Estudio comparativo de los métodos de diagnóstico para modelos lineales mixtos y modelos lineales generalizados
dc.contributor.advisor | Esteban Duarte, Nubia | |
dc.contributor.author | Morales Foronda, Andrés Felipe | |
dc.date.accessioned | 2023-05-26T23:17:42Z | |
dc.date.available | 2023-05-26T23:17:42Z | |
dc.date.issued | 2022 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | Muchos fenómenos de la naturaleza pueden ser representados por medio de modelos estadísticos de forma satisfactoria y, para validar estos modelos, los métodos de diagnóstico resultan ser herramientas muy útiles para la verificación de un buen ajuste. La aplicación de los métodos de diagnóstico es relativamente sencilla para modelos de regresión lineal clásicos, sin embargo el proceso es más complicado cuando se consideran modelos más generales y con fuentes adicionales de variabilidad, como es el modelo lineal mixto o modelos con respuesta binaria o de conteo, como es el caso de modelos lineales generalizados y modelos lineales generalizados mixtos, que en general requieren el uso de técnicas de análisis de residuales y de sensibilidad más complejas. En este trabajo se presentan diferentes estrategias relacionadas con el diagnóstico de modelos, introduciendo tanto los enfoques clásicos, que son habitualmente utilizados, así como los enfoques más recientes. Las metodologías derivadas serán estudiadas para modelos lineales mixtos, modelos lineales generalizados y modelos lineales generalizados mixtos, enfatizando su utilización en diferentes aplicaciones. (Texto tomado de la fuente) | spa |
dc.description.abstract | Many natural phenomena can be represented by means of statistical models in a satisfactory way and, to validate such models, diagnostic methods are very useful tools for the verification of a good fit. The application of diagnostic methods is relatively simple for classical linear regression models, however the process becomes more complicated when considering more general models with additional sources of variability, such as the linear mixed model or models with a binary or counting response as in the case of generalized linear models and generalized linear mixed models, which in general require the use of more complex residual and sensitivity analysis techniques. In this paper different strategies related to model diagnostics are presented, introducing both classical approaches, which are commonly used as well as more recent approaches. The derived methodologies will be studied for linear mixed models, generalized linear models and generalized linear mixed models emphasizing their use in different applications. | eng |
dc.description.curriculararea | Matemáticas Y Estadística.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemática Aplicada | spa |
dc.format.extent | 119 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83885 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicada | spa |
dc.relation.references | Banerjee, M., & Frees, E. W. (1997). Influence diagnostics for linear longitudinal models. Journal of the American Statistical Association, 92 (439), 999-1005. | spa |
dc.relation.references | Bates, D., M¨achler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67 (1), 1-48. https://doi.org/10.18637/jss.v067.i01 | spa |
dc.relation.references | Bates, D., Maechler, M., & Bolker, B. (2019). MEMSS: Data Sets from Mixed-Effects Models in S [R package version 0.9-3]. https://CRAN. R-project.org/package=MEMSS | spa |
dc.relation.references | Bates, D., Maechler, M., & Bolker, B. (2020). mlmRev: Examples from Multilevel Modelling Software Review [R package version 1.0-8]. https: //CRAN.R-project.org/package=mlmRev | spa |
dc.relation.references | Beckman, R. J., Nachtsheim, C. J., & Cook, R. D. (1987). Diagnostics for mixed–model analysis of variance. Technometrics, 29 (4), 413-426. | spa |
dc.relation.references | Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American statistical Association, 88 (421), 9-25. | spa |
dc.relation.references | Brown, C. C. (1982). On a goodness of fit test for the logistic model based on score statistics. Communications in Statistics-Theory and Methods, 11 (10), 1087-1105. | spa |
dc.relation.references | Brown, H., & Prescott, R. (2015). Applied mixed models in medicine. John Wiley & Sons. | spa |
dc.relation.references | Christensen, R., Pearson, L. M., & Johnson, W. (1992). Case-deletion diagnostics for mixed models. Technometrics, 34(1), 38-45. | |
dc.relation.references | Cook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society: Series B (Methodological), 48(2), 133-155. | spa |
dc.relation.references | Correa, J. C., & Salazar, J. C. (2016). Introducción a los modelos mixtos. Escuela de Estadística Sede Medellín. | spa |
dc.relation.references | Demidenko, E. (2013). Mixed models: theory and applications with R. John Wiley & Sons. | eng |
dc.relation.references | Demidenko, E., & Stukel, T. A. (2005). Influence analysis for linear mixedeffects models. Statistics in medicine, 24(6), 893-909. | eng |
dc.relation.references | Dey, D. K., Ghosh, S. K., & Mallick, B. K. (2000). Generalized linear models: A Bayesian perspective. CRC Press. | eng |
dc.relation.references | Diggle, P., Diggle, P. J., Heagerty, P., Liang, K.-Y., Zeger, S., et al. (2002). Analysis of longitudinal data. Oxford university press. | eng |
dc.relation.references | Dobson, A. J., & Barnett, A. G. (2018). An introduction to generalized linear models. Chapman; Hall/CRC. | eng |
dc.relation.references | Dueck, A., & Lohr, S. (2005). Robust estimation of multivariate covariance components. Biometrics, 61(1), 162-169. | eng |
dc.relation.references | Dunn, P. K., Smyth, G. K., et al. (2018). Generalized linear models with examples in R (Vol. 53). Springer. | eng |
dc.relation.references | Faraway, J. J. (2016a). Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman; Hall/CRC. | eng |
dc.relation.references | Faraway, J. J. (2016b). faraway: Functions and Datasets for Books by Julian Faraway [R package version 1.0.7]. https://CRAN.R-project.org/ package=faraway | eng |
dc.relation.references | Faraway, J. J. (2016c). Linear models with R. Taylor & Francis. | eng |
dc.relation.references | Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. Chapman; Hall/CRC. | eng |
dc.relation.references | Ghidey, W., Lesaffre, E., & Verbeke, G. (2010). A comparison of methods for estimating the random effects distribution of a linear mixed model. Statistical methods in medical research, 19(6), 575-600. | eng |
dc.relation.references | Gurka, M. J., Edwards, L. J., Muller, K. E., & Kupper, L. L. (2006). Extending the Box–Cox transformation to the linear mixed model. Journal of the Royal Statistical Society: Series A (Statistics in Society), 169(2), 273-288. | eng |
dc.relation.references | Hardin, J. W., & Hilbe, J. M. (2002). Generalized estimating equations. chapman; hall/CRC. | eng |
dc.relation.references | Hauck Jr, W. W., & Donner, A. (1977). Wald’s test as applied to hypotheses in logit analysis. Journal of the american statistical association, 72(360a), 851-853. | eng |
dc.relation.references | Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 423-447. | eng |
dc.relation.references | Hilden-Minton, J. A. (1995). Multilevel diagnostics for mixed and hierarchical linear models. University of California, Los Angeles. | eng |
dc.relation.references | Hlavac, M. (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables [R package version 5.2.3]. Social Policy Institute. Bratislava, Slovakia. https://CRAN.R-project.org/package=stargazer | eng |
dc.relation.references | Jiang, J., & Nguyen, T. (2021). Linear and generalized linear mixed models and their applications. Second edition. Springer. | eng |
dc.relation.references | Kasim, R. M., & Raudenbush, S. W. (1998). Application of Gibbs sampling to nested variance components models with heterogeneous withingroup variance. Journal of Educational and Behavioral Statistics, 23(2), 93-116. | eng |
dc.relation.references | Koller, M. (2013). Robust estimation of linear mixed models (Tesis doctoral). ETH Zurich. | eng |
dc.relation.references | Künsch, H. R., Stefanski, L. A., & Carroll, R. J. (1989). Conditionally unbiased bounded-influence estimation in general regression models, with applications to generalized linear models. Journal of the American Statistical Association, 84(406), 460-466. | eng |
dc.relation.references | Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 963-974. | eng |
dc.relation.references | Langford, I. H., Bentham, G., & McDonald, A.-L. (1998). Multi-level modelling of geographically aggregated health data: a case study on malignant melanoma mortality and UV exposure in the European Community. Statistics in medicine, 17(1), 41-57. | eng |
dc.relation.references | Lee, Y., Nelder, J. A., & Pawitan, Y. (2018). Generalized linear models with random effects: unified analysis via H-likelihood. Chapman; Hall/CRC. | eng |
dc.relation.references | Lesaffre, E., & Verbeke, G. (1998). Local influence in linear mixed models. Biometrics, 570-582. | eng |
dc.relation.references | Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13-22. | eng |
dc.relation.references | Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Oliver, S. (2006). SAS for mixed models. SAS publishing. | eng |
dc.relation.references | Liu, X. (2015). Methods and applications of longitudinal data analysis. Elsevier. | eng |
dc.relation.references | Longford, N. T. (1995). Random coefficient models. En Handbook of statistical modeling for the social and behavioral sciences (pp. 519-570). Springer. | eng |
dc.relation.references | Loy, A., & Hofmann, H. (2013). Diagnostic tools for hierarchical linear models. Wiley Interdisciplinary Reviews: Computational Statistics, 5(1), 48-61. | eng |
dc.relation.references | Loy, A., & Hofmann, H. (2014). HLMdiag: A suite of diagnostics for hierarchical linear models in R. Journal of Statistical Software, 56, 1-28. | eng |
dc.relation.references | Loy, A., Hofmann, H., & Cook, D. (2017). Model choice and diagnostics for linear mixed-effects models using statistics on street corners. Journal of Computational and Graphical Statistics, 26(3), 478-492. | eng |
dc.relation.references | Marr, B. (2018). How much data do we create every day? the mind-blowing stats everyone should read. [Online]. | eng |
dc.relation.references | McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. Chapman; Hall. | eng |
dc.relation.references | Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons. | eng |
dc.relation.references | Mun, J., & Lindstrom, M. J. (2013). Diagnostics for repeated measurements in linear mixed effects models. Statistics in Medicine, 32(8), 1361-1375. | eng |
dc.relation.references | Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. (2012). Generalized linear models: with applications in engineering and the sciences. John Wiley & Sons. | eng |
dc.relation.references | Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370-384. | eng |
dc.relation.references | Nieuwenhuis, R., Te Grotenhuis, H., & Pelzer, B. (2012). Influence. ME: tools for detecting influential data in mixed effects models. | eng |
dc.relation.references | Nobre, J., & Singer, J. (2007). Residual analysis for linear mixed models. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 49(6), 863-875. | eng |
dc.relation.references | Pan, J., Fei, Y., & Foster, P. (2014). Case-deletion diagnostics for linear mixed models. Technometrics, 56(3), 269-281. | eng |
dc.relation.references | Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545-554. | eng |
dc.relation.references | Pierce, D. A., & Schafer, D. W. (1986). Residuals in generalized linear models. Journal of the American Statistical Association, 81(396), 977-986. | eng |
dc.relation.references | Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2020). nlme: Linear and Nonlinear Mixed Effects Models [R package version 3.1-149]. https://CRAN.R-project.org/package=nlme | eng |
dc.relation.references | RCore Team. (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ | eng |
dc.relation.references | Schabenberger, O. (2005). Mixed model influence diagnostics. SUGI, 29, 189-29. | eng |
dc.relation.references | Scheipl, F., Greven, S., & Kuechenhoff, H. (2008). Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Computational Statistics & Data Analysis, 52(7), 3283-3299. | eng |
dc.relation.references | Schützenmeister, A., & Piepho, H.-P. (2012). Residual analysis of linear mixed models using a simulation approach. Computational Statistics & Data Analysis, 56(6), 1405-1416. | eng |
dc.relation.references | Singer, J. M., Rocha, F. M., & Nobre, J. S. (2017). Graphical tools for detecting departures from linear mixed model assumptions and some remedial measures. International Statistical Review, 85(2), 290-324. | eng |
dc.relation.references | Snijders, T. A., & Berkhof, J. (2008). Diagnostic checks for multilevel models. En Handbook of multilevel analysis (pp. 141-175). Springer. | eng |
dc.relation.references | Snijders, T. A., & Bosker, R. J. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling. sage. | eng |
dc.relation.references | Stroup, W., & Claassen, E. (2020). Pseudo-likelihood or quadrature? What we thought we knew, what we think we know, and what we are still trying to figure out. Journal of Agricultural, Biological and Environmental Statistics, 25(4), 639-656. | eng |
dc.relation.references | Tan, F. E., Ouwens, M. J., & Berger, M. P. (2001). Detection of influential observations in longitudinal mixed effects regression models. Journal of the Royal Statistical Society: Series D (The Statistician), 50(3), 271-284. | eng |
dc.relation.references | Tellez, C. F., & Morales, M. A. (2016). Modelos Estad´ ısticos lineales con aplicaciones en R. Ediciones de la U. | eng |
dc.relation.references | Vallejo, G., Ato García, M., et al. (2012). Diseños experimentales en psicología. Pirámide. | spa |
dc.relation.references | Vanegas, L. H., Rondon, L. M., & Paula, G. A. (2022). glmtoolbox: Set of Tools to Data Analysis using Generalized Linear Models [R package version 0.1.3]. https://CRAN.R-project.org/package=glmtoolbox | eng |
dc.relation.references | Verbeke, G., & Lesaffre, E. (1997). The effect of misspecifying the randomeffects distribution in linear mixed models for longitudinal data. Computational Statistics & Data Analysis, 23(4), 541-556. | eng |
dc.relation.references | Vonesh, E. F., & Carter, R. L. (1992). Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics, 1-17. | eng |
dc.relation.references | Weisberg, S. (2005). Applied linear regression (Vol. 528). John Wiley & Sons. | eng |
dc.relation.references | Williams, D. (1984). Residuals in generalized linear models. Proceedings of the 12th. International Biometrics Conference, 59-68. | eng |
dc.relation.references | Wood, S. N. (2006). Generalized additive models: an introduction with R. chapman; hall/CRC. | eng |
dc.relation.references | Yau, K. K., & Kuk, A. Y. (2002). Robust estimation in generalized linear mixed models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(1), 101-117. | eng |
dc.relation.references | Yuan, K.-H., & Bentler, P. M. (2002). On normal theory based inference for multilevel models with distributional violations. Psychometrika, 67(4), 539-561. | eng |
dc.relation.references | Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 500 - Ciencias naturales y matemáticas | spa |
dc.subject.proposal | Modelo lineal mixto | spa |
dc.subject.proposal | Modelo lineal generalizado | spa |
dc.subject.proposal | Modelo lineal generalizado mixto | spa |
dc.subject.proposal | Residuales | spa |
dc.subject.proposal | Diagnóstico | spa |
dc.subject.proposal | Análisis de influencia | spa |
dc.subject.proposal | Datos longitudinales | spa |
dc.subject.proposal | Medidas repetidas | spa |
dc.subject.proposal | Linear mixed model | eng |
dc.subject.proposal | Generalized linear model | eng |
dc.subject.proposal | Generalized linear mixed model | eng |
dc.subject.proposal | Residuals | eng |
dc.subject.proposal | Diagnostic | eng |
dc.subject.proposal | Influence analysis | eng |
dc.subject.proposal | Longitudinal Data | eng |
dc.subject.proposal | Repeated measures | eng |
dc.subject.unesco | Modelos estadísticos | spa |
dc.subject.unesco | Variabilidad estadística | spa |
dc.title | Estudio comparativo de los métodos de diagnóstico para modelos lineales mixtos y modelos lineales generalizados | spa |
dc.title.translated | Comparative study of diagnostic methods for linear mixed models and generalized linear models. | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- 1053851173.2022.pdf
- Tamaño:
- 1.09 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemática Aplicada
Cargando...
- Nombre:
- U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1).pdf
- Tamaño:
- 329.09 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Licencia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: