Evaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratón

dc.contributor.advisorDíaz Arévalo, Dianaspa
dc.contributor.advisorPatarroyo Gutiérrez, Manuel Alfonsospa
dc.contributor.authorBeltrán Castañeda, Jeimy Yuranispa
dc.contributor.educationalvalidatorRodríguez Obediente, Kewin Jairspa
dc.date.accessioned2024-08-15T19:53:15Z
dc.date.available2024-08-15T19:53:15Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl modelo de malaria murina ha sido ampliamente usado en ensayos preliminares de protección con aquellas proteínas de Plasmodium yoelii que son homólogas a las proteínas de P. vivax, al evaluar posibles candidatos a vacuna. La proteína MSP1 es la proteína más abundante localizada en la superficie del merozoíto y está involucrada en la unión inicial a la membrana del glóbulo rojo durante el proceso de invasión a eritrocitos. En el presente estudio, como prueba de concepto, se caracterizó la respuesta inmune protectiva de epítopos B de la proteína PyMSP1-42 kDa con un epítopo T artificial para la unión a H2-IEd, utilizando ratones BALB/c. Se seleccionaron epítopos B bajo un análisis de restricción funcional in silico, encontrando dos regiones conservadas que pertenecen al fragmento 33 kDa y 19 kDa; con base en este análisis, se sintetizaron dieciséis péptidos cubriendo la totalidad de las regiones conservadas y, en ensayos in vitro, se identificaron 3 péptidos con capacidad de unión a eritrocitos, capacidad de inhibición de la invasión y con capacidad antigénica. Mediante análisis bioinformáticos, se realizó la optimización de los epítopos B seleccionados, a través de la articulación de un epítopo T artificial y se evaluó su unión in vitro a moléculas H2-IEd. Los péptidos quiméricos 43758 y 43762 mostraron perfiles de unión superior al 50% a la molécula del Complejo Mayor de Histocompatibilidad (MHC, del inglés Major Histocompatibility Complex) de clase II murino, además de un perfil de isotipos IgG1 e IgG2 y una respuesta mediada por TNFα, como posible mediador de la eliminación del parásito durante la infección temprana de P. yoelii. Este trabajo propone una metodología racional y robusta para la optimización de péptidos conservados a través de constructos articulados de epítopos B, y epítopos T completamente artificiales, como una estrategia novedosa para el diseño de candidatos peptídicos inmunoprofilácticos para el desarrollo de una vacuna sintética multiepítopo - multiantígeno – multiestadio contra la malaria (Texto tomado de la fuente).spa
dc.description.abstractThe murine malaria model has been widely used in preliminary protection trials with Plasmodium yoelii proteins that are homologous to P. vivax proteins as potential vaccine candidates. The MSP1 protein is the most abundant protein located on the surface of the merozoite and is involved in the initial binding to the red blood cell membrane during the invasion process to erythrocytes. In the present study, as a proof of concept, the protective immune response of B epitopes of PyMSP1-42 kDa protein with an artificial T epitope for H2-IEd binding was characterized using BALB/c mice. B epitopes under functional restriction analysis were selected in silico, two conserved regions belonging to the 33 kDa and 19 kDa fragments were found; sixteen peptides covering the conserved regions were synthesized, 3 of them displaying erythrocyte binding ability, invasion inhibition ability and antigenicity. The selected B epitopes were then optimized through bioinformatics analysis, articulating them with an artificial T epitope, and their in vitro binding to H2-IEd molecules was evaluated. Chimeric peptides 43758 and 43762 showed binding profiles greater than 50% to the murine MHC class II molecule; furthermore, they induced IgG1 and IgG2 isotype profiles and a TNFα-mediated response as a possible mediator of parasite clearance during early P. yoelii infection. This work proposes a robust and rational methodology to optimize conserved peptides by joining natural B epitopes with artificial T ones, as a novel strategy for designing immunoprophylactic peptide candidates in the development of a multiepitope – multiantigen – multistage malaria vaccine.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias – Microbiologíaspa
dc.description.methodsEl polimorfismo del gen msp1 fragmento 42 kDa se evaluó a partir de los datos de secuencias de P. yoelii y especies relacionadas filogenéticamente / tropismo por la célula hospedera (Tabla 2), obtenidos de la plataforma NCBI (https://www.ncbi.nlm.nih.gov). El servidor web TraslatorX (http://translatorx.co.uk/) (45), se utilizó para realizar un alineamiento múltiple conservando el ORF (del inglés, Open Reading Frame) para la proteína PyMSP1-42 kDa. El algoritmo GARD (Genetic Algorithm for Recombination Detection) se utilizó para detectar procesos de recombinación. Luego, los modelos IFEL (Internal Fixed Effects Likelihood), 24 SLAC (Single-Likelihood Ancestor Counting), FEL (Fixed Effects Likelihood), REL (Random Effects Likelihood) (46), MEME (Mixed Effects Model of Evolution) (47) y FUBAR (Fast, Unconstrained Bayesian Approximation) (48), se utilizaron para evaluar dinámicas de selección natural, integrando enfoques bayesianos o de máxima verosimilitud. Lo anterior con el objetivo de inferir codones bajo selección purificante (característica importante para predecir regiones mínimas funcionales). La ventana deslizante para inferir la tasa de divergencia genética (ω), se obtuvo en el software DnaSP6 (49). Las señales de selección natural intra-especie se evaluaron a través del método modificado de Nei-Gojobori, calculando la variación entre las tasas de sustitución no sinónima y sinónima (dN/dS). Además, se aplicó la corrección de Jukes-Cantor (50) para evaluar fenómenos inter-especie, teniendo en cuenta la diferencia entre las tasas de divergencia no sinónimas y sinónimas (KNKS). Aquellas regiones que presentaron valor ω > 1 se consideraron bajo selección purificante (51).spa
dc.description.researchareaInmunología Celular y Molecularspa
dc.format.extent68 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86730
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.references1. Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology. 2022;149(6):1-22.spa
dc.relation.references2. WHO. Geneva: World Malaria Report 2023. World Health Organization; 2023.spa
dc.relation.references3. SIVIGILA. Boletín epidemiológico semanal: Semana 52. Bogotá D.C., Colombia:spa
dc.relation.references4. Quin SJ, Langhorne J. Different regions of the malaria merozoite surface protein 1 of Plasmodium chabaudi elicit distinct T-cell and antibody isotype responses. Infection and immunity. 2001;69(4):2245-51.spa
dc.relation.references5. Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, et al. IMPIPS: The Immune Protection-Inducing Protein Structure Concept in the Search for Steric-Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PLoS One. 2015;10(4):e0123249.spa
dc.relation.references6. Tinto H, Otieno W, Gesase S, Sorgho H, Otieno L, Liheluka E, et al. Long-term incidence of severe malaria following RTS, S/AS01 vaccination in children and infants in Africa: an open-label 3-year extension study of a phase 3 randomised controlled trial. The Lancet Infectious Diseases. 2019;19(8):821-32.spa
dc.relation.references7. Datoo MS, Natama HM, Somé A, Bellamy D, Traoré O, Rouamba T, et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. The Lancet Infectious Diseases. 2022;22(12):1728-36.spa
dc.relation.references8. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9(7):725-32.spa
dc.relation.references9. Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young African children. New England Journal of Medicine. 2016;374(26):2519-29.spa
dc.relation.references10. Lima-Junior JdC, Pratt-Riccio LR. Major histocompatibility complex and malaria: focus on Plasmodium vivax infection. Frontiers in immunology. 2016;7:13.spa
dc.relation.references11. Marussig M, Rénia L, Motard A, Miltgen F, Pétour P, Chauhan V, et al. Linear and multiple antigen peptides containing defined T and B epitopes of the Plasmodium yoelii circumsporozoite protein: antibody-mediated protection and boosting by sporozoite infection. International immunology. 1997;9(12):1817-24.spa
dc.relation.references12. Nardin EH, Oliveira GA, Calvo-Calle JM, Nussenzweig RS. The use of multiple antigen peptides in the analysis and induction of protective immune responses against infectious diseases. Advances in immunology. 1995;60:105-49.spa
dc.relation.references13. Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum* S. Molecular & cellular proteomics. 2006;5(7):1286-99.spa
dc.relation.references14. Das S, Hertrich N, Perrin AJ, Withers-Martinez C, Collins CR, Jones ML, et al. Processing of Plasmodium falciparum merozoite surface protein MSP1 activates a spectrin-binding function enabling parasite egress from RBCs. Cell host & microbe. 2015;18(4):433-44.spa
dc.relation.references15. Holder A. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology. 2009;136(12):1445-56.spa
dc.relation.references16. Kawabata Y, Udono H, Honma K, Ueda M, Mukae H, Kadota J-i, et al. Merozoite surface protein 1-specific immune response is protective against exoerythrocytic forms of Plasmodium yoelii. Infection and immunity. 2002;70(11):6075-82spa
dc.relation.references17. Wipasa J, Hirunpetcharat C, Mahakunkijcharoen Y, Xu H, Elliott S, Good MF. Identification of T cell epitopes on the 33-kDa fragment of Plasmodium yoelii merozoite surface protein 1 and their antibody-independent protective role in immunity to blood stage malaria. The Journal of Immunology. 2002;169(2):944-51.spa
dc.relation.references18. Belachew EB. Immune response and evasion mechanisms of Plasmodium falciparum parasites. Journal of immunology research. 2018;2018.spa
dc.relation.references19. WHO. Geneva: World Malaria Report 2022. World Health Organization; 2022.spa
dc.relation.references20. SIVIGILA. Boletín epidemiológico semanal: Semana 52. Bogotá D.C., Colombia: Instituto Nacional de Salud - Sistema Nacional de Vigilancia en Salud Pública; 2023.spa
dc.relation.references21. Khan SM, Jarra W, Preiser PR. The 235 kDa rhoptry protein of Plasmodium (yoelii) yoelii: function at the junction. Molecular and Biochemical Parasitology. 2001;117(1):1-10.spa
dc.relation.references22. Spencer LM, Mendoza E, Louro A. Mecanismos de invasión del esporozoíto de Plasmodium en el mosquito vector Anopheles. Revista Bionatura. 2016;1(3):146-53spa
dc.relation.references23. Cheong FW, Fong MY, Lau YL, Mahmud R. Immunogenicity of bacterial-expressed recombinant Plasmodium knowlesi merozoite surface protein-142 (MSP-142). Malaria journal. 2013;12(1):1-9.spa
dc.relation.references24. Siddiqui WA, Tam LQ, Kramer KJ, Hui GS, Case SE, Yamaga KM, et al. Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 1987;84(9):3014-8.spa
dc.relation.references25. Tian J-H, Kumar S, Kaslow DC, Miller LH. Comparison of protection induced by immunization with recombinant proteins from different regions of merozoite surface protein 1 of Plasmodium yoelii. Infection and immunity. 1997;65(8):3032-6.spa
dc.relation.references26. Ling I, Ogun S, Holder A. Immunization against malaria with a recombinant protein. Parasite immunology. 1994;16(2):63-7.spa
dc.relation.references27. Rotman HL, Daly TM, Clynes R, Long CA. Fc receptors are not required for antibody-mediated protection against lethal malaria challenge in a mouse model. The Journal of Immunology. 1998;161(4):1908-12.spa
dc.relation.references28. Combes V, Taylor TE, Juhan-Vague I, Mège J-L, Mwenechanya J, Tembo M, et al. Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. Jama. 2004;291(21):2542-4.spa
dc.relation.references29. Deroost K, Pham T-T, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS microbiology reviews. 2016;40(2):208-57.spa
dc.relation.references30. Bansal GP, Weinstein CS, Kumar N. Insight into phagocytosis of mature sexual (gametocyte) stages of Plasmodium falciparum using a human monocyte cell line. Acta tropica. 2016;157:96-101.spa
dc.relation.references31. Haque A, Best SE, De Oca MM, James KR, Ammerdorffer A, Edwards CL, et al. Type I IFN signaling in CD8–DCs impairs Th1-dependent malaria immunity. The Journal of clinical investigation. 2014;124(6):2483-96.spa
dc.relation.references32. Wu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, et al. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proceedings of the National Academy of Sciences. 2014;111(4):E511-E20.spa
dc.relation.references33. Yu X, Cai B, Wang M, Tan P, Ding X, Wu J, et al. Cross-regulation of two type I interferon signaling pathways in plasmacytoid dendritic cells controls anti-malaria immunity and host mortality. Immunity. 2016;45(5):1093-107.spa
dc.relation.references34. McNab F, Mayer-Barber K, Sher A, Wack A, O'garra A. Type I interferons in infectious disease. Nature Reviews Immunology. 2015;15(2):87-103.spa
dc.relation.references35. Mordmüller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542(7642):445-9.spa
dc.relation.references36. Horowitz A, Newman KC, Evans JH, Korbel DS, Davis DM, Riley EM. Cross-talk between T cells and NK cells generates rapid effector responses to Plasmodium falciparum-infected erythrocytes. The Journal of Immunology. 2010;184(11):6043-52.spa
dc.relation.references37. Su Z, & Stevenson, M. M. Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infection and immunity. 2000;68:4399-406.spa
dc.relation.references38. Cai C, Hu Z, Yu X. Accelerator or brake: Immune regulators in malaria. Frontiers in Cellular and Infection Microbiology. 2020;10:610121.spa
dc.relation.references39. Vinuesa CG, Cyster JG. How T cells earn the follicular rite of passage. Immunity. 2011;35(5):671-80.spa
dc.relation.references40. Obeng-Adjei N, Portugal S, Tran TM, Yazew TB, Skinner J, Li S, et al. Circulating Th1-cell-type Tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children. Cell reports. 2015;13(2):425-39.spa
dc.relation.references41. Ryg-Cornejo V, Ioannidis LJ, Ly A, Chiu CY, Tellier J, Hill DL, et al. Severe malaria infections impair germinal center responses by inhibiting T follicular helper cell differentiation. Cell reports. 2016;14(1):68-81.spa
dc.relation.references42. Kuby Janis KT, Goldsby Richard Inmunología de Kuby 2007.spa
dc.relation.references43. Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. The major histocompatibility complex and its functions. Immunobiology: The Immune System in Health and Disease 5th edition: Garland Science; 2001.spa
dc.relation.references44. Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. 2017;8:248429.spa
dc.relation.references45. Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic acids research. 2010;38(suppl_2):W7-W13.spa
dc.relation.references46. Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Molecular biology and evolution. 2005;22(5):1208-22.spa
dc.relation.references47. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS genetics. 2012;8(7):e1002764spa
dc.relation.references48. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Molecular biology and evolution. 2013;30(5):1196-205.spa
dc.relation.references49. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution. 2017;34(12):3299-302.spa
dc.relation.references50. Jukes TH, Cantor CR. Evolution of protein molecules. Mammalian protein metabolism. 1969;3:21-132.spa
dc.relation.references51. Garzón-Ospina D, Forero-Rodríguez J, Patarroyo MA. Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. Infection, Genetics and Evolution. 2015;33:182-8.spa
dc.relation.references52. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research. 2017;45(W1):W24-W9.spa
dc.relation.references53. Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society. 1963;85(14):2149-54.spa
dc.relation.references54. Rabelo L, Monteiro N, Serquiz R, Santos P, Oliveira R, Oliveira A, et al. A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Marine drugs. 2012;10(4):727-43.spa
dc.relation.references55. Nillni EA, Londner MV, Spira DT. A simple method for separation of uninfected erythrocytes from those infected with Plasmodium berghei and for isolation of artificially released parasites. Z Parasitenkd. 1981;64(3):279-84.spa
dc.relation.references56. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394-406.spa
dc.relation.references57. Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of proteome research. 2020;19(6):2304-15.spa
dc.relation.references58. Giguère S, Drouin A, Lacoste A, Marchand M, Corbeil J, Laviolette F. MHC-NP: predicting peptides naturally processed by the MHC. Journal of immunological methods. 2013;400:30-6.spa
dc.relation.references59. Shen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of chemical theory and computation. 2014;10(10):4745-58.spa
dc.relation.references60. Gorga JC, Horejsi V, Johnson DR, Raghupathy R, Strominger JL. Purification and characterization of class II histocompatibility antigens from a homozygous human B cell line. Journal of Biological Chemistry. 1987;262(33):16087-94.spa
dc.relation.references61. Andrew SM, Titus JA. Purification of immunoglobulin G. Current Protocols in Cell Biology. 2000;5(1):16.3. 1-.3. 2.spa
dc.relation.references62. Vargas LE, Parra CA, Salazar LM, Guzmán F, Pinto M, Patarroyo ME. MHC allele-specific binding of a malaria peptide makes it become promiscuous on fitting a glycine residue into pocket 6. Biochemical and biophysical research communications. 2003;307(1):148-56.spa
dc.relation.references63. Saravia C, Martinez P, Granados DS, Lopez C, Reyes C, Patarroyo MA. Identification and evaluation of universal epitopes in Plasmodium vivax Duffy binding protein. Biochemical and biophysical research communications. 2008;377(4):1279-83.spa
dc.relation.references64. Yepes-Pérez Y, López C, Suárez CF, Patarroyo MA. Plasmodium vivax Pv 12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity. PloS one. 2018;13(9):e0203715.spa
dc.relation.references65. Cuy-Chaparro L, Bohorquez MD, Arevalo-Pinzon G, Castaneda-Ramirez JJ, Suarez CF, Pabon L, et al. Babesia Bovis Ligand-Receptor Interaction: AMA-1 Contains Small Regions Governing Bovine Erythrocyte Binding. Int J Mol Sci. 2021;22(2).spa
dc.relation.references66. Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008;108(9):3656-705.spa
dc.relation.references67. RTS SCTP. A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. New England Journal of Medicine. 2012;367(24):2284-95.spa
dc.relation.references68. Espinosa AM, Sierra AY, Barrero CA, Cepeda LA, Cantor EM, Lombo TB, et al. Expression, polymorphism analysis, reticulocyte binding and serological reactivity of two Plasmodium vivax MSP-1 protein recombinant fragments. Vaccine. 2003;21(11-12):1033-43.spa
dc.relation.references69. Rodrı́guez LE, Urquiza M, Ocampo M, Curtidor H, Suárez J, Garcı́a J, et al. Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine. 2002;20(9-10):1331-9.spa
dc.relation.references70. Pacheco MA, Poe AC, Collins WE, Lal AA, Tanabe K, Kariuki SK, et al. A comparative study of the genetic diversity of the 42 kDa fragment of the merozoite surface protein 1 in Plasmodium falciparum and P. vivax. Infection, Genetics and Evolution. 2007;7(2):180-7.spa
dc.relation.references71. Thái TL, Jun H, Lee J, Kang J-M, Lê HG, Lin K, et al. Genetic diversity of merozoite surface protein-1 C-terminal 42 kDa of Plasmodium falciparum (PfMSP-142) may be greater than previously known in global isolates. Parasites & vectors. 2018;11(1):1-15.spa
dc.relation.references72. Gaur D, Mayer DG, Miller LH. Parasite ligand–host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. International journal for parasitology. 2004;34(13-14):1413-29.spa
dc.relation.references73. Goel VK, Li X, Chen H, Liu S-C, Chishti AH, Oh SS. Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proceedings of the National Academy of Sciences. 2003;100(9):5164-9.spa
dc.relation.references74. Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS biology. 2003;1(1):e5.spa
dc.relation.references75. Moss DK, Remarque EJ, Faber BW, Cavanagh DR, Arnot DE, Thomas AW, et al. Plasmodium falciparum 19-kilodalton merozoite surface protein 1 (MSP1)-specific antibodies that interfere with parasite growth in vitro can inhibit MSP1 processing, merozoite invasion, and intracellular parasite development. Infection and immunity. 2012;80(3):1280-7.spa
dc.relation.references76. Yuen D, Leung W-H, Cheung R, Hashimoto C, Ng SF, Ho W, et al. Antigenicity and immunogenicity of the N-terminal 33-kDa processing fragment of the Plasmodium falciparum merozoite surface protein 1, MSP1: implications for vaccine development. Vaccine. 2007;25(3):490-9.spa
dc.relation.references77. Fernandez-Becerra C, Sanz S, Brucet M, Stanisic DI, Alves FP, Camargo EP, et al. Naturally-acquired humoral immune responses against the N- and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua New Guinea using a multiplex assay. Malar J. 2010;9:29.spa
dc.relation.references78. Punnath K, Dayanand KK, Midya V, Chandrashekar VN, Achur RN, Kakkilaya SB, et al. Acquired antibody responses against merozoite surface protein-1(19) antigen during Plasmodium falciparum and P.vivax infections in South Indian city of Mangaluru. J Parasit Dis. 2021;45(1):176-90.spa
dc.relation.references79. Avendaño C, Jenkins M, Méndez-Callejas G, Oviedo J, Guzmán F, Patarroyo MA, et al. Cryptosporidium spp. CP15 and CSL protein-derived synthetic peptides’ immunogenicity and in vitro seroneutralisation capability. Vaccine. 2018;36(45):6703-10.spa
dc.relation.references80. Patarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite's Achilles' Heel: Functionally-relevant Invasion Structures. Current issues in molecular biology. 2016;18(1):11-20.spa
dc.relation.references81. Ivette Caro-Aguilar SL, Jan Pohl, Mary R. Galinski, Alberto Moreno. Chimeric epitopes delivered by polymeric synthetic linear peptides induce protective immunity to malaria. Microbes and infection. 2005;1324–1337.spa
dc.relation.references82. Su H, Caldwell HD. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein. The Journal of experimental medicine. 1992;175(1):227-35.spa
dc.relation.references83. Smith EC, Taylor-Robinson AW. Parasite-specific immunoglobulin isotypes during lethal and non-lethal murine malaria infections. Parasitology Research. 2002;89:26-33.spa
dc.relation.references84. Angulo I, Fresno M. Cytokines in the pathogenesis of and protection against malaria. Clinical and Vaccine Immunology. 2002;9(6):1145-52.spa
dc.relation.references85. Gbedande K, Carpio VH, Stephens R. Using two phases of the CD 4 T cell response to blood‐stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunological reviews. 2020;293(1):88-114.spa
dc.relation.references86. Niikura M, Inoue S, Kobayashi F. Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol. 2011;2011:383962.spa
dc.relation.references87. Randall LM, Amante FH, McSweeney KA, Zhou Y, Stanley AC, Haque A, et al. Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities. Infection and immunity. 2008;76(7):3312-20.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.lembINMUNORRESPUESTAspa
dc.subject.lembImmune responseeng
dc.subject.lembMICROBIOLOGIA-TECNICAspa
dc.subject.lembMicrobiology-techniqueeng
dc.subject.lembHISTOCOMPATIBILIDADspa
dc.subject.lembHistocompatibilityeng
dc.subject.lembANTIGENOS DE HISTOCOMPATIBILIDADspa
dc.subject.lembHistocompatibility antigenseng
dc.subject.proposalSelección naturalspa
dc.subject.proposalPéptidos quiméricosspa
dc.subject.proposalPlasmodium yoeliispa
dc.subject.proposalEpítopos Tspa
dc.subject.proposalEpítopos Bspa
dc.subject.proposalInmunogenicidadspa
dc.subject.proposalAntigenicidadspa
dc.subject.proposalNatural selectioneng
dc.subject.proposalT epitopeseng
dc.subject.proposalB epitopeseng
dc.subject.proposalChimeric peptideseng
dc.subject.proposalImmunogenicityeng
dc.subject.proposalAntigenicityeng
dc.titleEvaluación de la respuesta inmune protectiva estimulada por epítopes B derivados de la proteína MSP-1 de Plasmodium yoelii optimizados para la unión a moléculas del complejo mayor de histocompatibilidad de clase II de ratónspa
dc.title.translatedEvaluation of the protective immune response stimulated by B epitopes derived from the Plasmodium yoelii MSP-1 protein optimized for binding to mouse major histocompatibility complex class II moleculeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Jeimy Beltran -15-08-24 Repositorio.pdf
Tamaño:
2.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias – Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: