Estudio comparativo de los métodos de diagnóstico para modelos lineales mixtos y modelos lineales generalizados

dc.contributor.advisorEsteban Duarte, Nubia
dc.contributor.authorMorales Foronda, Andrés Felipe
dc.date.accessioned2023-05-26T23:17:42Z
dc.date.available2023-05-26T23:17:42Z
dc.date.issued2022
dc.descriptiongraficas, tablasspa
dc.description.abstractMuchos fenómenos de la naturaleza pueden ser representados por medio de modelos estadísticos de forma satisfactoria y, para validar estos modelos, los métodos de diagnóstico resultan ser herramientas muy útiles para la verificación de un buen ajuste. La aplicación de los métodos de diagnóstico es relativamente sencilla para modelos de regresión lineal clásicos, sin embargo el proceso es más complicado cuando se consideran modelos más generales y con fuentes adicionales de variabilidad, como es el modelo lineal mixto o modelos con respuesta binaria o de conteo, como es el caso de modelos lineales generalizados y modelos lineales generalizados mixtos, que en general requieren el uso de técnicas de análisis de residuales y de sensibilidad más complejas. En este trabajo se presentan diferentes estrategias relacionadas con el diagnóstico de modelos, introduciendo tanto los enfoques clásicos, que son habitualmente utilizados, así como los enfoques más recientes. Las metodologías derivadas serán estudiadas para modelos lineales mixtos, modelos lineales generalizados y modelos lineales generalizados mixtos, enfatizando su utilización en diferentes aplicaciones. (Texto tomado de la fuente)spa
dc.description.abstractMany natural phenomena can be represented by means of statistical models in a satisfactory way and, to validate such models, diagnostic methods are very useful tools for the verification of a good fit. The application of diagnostic methods is relatively simple for classical linear regression models, however the process becomes more complicated when considering more general models with additional sources of variability, such as the linear mixed model or models with a binary or counting response as in the case of generalized linear models and generalized linear mixed models, which in general require the use of more complex residual and sensitivity analysis techniques. In this paper different strategies related to model diagnostics are presented, introducing both classical approaches, which are commonly used as well as more recent approaches. The derived methodologies will be studied for linear mixed models, generalized linear models and generalized linear mixed models emphasizing their use in different applications.eng
dc.description.curricularareaMatemáticas Y Estadística.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemática Aplicadaspa
dc.format.extent119 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83885
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicadaspa
dc.relation.referencesBanerjee, M., & Frees, E. W. (1997). Influence diagnostics for linear longitudinal models. Journal of the American Statistical Association, 92 (439), 999-1005.spa
dc.relation.referencesBates, D., M¨achler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67 (1), 1-48. https://doi.org/10.18637/jss.v067.i01spa
dc.relation.referencesBates, D., Maechler, M., & Bolker, B. (2019). MEMSS: Data Sets from Mixed-Effects Models in S [R package version 0.9-3]. https://CRAN. R-project.org/package=MEMSSspa
dc.relation.referencesBates, D., Maechler, M., & Bolker, B. (2020). mlmRev: Examples from Multilevel Modelling Software Review [R package version 1.0-8]. https: //CRAN.R-project.org/package=mlmRevspa
dc.relation.referencesBeckman, R. J., Nachtsheim, C. J., & Cook, R. D. (1987). Diagnostics for mixed–model analysis of variance. Technometrics, 29 (4), 413-426.spa
dc.relation.referencesBreslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American statistical Association, 88 (421), 9-25.spa
dc.relation.referencesBrown, C. C. (1982). On a goodness of fit test for the logistic model based on score statistics. Communications in Statistics-Theory and Methods, 11 (10), 1087-1105.spa
dc.relation.referencesBrown, H., & Prescott, R. (2015). Applied mixed models in medicine. John Wiley & Sons.spa
dc.relation.referencesChristensen, R., Pearson, L. M., & Johnson, W. (1992). Case-deletion diagnostics for mixed models. Technometrics, 34(1), 38-45.
dc.relation.referencesCook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society: Series B (Methodological), 48(2), 133-155.spa
dc.relation.referencesCorrea, J. C., & Salazar, J. C. (2016). Introducción a los modelos mixtos. Escuela de Estadística Sede Medellín.spa
dc.relation.referencesDemidenko, E. (2013). Mixed models: theory and applications with R. John Wiley & Sons.eng
dc.relation.referencesDemidenko, E., & Stukel, T. A. (2005). Influence analysis for linear mixedeffects models. Statistics in medicine, 24(6), 893-909.eng
dc.relation.referencesDey, D. K., Ghosh, S. K., & Mallick, B. K. (2000). Generalized linear models: A Bayesian perspective. CRC Press.eng
dc.relation.referencesDiggle, P., Diggle, P. J., Heagerty, P., Liang, K.-Y., Zeger, S., et al. (2002). Analysis of longitudinal data. Oxford university press.eng
dc.relation.referencesDobson, A. J., & Barnett, A. G. (2018). An introduction to generalized linear models. Chapman; Hall/CRC.eng
dc.relation.referencesDueck, A., & Lohr, S. (2005). Robust estimation of multivariate covariance components. Biometrics, 61(1), 162-169.eng
dc.relation.referencesDunn, P. K., Smyth, G. K., et al. (2018). Generalized linear models with examples in R (Vol. 53). Springer.eng
dc.relation.referencesFaraway, J. J. (2016a). Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman; Hall/CRC.eng
dc.relation.referencesFaraway, J. J. (2016b). faraway: Functions and Datasets for Books by Julian Faraway [R package version 1.0.7]. https://CRAN.R-project.org/ package=farawayeng
dc.relation.referencesFaraway, J. J. (2016c). Linear models with R. Taylor & Francis.eng
dc.relation.referencesGelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. Chapman; Hall/CRC.eng
dc.relation.referencesGhidey, W., Lesaffre, E., & Verbeke, G. (2010). A comparison of methods for estimating the random effects distribution of a linear mixed model. Statistical methods in medical research, 19(6), 575-600.eng
dc.relation.referencesGurka, M. J., Edwards, L. J., Muller, K. E., & Kupper, L. L. (2006). Extending the Box–Cox transformation to the linear mixed model. Journal of the Royal Statistical Society: Series A (Statistics in Society), 169(2), 273-288.eng
dc.relation.referencesHardin, J. W., & Hilbe, J. M. (2002). Generalized estimating equations. chapman; hall/CRC.eng
dc.relation.referencesHauck Jr, W. W., & Donner, A. (1977). Wald’s test as applied to hypotheses in logit analysis. Journal of the american statistical association, 72(360a), 851-853.eng
dc.relation.referencesHenderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 423-447.eng
dc.relation.referencesHilden-Minton, J. A. (1995). Multilevel diagnostics for mixed and hierarchical linear models. University of California, Los Angeles.eng
dc.relation.referencesHlavac, M. (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables [R package version 5.2.3]. Social Policy Institute. Bratislava, Slovakia. https://CRAN.R-project.org/package=stargazereng
dc.relation.referencesJiang, J., & Nguyen, T. (2021). Linear and generalized linear mixed models and their applications. Second edition. Springer.eng
dc.relation.referencesKasim, R. M., & Raudenbush, S. W. (1998). Application of Gibbs sampling to nested variance components models with heterogeneous withingroup variance. Journal of Educational and Behavioral Statistics, 23(2), 93-116.eng
dc.relation.referencesKoller, M. (2013). Robust estimation of linear mixed models (Tesis doctoral). ETH Zurich.eng
dc.relation.referencesKünsch, H. R., Stefanski, L. A., & Carroll, R. J. (1989). Conditionally unbiased bounded-influence estimation in general regression models, with applications to generalized linear models. Journal of the American Statistical Association, 84(406), 460-466.eng
dc.relation.referencesLaird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 963-974.eng
dc.relation.referencesLangford, I. H., Bentham, G., & McDonald, A.-L. (1998). Multi-level modelling of geographically aggregated health data: a case study on malignant melanoma mortality and UV exposure in the European Community. Statistics in medicine, 17(1), 41-57.eng
dc.relation.referencesLee, Y., Nelder, J. A., & Pawitan, Y. (2018). Generalized linear models with random effects: unified analysis via H-likelihood. Chapman; Hall/CRC.eng
dc.relation.referencesLesaffre, E., & Verbeke, G. (1998). Local influence in linear mixed models. Biometrics, 570-582.eng
dc.relation.referencesLiang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13-22.eng
dc.relation.referencesLittell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Oliver, S. (2006). SAS for mixed models. SAS publishing.eng
dc.relation.referencesLiu, X. (2015). Methods and applications of longitudinal data analysis. Elsevier.eng
dc.relation.referencesLongford, N. T. (1995). Random coefficient models. En Handbook of statistical modeling for the social and behavioral sciences (pp. 519-570). Springer.eng
dc.relation.referencesLoy, A., & Hofmann, H. (2013). Diagnostic tools for hierarchical linear models. Wiley Interdisciplinary Reviews: Computational Statistics, 5(1), 48-61.eng
dc.relation.referencesLoy, A., & Hofmann, H. (2014). HLMdiag: A suite of diagnostics for hierarchical linear models in R. Journal of Statistical Software, 56, 1-28.eng
dc.relation.referencesLoy, A., Hofmann, H., & Cook, D. (2017). Model choice and diagnostics for linear mixed-effects models using statistics on street corners. Journal of Computational and Graphical Statistics, 26(3), 478-492.eng
dc.relation.referencesMarr, B. (2018). How much data do we create every day? the mind-blowing stats everyone should read. [Online].eng
dc.relation.referencesMcCullagh, P., & Nelder, J. A. (1989). Generalized linear models. Chapman; Hall.eng
dc.relation.referencesMontgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.eng
dc.relation.referencesMun, J., & Lindstrom, M. J. (2013). Diagnostics for repeated measurements in linear mixed effects models. Statistics in Medicine, 32(8), 1361-1375.eng
dc.relation.referencesMyers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. (2012). Generalized linear models: with applications in engineering and the sciences. John Wiley & Sons.eng
dc.relation.referencesNelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370-384.eng
dc.relation.referencesNieuwenhuis, R., Te Grotenhuis, H., & Pelzer, B. (2012). Influence. ME: tools for detecting influential data in mixed effects models.eng
dc.relation.referencesNobre, J., & Singer, J. (2007). Residual analysis for linear mixed models. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 49(6), 863-875.eng
dc.relation.referencesPan, J., Fei, Y., & Foster, P. (2014). Case-deletion diagnostics for linear mixed models. Technometrics, 56(3), 269-281.eng
dc.relation.referencesPatterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545-554.eng
dc.relation.referencesPierce, D. A., & Schafer, D. W. (1986). Residuals in generalized linear models. Journal of the American Statistical Association, 81(396), 977-986.eng
dc.relation.referencesPinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2020). nlme: Linear and Nonlinear Mixed Effects Models [R package version 3.1-149]. https://CRAN.R-project.org/package=nlmeeng
dc.relation.referencesRCore Team. (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/eng
dc.relation.referencesSchabenberger, O. (2005). Mixed model influence diagnostics. SUGI, 29, 189-29.eng
dc.relation.referencesScheipl, F., Greven, S., & Kuechenhoff, H. (2008). Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Computational Statistics & Data Analysis, 52(7), 3283-3299.eng
dc.relation.referencesSchützenmeister, A., & Piepho, H.-P. (2012). Residual analysis of linear mixed models using a simulation approach. Computational Statistics & Data Analysis, 56(6), 1405-1416.eng
dc.relation.referencesSinger, J. M., Rocha, F. M., & Nobre, J. S. (2017). Graphical tools for detecting departures from linear mixed model assumptions and some remedial measures. International Statistical Review, 85(2), 290-324.eng
dc.relation.referencesSnijders, T. A., & Berkhof, J. (2008). Diagnostic checks for multilevel models. En Handbook of multilevel analysis (pp. 141-175). Springer.eng
dc.relation.referencesSnijders, T. A., & Bosker, R. J. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling. sage.eng
dc.relation.referencesStroup, W., & Claassen, E. (2020). Pseudo-likelihood or quadrature? What we thought we knew, what we think we know, and what we are still trying to figure out. Journal of Agricultural, Biological and Environmental Statistics, 25(4), 639-656.eng
dc.relation.referencesTan, F. E., Ouwens, M. J., & Berger, M. P. (2001). Detection of influential observations in longitudinal mixed effects regression models. Journal of the Royal Statistical Society: Series D (The Statistician), 50(3), 271-284.eng
dc.relation.referencesTellez, C. F., & Morales, M. A. (2016). Modelos Estad´ ısticos lineales con aplicaciones en R. Ediciones de la U.eng
dc.relation.referencesVallejo, G., Ato García, M., et al. (2012). Diseños experimentales en psicología. Pirámide.spa
dc.relation.referencesVanegas, L. H., Rondon, L. M., & Paula, G. A. (2022). glmtoolbox: Set of Tools to Data Analysis using Generalized Linear Models [R package version 0.1.3]. https://CRAN.R-project.org/package=glmtoolboxeng
dc.relation.referencesVerbeke, G., & Lesaffre, E. (1997). The effect of misspecifying the randomeffects distribution in linear mixed models for longitudinal data. Computational Statistics & Data Analysis, 23(4), 541-556.eng
dc.relation.referencesVonesh, E. F., & Carter, R. L. (1992). Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics, 1-17.eng
dc.relation.referencesWeisberg, S. (2005). Applied linear regression (Vol. 528). John Wiley & Sons.eng
dc.relation.referencesWilliams, D. (1984). Residuals in generalized linear models. Proceedings of the 12th. International Biometrics Conference, 59-68.eng
dc.relation.referencesWood, S. N. (2006). Generalized additive models: an introduction with R. chapman; hall/CRC.eng
dc.relation.referencesYau, K. K., & Kuk, A. Y. (2002). Robust estimation in generalized linear mixed models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(1), 101-117.eng
dc.relation.referencesYuan, K.-H., & Bentler, P. M. (2002). On normal theory based inference for multilevel models with distributional violations. Psychometrika, 67(4), 539-561.eng
dc.relation.referencesZeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.proposalModelo lineal mixtospa
dc.subject.proposalModelo lineal generalizadospa
dc.subject.proposalModelo lineal generalizado mixtospa
dc.subject.proposalResidualesspa
dc.subject.proposalDiagnósticospa
dc.subject.proposalAnálisis de influenciaspa
dc.subject.proposalDatos longitudinalesspa
dc.subject.proposalMedidas repetidasspa
dc.subject.proposalLinear mixed modeleng
dc.subject.proposalGeneralized linear modeleng
dc.subject.proposalGeneralized linear mixed modeleng
dc.subject.proposalResidualseng
dc.subject.proposalDiagnosticeng
dc.subject.proposalInfluence analysiseng
dc.subject.proposalLongitudinal Dataeng
dc.subject.proposalRepeated measureseng
dc.subject.unescoModelos estadísticosspa
dc.subject.unescoVariabilidad estadísticaspa
dc.titleEstudio comparativo de los métodos de diagnóstico para modelos lineales mixtos y modelos lineales generalizadosspa
dc.title.translatedComparative study of diagnostic methods for linear mixed models and generalized linear models.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1053851173.2022.pdf
Tamaño:
1.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemática Aplicada
Cargando...
Miniatura
Nombre:
U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1).pdf
Tamaño:
329.09 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: