260. https://doi.org/10.1080/03079457.2018.1430891spa
dc.relation.referencesDani, M. A. C., Arns, C. W., & Durigon, E. L. (1999). Molecular characterization of Brazilian avian pneumovirus isolates using reverse transcription-polymerase chain reaction, restriction endonuclease analysis and sequencing of a G gene fragment. Avian Pathol, 28(5), 473–476. https://doi.org/10.1080/03079459994498spa
dc.relation.referencesFelippe, P. A., da Silva, L. H. A., dos Santos, M. B., Sakata, S. T., & Arns, C. W. (2011). Detection of and phylogenetic studies with avian metapneumovirus recovered from feral pigeons and wild birds in Brazil. Avian Pathol, 40(5), 445–452. https://doi.org/10.1080/03079457.2011.596812spa
dc.relation.referencesFranzo, G., Tucciarone, C. M., Enache, M., Bejan, V., Ramon, G., Koutoulis, K. C., & Cecchinato, M. (2017). First Report of Avian Metapneumovirus Subtype B Field Strain in a Romanian Broiler Flock during an Outbreak of Respiratory Disease. Avian Diseases, 61(2), 250–254. https://doi.org/10.1637/11557-121216-ResNote.1spa
dc.relation.referencesGovindarajan, D., S. Kim, S. K. Samal, D. Govindarajan, A. S. Kim, and S. K. S. B. 2010. Contribution of the Attachment G Glycoprotein to Pathogenicity and Immunogenicity of Avian Metapneumovirus Subgroup C Contribution of the Attachment G Glycoprotein to Pathogenicity and Immunogenicity of Avian Metapneumovirus Subgroup C. Avian Dis. 2010 Mar;54(1):59-66. doi: 10.1637/8991-071409-Reg.1. PMID: 20408400.spa
dc.relation.referencesJardine, C. M. 2018. Avian metapneumovirus subtype C in Wild Waterfowl in Ontario , Canada. Transbound Emerg Dis. 2018 Aug;65(4):1098-1102. doi: 10.1111/tbed.12832.spa
dc.relation.referencesJesse, S. T., Ribó‐Molina, P., Jo, W. K., Rautenschlein, S., Vuong, O., Fouchier, R. A. M., Ludlow, M., & Osterhaus, A. D. M. E. (2022). Molecular characterization of avian metapneumovirus subtype C detected in wild mallards (Anas platyrhynchos) in The Netherlands. Transboundary and Emerging Diseases, 69(6), 1–11. https://doi.org/10.1111/tbed.14688spa
dc.relation.referencesJuhasz, K., & Easton, A. J. (1994). Extensive sequence variation in the attachment (G) protein gene of avian pneumovirus: Evidence for two distinct subgroups. Journal of General Virology, 75(11), 2873–2880. https://doi.org/10.1099/0022-1317-75-11-2873spa
dc.relation.referencesListorti, V., Lupini, C., Cecchinato, M., Pesente, P., Rossi, G., Giovanardi, D., Naylor, C. J., & Catelli, E. (2014). Rapid detection of subtype B avian metapneumoviruses using RT-PCR restriction endonuclease digestion indicates field circulation of vaccine-derived viruses in older turkeys. Avian Pathol, 43(1), 51–56. https://doi.org/10.1080/03079457.2013.866212spa
dc.relation.referencesLupini, C., Cecchinato, M., Ricchizzi, E., Naylor, C. J., & Catelli, E. (2011). A turkey rhinotracheitis outbreak caused by the environmental spread of a vaccine-derived avian metapneumovirus. Avian Pathol, 40(5), 525–530. https://doi.org/10.1080/03079457.2011.607428spa
dc.relation.referencesLupini, C., Tucciarone, C. M., Mescolini, G., Quaglia, G., Graziosi, G., Turblin, V., Brown, P., Cecchinato, M., Legnardi, M., Delquigny, T., Lemiere, S., Perreul, G., & Catelli, E. (2023). Longitudinal Survey on aMPV Circulation in French Broiler Flocks following Different Vaccination Strategies. Animals, 13(1). https://doi.org/10.3390/ani13010057spa
dc.relation.referencesLuqman, M., Duhan, N., Temeeyasen, G., Selim, M., Jangra, S., & Mor, S. K. (2024). Geographical Expansion of Avian Metapneumovirus Subtype B: First Detection and Molecular Characterization of Avian Metapneumovirus Subtype B in US Poultry. Viruses, 16(4), 508. https://doi.org/10.3390/v16040508spa
dc.relation.referencesNguyen, V. G., Chung, H. C., Do, H. Q., Nguyen, T. T., Cao, T. B. P., Truong, H. T., Mai, T. N., Le, T. T., Nguyen, T. H., Le, T. L., & Huynh, T. M. Le. (2021). Serological and molecular characterization of avian metapneumovirus in chickens in Northern Vietnam. Veterinary Sciences, 8(10). https://doi.org/10.3390/vetsci8100206spa
dc.relation.referencesRautenschlein, S. (2020). Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. In Swayne D.E. (Ed.), Diseases of Poultry (14th Editi, pp. 135–143). John Wiley & Sonsr.spa
dc.relation.referencesRetallack, H., Clubb, S., & DeRisi, J. L. (2019). Genome Sequence of a Divergent Avian Metapneumovirus from a Monk Parakeet ( Myiopsitta monachus ) . Microbiology Resource Announcements, 8(16), 4–6. https://doi.org/10.1128/mra.00284-19spa
dc.relation.referencesRivera-Benitez, J. F., Martínez-Bautista, R., Ríos-Cambre, F., & Ramírez-Mendoza, H. (2014). Molecular detection and isolation of avian metapneumovirus in Mexico. Avian Pathol, 43(3), 217–223. https://doi.org/10.1080/03079457.2014.903557spa
dc.relation.referencesRizotto, L. S., Simão, R. M., Scagion, G. P., Simasaki, A. A., Caserta, L. C., Benassi, J. C., Arns, C. W., & Ferreira, H. L. (2019). Detection of avian metapneumovirus subtype a from wild birds in the state of São Paulo, Brazil. Pesquisa Veterinaria Brasileira, 39(3), 209–213. https://doi.org/10.1590/1678-5150-PVB-6021spa
dc.relation.referencesShin, H. J., Nagaraja, K. V., McComb, B., Halvorson, D. A., Jirjis, F. F., Shaw, D. P., Seal, B. S., & Njenga, M. K. (2002). Isolation of avian pneumovirus from mallard ducks that is genetically similar to viruses isolated from neighboring commercial turkeys. Virus Research, 83(1–2), 207–212. https://doi.org/10.1016/S0168-1702(01)00402-6spa
dc.relation.referencesShin, H.-J., Njenga, M., Halvorson, D., Shaw, D., & Nagaraja, K. (2001). Susceptibility of ducks to avian pneumovirus of turkey origin. American Journal of Veterinary Research, 62, 991–994. https://doi.org/10.2460/ajvr.2001.62.991spa
dc.relation.referencesSugiyama, M., Ito, H., & Hata, Y. (2010). Complete nucleotide sequences of avian metapneumovirus subtype B genome. 389–395. https://doi.org/10.1007/s11262-010-0518-zspa
dc.relation.referencesTucciarone, C. M., Andreopoulou, M., Franzo, G., Prentza, Z., Chaligiannis, I., & Cecchinato, M. (2017). First Identification and Molecular Characterization of Avian metapneumovirus Subtype B from Chickens in Greece. Avian Diseases, 61(3), 409–413. https://doi.org/10.1637/11631-032017-CaseRspa
dc.relation.referencesTurpin, E. A., Stallknecht, D. E., Slemons, R. D., Zsak, L., & Swayne, D. E. (2008). Evidence of avian metapneumovirus subtype C infection of wild birds in Georgia, South Carolina, Arkansas and Ohio, USA. Avian Pathol, 37(3), 343–351. https://doi.org/10.1080/03079450802068566spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.ddc640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidasspa
dc.subject.ddc636.0896spa
dc.subject.lembINDUSTRIA AVICOLAspa
dc.subject.lembPoultry industryeng
dc.subject.lembSALUD ANIMALspa
dc.subject.lembCattle - healtheng
dc.subject.lembAVES-ENFERMEDADESspa
dc.subject.lembBirds - diseaseseng
dc.subject.lembMEDICINA AVIARIAspa
dc.subject.lembAvian medicineeng
dc.subject.lembVIROSIS EN LAS AVES DE CORRALspa
dc.subject.lembPoultry virus diseaseseng
dc.subject.lembAVES SILVESTRESspa
dc.subject.lembWild birdseng
dc.subject.lembAVES DE CORRAL-ENFERMEDADESspa
dc.subject.lembPoultry - diseaseseng
dc.subject.proposalMetapneumovirus aviarspa
dc.subject.proposalVirus aviaresspa
dc.subject.proposalSalud aviarspa
dc.subject.proposalPatología aviarspa
dc.subject.proposalFilogeniaspa
dc.subject.proposalAvian metapneumoviruseng
dc.subject.proposalAvian viruseseng
dc.subject.proposalAvian healtheng
dc.subject.proposalAvian pathologyeng
dc.subject.proposalPhylogenyeng
dc.titleDetección y tipificación molecular de Metapneumovirus Aviar en aves comerciales y silvestres de Colombiaspa
dc.title.translatedMolecular detection and typification of Avian Metapneumovirus in commercial and wild birds of Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018483522.2025.pdf
Tamaño:
4.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud y Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: