Efecto del sistema de producción sobre la asociación de algunos polimorfismos de los genes CAPN, CAST y LEP con su expresión génica y el efecto fenotípico en la producción y calidad de la carne en ganado brahman comercial.

dc.contributor.advisorLópez Herrera, Albeiro
dc.contributor.advisorEcheverri Zuluaga, José Julián
dc.contributor.authorLópez Rojas, Luis Ernesto
dc.contributor.researchgroupBiodiversidad y Génetica Molecular \'BIOGEM\'spa
dc.date.accessioned2021-08-09T20:43:23Z
dc.date.available2021-08-09T20:43:23Z
dc.date.issued2021-08
dc.descriptionIlustracionesspa
dc.description.abstractLa ganadería de carne en Colombia se basa fundamentalmente en animales Bos indicus de la raza brahman, porque esta se adapta a las difíciles condiciones del trópico bajo, el cual se caracteriza por una oferta nutricional deficiente. Aunque las características productivas son aceptables, la calidad organoléptica de la carne se considera deficiente. Además del ambiente, este hecho se relaciona con la genética de los animales. De manera puntual, se sabe que algunas variantes alélicas de los genes CAPN1, CAST y LEP, relacionadas con carnes de mejor calidad, se encuentran en frecuencias muy bajas en esta raza. El objetivo de este estudio consiste en evaluar el efecto que tiene el sistema de producción sobre la asociación de los SNP CAPN316, CAPN4751, CAST282, CAST2959, E2FB y E2JW con las características de la canal y de la calidad de la carne de los bovinos brahman. Para ello, se evaluaron 410 bovinos macho de esta raza que provenían de cuatro ganaderías con modelos de pastoreo extensivo rotacional y con diferentes sistemas de producción, dos de ciclo completo y dos de ceba. En cada animal se genotipificaron los SNP CAPN316, CAPN4751, CAST282, CAST2959, E2FB y E2JW a partir de las pruebas PCR-HRM y PCR-RFLP. Asimismo, se evaluaron las características de la canal, las características nutricionales de la carne y sus atributos organolépticos durante los días 1, 7 y 14 de la maduración. Se confirmó la baja frecuencia de los alelos que favorecen las características organolépticas de la carne y se verificó la asociación de estos alelos con la producción de carne más tierna y jugosa. Sin embargo, está asociación está sujeta a los efectos del ambiente en el que se desarrollan los animales. Los animales provenientes del sistema de producción dedicado a la ceba presentaron carnes de mejor calidad. En contraste, en el sistema de ciclo completo se obtuvieron las mejores características de la canal. 8Tomado de la fuente)zho
dc.description.abstractBeef livestock in Colombia is mainly based on Bos indicus animals of the brahman breed, adapted to the difficult conditions of the low tropics, characterized by a poor nutritional supply. Although the production characteristics are acceptable, the organoleptic quality of the meat is considered deficient. In addition to the environment, this is related to the genetics of animals, in a specific way, it is known that some allelic variants of the genes CAPN1, CAST and LEP related to meat of better quality and are in very low frequencies in this breed. In order to assess the effect of the production system on the association of CAPN316, CAPN4751, CAST282, CAST2959, E2FB and E2JW SNP with carcass traits and beef quality of animals of the Brahman cattle, 410 males of this breed from four farms with extensive rotational grazing models in two different production systems, two full-cycle and two fattening systems were evaluated. In each animal the SNP CAPN316, CAPN4751, CAST282, CAST2959, E2FB and E2JW were genotyped using PCR-HRM and PCR-RFLP, carcass traits, beef nutritional characteristics and their organoleptic attributes were evaluated during 1, 7 and 14 aging days. The low frequency of alleles associated with organoleptic characteristics of meat was confirmed, in addition the association of these alleles with the production of more tender and juicy meat was verified, however this association is subject to the effects of the environment in which the animals develop. The animals coming from the production system dedicated to the fattening presented meats of better quality, in contrast, in the complete cycle system where the best characteristics of the carcass were obtained. (Tomado de la fuente)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaGenética Molecular y de Poblacionesspa
dc.format.extent196 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79904
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesAalhus, J. L., Jones, S. D. M., Tong, A. K. W., Jeremiah, L. E., Robertson, W. M. y Gibson, L. L. (1992). The combined effects of time on feed, electrical stimulation and aging on beef quality. Canadian Journal of Animal Science, 72, 525–535.spa
dc.relation.referencesAaslyng, M. (2009). Trends in meat and consumption and the need for fresh meat and meat products of improved quality. En J. Kerry y D. Ledward (Eds), Improving the sensory and nutritional quality of fresh mead (pp. 3-18). Woodhead Publishing Lta.spa
dc.relation.referencesAbo-Ismail, M. K., Lansink, N., Akanno, E., Karisa, B. K., Crowley, J. J., Moore, S. S., Bork, E., Stothard, P., Basarab, J. A. y Plastow, G. S. (2018). Development and validation of a small SNP panel for feed efficiency in beef cattle. Journal of Animal Science, 96, 375–397 doi: 10.1093/jas/sky020spa
dc.relation.referencesAguirre, L., Apolo, G., Chalco, L. y Martínez, A. (2014). Caracterización genética de la población bovina criolla de la región sur del Ecuador y su relación genética con otras razas bovinas. Animal Genetic Resources, 54, 93–101 doi:10.1017/S2078633613000313spa
dc.relation.referencesAlbertí, P. (2000). Medición del color. En V. Cañeque y C. Sañudo (coed.), Metodología para el estudio de la calidad de la canal y de la carne en rumiantes (pp. 157-166). Monografías INIA. Serie Ganadera n.º 1.spa
dc.relation.referencesAlbrecht, E., Teuscher, F., Ender, K. y Wegner, J. (2006). Growth- and breed-related changes of marbling characteristics in cattle. Journal of Animal Science, 84, 1067–1075.spa
dc.relation.referencesAldai, N., Murray, B. E., Martínez, A., Oliván, M., Troy, D. J. y Osoro, K. (2006). The influence of breed and mh-genotype on carcass conformation, meat physico-chemical characteristics, and the fatty acid profile of muscle from yearling bulls. Meat Science, 72, 486–495.spa
dc.relation.referencesAlfaro, S., Rubio, L. M. S., Parra, M., Méndez, M. D., Pérez, L. C., Figueroa, S. F., Sánchez, E. A., Torrescano, G., Ríos, R. F. G., Braña, V. D., Sifuentes, A., Arellano, W., Macedo, R. E. F. y Jimenez, P. (2012). Genetic marker effects for quality traits in commercial beef from Mexico. 58th International Congress of Meat Sci and Technology, Montreal, Canadaspa
dc.relation.referencesAllais, S., Levéziel, H., Payet, N., Hocquette, J. F., Lepetit, J., Rousset, S., Denoyelle, C., Bernard, C., Journaux, L. y Renand, G. (2011). Effects of polymorphisms in the Calpastatin and μ-Calpain genes on meat tenderness in three french beef breeds. Journal of Animal Science, 89(1), 1-11.spa
dc.relation.referencesAllais, S., Levéziel, J. F., Hocquette, J. F., Rousset, S., Denoyelle, C., Journaux, L. y Renard, G. (2014). Fine mapping of quantitative trait loci underlaying sensory meat quality traits in three French beef cattle breeds. Journal of Animal Science, 92, 4329-3241 doi:10.2527/jas2014-7868spa
dc.relation.referencesAmiryousefi, A., Hyvönen, J. y Poczai, P. (2018). iMEC: Online Marker Efficiency Calculator. Applications in Plant Sciences, 6(6), e1159. Doi:10.1002/aps3.1159spa
dc.relation.referencesAndersen, H. A., Oksbjerg, N., Young, J. F. y Therkildsen, M. (2005). Feeding and meat quality–a future approach. Meat Science, 70, 543–554.spa
dc.relation.referencesÁngel, P. A., Cardona, H. y Cerón, M. F. (2013). Genómica en la producción animal. Revista Colombiana de Ciencia Animal, 5(2), 497–518. Araujo-Febres, O. (2005). Factores que afectan el consumo voluntario en bovinos a pastoreo en condiciones tropicales. IX Seminario de Pastos y Forrajes. http://www.ucv.ve/fileadmin/user_upload/facultad_agronomia/Consumo_a_pastoreo_II.pdfspa
dc.relation.referencesArdicli, S., Dincel, D., Samli, H. y Balci, F. (2017a). Effects of polymorphisms at LEP, CAST, CAPN1, GHR, FABP4 and DGAT1 genes on fattening performance and carcass traits in Simmental bulls. Archiv fuer Tierzucht, 60(2), 61.spa
dc.relation.referencesArdicli, S., Samli, H., Dincel, D., Soyudal, B. y Balci, F. (2017b). Individual and combined effects of CAPN1, CAST, LEP and GHR gene polymorphisms on carcass characteristics and meat quality in Holstein bulls. Archives Animal Breeding, 60, 303–313spa
dc.relation.referencesArdicli, S., Samli, H., Vatansever, B., Soyudal, B., Dincel, D. y Balci, F. (2019). Comprehensive assessment of candidate genes associated with fattening performance in Holstein–Friesian bulls. Archives Animal Breeding, 62, 9–32 https://doi.org/10.5194/aab-62-9-2019spa
dc.relation.referencesArias, J. H., Balcázar, A. y Hurtado, R. (1990). Caracterización de los sistemas de producción de la ganadería bovina en Colombia. Revista Coyuntura Agropecuaria, 24, 83-105.spa
dc.relation.referencesArnold, J. W., Bertrand, J. K., Benyshek, L. L. y Ludwig, C. (1991). Estimates of genetic parameters for live animal ultrasound, actual carcass data, and growth traits in beef cattle. Journal of Animal Science, 69, 985-992.spa
dc.relation.referencesArthur, P. F. (1995). Double muscling in cattle: A review. Australian Journal of Agricultural Research, 46, 1493–1515.spa
dc.relation.referencesArthur, P. F., Archer, J. A., Johnston, D. J., Herd, R. M., Richardson, E. C. y Parnell, P. F. (2001). Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. Journal of Animal Science, 79, 2805-2811.spa
dc.relation.referencesAsenjo, B. (1999). Efecto de la raza y de la alimentación en los parámetros productivos y de calidad de canal y de carne en añojos de razas charolés y serrana soriana. Departamento de Ciencias Agroforestales. Universidad de Valladolid.spa
dc.relation.referencesAverna, M., de Tullio, T., Passalacqua, M., Salamino, F., Pontremoli, S., Melloni, E. (2001). Changes in intracellular calpastatin localization are mediated by reversible phosphorylation. Biochemical Journal, 354(1), 25-30.spa
dc.relation.referencesÁvila. K., S. (2016). Factores que impiden la entrada en vigencia del Decreto 1500 en plantas de beneficio del Valle del Cauca. Trabajo para optar el titulo de zootecnista, Universidad de la Salle, Bogotá.spa
dc.relation.referencesAvilés, C., Peña, F., Polvillob, O., Barahona, M., Campoc, M. M., Sañudo, C., Juárez, M., Horcada, A., Alcalde, M. J. y Molina, A. (2015). Association between functional candidate genes and organoleptic meat traits in intensively fed beef. Meat Science, 107, 33-38spa
dc.relation.referencesAyala, A. y Aguilar C. (2011). Balance energético/proteico para intensificar la producción animal en los sistemas silvopastoriles. III Congreso sobre Sistemas Silvopastoriles Intensivos para la ganadería sostenible del siglo XXI. Morelia, Michoacán, México.spa
dc.relation.referencesAzevedo, P. (2004). O valor nutricional da carne. Revista Nacional da Carne, 28(327), 18-34.spa
dc.relation.referencesBaeza, M. C., Corva, P. M., Soria, L. A., Rincon, G., Medrano, J. F., Pavan, E., Villarreal, E. L., Schor, A., Melucci, L., Mezzadra, C. y Miquel, M. C. (2011). Genetic markers of body composition and carcass quality in grazing Brangus steers. Genetics and Molecular Research, 10(4), 3146-56.spa
dc.relation.referencesBailey, C. B. y Lawson, J. E. (1989). Carcass and empty composition of Hereford and angus bulls from lines selected for rapid growth on high-energy or low-energy diets. Canadian Journal of Animal Science, 69(3), 583-594.spa
dc.relation.referencesBaptista, M., Cunha, J.T, Domingues., L. (2021). DNA-based approaches for dairy products authentication: A review and perspectives. Trends in Food Science & Technology 109 (2021) 386–397spa
dc.relation.referencesBarahona, R. y Sánchez, M. S. (2005). Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Revista Corpoica. Ciencia y Tecnología Agropecuarias, 6(1), 69–82.spa
dc.relation.referencesBarahona, R., Sánchez, M. S., Murgueitio, E. y Chará J. (2014). Contribución de la Leucaena leucocephala Lam (de Wit) a la oferta y digestibilidad de nutrientes y las emisiones de metano entérico en bovinos pastoreando en sistemas silvopastoriles intensivos. Revista Carta Fedegan, 140, 66-69.spa
dc.relation.referencesBarendse, W. J. (2002). DNA markers for meat tenderness. International patent publication W0 02/064820.spa
dc.relation.referencesBarendse, W., Harrison, B. E., Bunch, R. J. y Thomas, M. B. (2008). Variation at the Calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle. BMC genetics, 9(1), 41.spa
dc.relation.referencesBarton-Gade, P. A., Cross, H. R., Jones J. M. y Winger, R. J. (1988). Factors affecting sensory properties of meat. World Animal Science (Netherlands).spa
dc.relation.referencesBaublits, R. T., Brown, A. H., Pohlman, F. W., Johnson, Z. B., Onks, D. O. y Loveday, H. D. (2004). Carcass and beef colour characteristics of three biological types of cattle grazing cool-season forages supplemented with soyhulls. Meat Science, 68, 297–303.spa
dc.relation.referencesBejarano, D., Pedraza, A., Rocha, J. F. y Martínez, R. (2012). Variabilidad genética en subpoblaciones comerciales de la raza criolla colombiana Romosinuano. Revista Corpoica-Ciencia y Tecnología Agropecuaria, 13(1), 97-107.spa
dc.relation.referencesBellinge, R. H. S., Liberles, D. A., Laschi, S. P., O’Brien, P. A. y Tay, G. K. (2005). Myostatin and its implications on animal breeding: A review. Animal Genetic, 36, 1–6.spa
dc.relation.referencesBenatti, P., Peluso, G., Nicolai, R. y Calvani, M. (2004). Polyunsaturated fatty acids: bio- chemical, nutritional and epigenetic properties. Journal of the American College of Nutrition, 23, 281–302.spa
dc.relation.referencesBertram, H., Andersen, H., Karlsson, A., Horn, P., Hedegaard, J., Nørgaard, L. y Engelsen S. (2003). Prediction of technological quality (cooking loss and Napole yield) of pork based on fresh meat characteristics. Meat Science, 65, 707-712.spa
dc.relation.referencesBlevins, J. E., Schwartz, M. W. y Baskin, D. G. (2002). Peptide signals regulating food intake and energy homeostasis. Canadian Journal of Physiology and Pharmacology, 80(5), 396-406.spa
dc.relation.referencesBoccard, R. L., Naude, R. T., Cronje, D. E., Smit, M. C., Venter, H. J. y Rossouw, E. J. (1979). The influence of age, sex and breed of cattle on their muscle characteristics. Meat Science, 3, 261–280.spa
dc.relation.referencesBoehm, M., Kendall, T., Thompson y V., Goll, D. (1998). Changes in the calpastatin during postmortem storage of bovine muscle. Journal of Animal Science, 76, 2415-2434.spa
dc.relation.referencesBosques, J., Pagan, M., Casas, A., Rivera, A. y Cianzio, D. (2015). Segregación de polimorfismos en m-calpaína y calpastatina en ganado para carne en Puerto Rico. Journal of Agriculture of the University of Puerto Rico, 99(2), 105-116. http://revistas.upr.edu/index.php/jaupr/ article/viewFile/3026/2570spa
dc.relation.referencesBotstein, D., White, R. L., Skolnick, M. y Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics, 32(3), 314.spa
dc.relation.referencesBourne, M. C. (1978). Texture Profile Analysis. Food Technology 1978, 32(1), 62-66.spa
dc.relation.referencesBourne, M. C. (2002). Food Texture and Viscosity: Concept and Measurement (2a ed.). Academic Press.spa
dc.relation.referencesBowker, B. C. y Zhuang, H. (2013). Relationship between muscle exudate protein composition and broiler breast meat quality. Poultry Science, 92, 1385–1392. http://dx.doi.org/10.3382/ps.2012-02806spa
dc.relation.referencesBowker, B. C., Eastridge, J. S. y Solomon, M. B. (2014). Measurement of muscle exudate protein composition as an indicator of beef tenderness. Journal of Food Science, 79(7), 192-197. doi: 10.1111/1750-3841.12496spa
dc.relation.referencesBratzler, L. J. (1932). Measuring the tenderness of meat by means of a mechanical shear. Master of Science Thesis. Kansas State College (KA).spa
dc.relation.referencesBrenneman, R. A., Chase, C. C., Olson, T. A., Riley, D. G. y Coleman, S. W. (2007). Genetic diversity among Angus, American Brahman, Senepol and Romosinuano cattle breeds. Animal Genetics, 38(1), 50-53spa
dc.relation.referencesBuchanan, F. C., Fitzsimmons, C. J., Van Kessel, A. G., Thue, T. D., Winkelman-Sim, D. C. y Schmutz, S. M. (2002). Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genetics Selection Evolution, 34(1), 105.spa
dc.relation.referencesBurrow, H. M. (2015). Genetic aspects of cattle adaptation in the tropics. En D. J. Garrick y A. Ruvinsky (eds.), The Genetics of Cattle (pp. 571-592). CAB International.spa
dc.relation.referencesByrne, C. E., Troy, D. J. y Buckley, D. J. (2000). Postmortem changes in muscle electrical properties of bovine m. longissimus dorsi and their relationship to meat quality attributes and pH fall. Meat Science, 54, 23–34.spa
dc.relation.referencesCáceres, M. E. (2010). Comparación de las características organolépticas y fisicoquímicas de la carne bovina para consumo fresco en la zona céntrica de la ciudad de Taldil [Tesis de pregrado]. Universidad Nacional del Centro de la Provincia de Buenos Aires.spa
dc.relation.referencesCafe, L. M., McIntyre, B. L., Robinson, D. L., Geesink, G. H., Barendse, W. y Greenwood, P. L. (2010a). Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 1. Growth, efficiency, temperament, and carcass characteristics. Journal of Animal Science, 88, 3047–3058. doi:10.2527/jas.2009-2678spa
dc.relation.referencesCafe, L. M., McIntyre, B. L., Robinson, D. L., Geesink, G. H., Barendse, W., Greenwood, P. L., Pethick, D. W., Thompson, J. M y Greenwood, P. L. (2010b). Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 2. Objective meat quality. Journal of Animal Science, 88, 3059–3069. doi:10.2527/jas.2009-2679spa
dc.relation.referencesCaine, W. R., Aalhus, J. L., Best, D. R., Dugan, M. E. R. y Jeremiah, L. E. (2003). Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Science, 64, 333–339.spa
dc.relation.referencesCajas, Y. S., Barragán, W. A., Arreaza, L. C., Argüelles, J., Amézquita, E., Abuabara, Y., Panza, B. y Lascano, C. (2012). Efecto sobre la producción de carne de la aplicación de tecnologías de renovación de praderas de Bothriochloa pertusa (L.) A. Camus en la Costa Norte Colombiana. Revista Corpoica. Ciencia y Tecnología Agropecuaria, 13(2), 213-218spa
dc.relation.referencesCalvo, J. H., Iguácel, L. P., Kirinus, J. K., Serrano, M., Ripoll, G., Casasús, I., Joy, M., Pérez-Velasco, L., Sarto, P., Albertí, P. y Blanco M. (2014). A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness. Meat Science, 96, 775–782spa
dc.relation.referencesCampbell, R. L. y Davies, P. L. (2012). Structure–function relationships in calpains. Biochemical Journal, 447, 335–351.spa
dc.relation.referencesCampion, D. R., Crouse, J. D. y Dikeman, M. E. (1975). Predictive value of USDA beef quality grade factors for cooked meat palatability. Journal of Food Science, 40(6), 1225-1228.spa
dc.relation.referencesCampo, M. M., Santolaria, P., Sañudo, C., Lepetit, J., Olleta, J. L. y Panea, B. (2000). Assessment of breed type and ageing time effects on beef meat quality using two different texture devices. Meat Science, 55, 371–378.spa
dc.relation.referencesCantet, R. J. C., Gualdrón-Duarte, J. L. y Munilla-Leguizamón, S. (2008). Selección Genómica. Revista Argentina de Producción Animal, 28(2), 133–136.spa
dc.relation.referencesCarragher, N. O., Westhoff, M. A., Riley, D., Potter, D. A., Dut, P. y Elce JS. (2002). v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Molecular and Cellular Biology, 22(1), 257-269.spa
dc.relation.referencesCasas, E., Shackelford, S. D., Keele, J. W., Stone, R. T., Kappes, S. M. y Koohmaraie, M. (2000). Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. Journal of Animal Science, 78(3), 560-569.spa
dc.relation.referencesCasas, E., White, S. N, Wheeler, T. L., Shackelford, S., Koohmaraie, M., Riley, D., Chase, C., Johnson, D. D. y Smith, T. P. L. (2006). Effects of calpastatin and mu-calpain markers in beef cattle on tenderness traits. Journal of Animal Science, 84(3), 520–525. https://doi.org/10.2527/2006.843520xspa
dc.relation.referencesCasas, E., White, S. N., Riley, D. G., Smith, T. P. L., Brenneman, R. A. y Olson, T. A. (2005). Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. Journal of Animal Science, 83(1), 13–19. https://doi.org/10.2527/2005.83113xspa
dc.relation.referencesCashman, K. D. y Hayes, A. (2017). Red meats role in addressing ‘nutrients of public health concern’. Meat Science, 132, 196–203.spa
dc.relation.referencesCassar, I., Picard, B. (2016). Expression marker-based strategy to improve beef quality. Science World Journal 1–11. https://doi.org/10.1155/2016/2185323spa
dc.relation.referencesCassar, I., Picard, B., Bernard, C. y Hocquette, J. F. (2008). Application of gene expression studies in livestock production systems: a European perspective. Australian Journal of Experimental Agriculture, 48(7), 701–710. https://doi.org/10.1071/EA08018spa
dc.relation.referencesCastillo, C., Benedito, J. L. y Hernández, J. (2019). The authentic nutritional value of beef: Remove false assumptions. Research in Veterinary Science, 125, 119–120.spa
dc.relation.referencesCastrillón, D., Restrepo, A. (2019). Competitividad de la cadena cárnica bovina de Antioquia. [Trabajo de grado] Corporación Universitaria Lasallista, Colombia.spa
dc.relation.referencesCastro, S. L. (2013). Evaluación de los polimorfismos de nucleótido simple asociados a cambios en el color de la carne en ganados Bos indicus y cruces con Bos taurus [Tesis de maestría] Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/12156/1/2635142.2013.pdfspa
dc.relation.referencesCeddia, R. P., Willian, J. W. N., Lima, F. B., Carpineli, A. R. y Curi, R. (1998). Pivotal role of leptin in insulin effects. The Brazilian Journal of Medical and Biological Research, 31, 715–722.spa
dc.relation.referencesCharry, A. y Burkart, S. (2017). Disposición a pagar por carne de res con menor huella ambiental y bienestar animal en Cali. Centro Internacional de Agricultura Tropical (CIAT). https://hdl.handle.net/10568/89186spa
dc.relation.referencesChaux, J.H. (2019). Modelo de factibilidad para la comercialización de carne bovina en Villavicencio-Meta. [Trabajo de grado] Universidad de la Salle, Bogotá.spa
dc.relation.referencesCheng, W., Cheng, J. H., Sun, D. W. y Pu, H. (2015). Marbling analysis for evaluating meat quality: methods and techniques. Comprehensive Reviews in Food Science and Food Safety, 14(5), 523-535.spa
dc.relation.referencesChikani, V. y Ken, H. (2014). Action of GH on skeletal muscle function: molecular and metabolic mechanisms. Journal of Molecular Endocrinology, 52(1),107–123.spa
dc.relation.referencesChinzorig, O. y Hwang, I. (2018). Mechanical texture profile of Hanwoo muscles as a function of heating temperatures. Journal of Animal Science and Technology, 60(1), 22. https://doi.org/10.1186/s40781-018-0181-9spa
dc.relation.referencesChristensen, S., Monteavaro, C., Purslow, P. P. (2020). Single-nucleotide polymorphisms for matrix metalloprotease-1 can affect perimysial strength and intramuscular fat content but not growth rate of cattle. Animal Production Science https://doi.org/10.1071/AN18789spa
dc.relation.referencesChung, H., Shin, S. y Chung, E. (2014). Effects of genetic variants for the bovine calpain gene on meat tenderness. Molecular Biology Reports, 41(5), 2963–2970. https://doi.org/10.1007/s11033-014-3152-3spa
dc.relation.referencesCIE, Commission Internationale de l’Eclairage. (1978). Recommendations on uniform color spaces-color difference equations, Psychometric Color Terms. Supplement 2 to CIE Publication No. 15 (E-1.3.1.)spa
dc.relation.referencesClarke, I. J., Henry, B. A. (1999). Leptin and reproduction. Reviews of reproduction, 4(1), 48 -55.spa
dc.relation.referencesCole, D. y Lawrie, R. (1975). Meat: Proceedings of the twenty first easter school in agricultural science. Butterworth-Heinemann Conpes. (2010). Consolidación de la política sanitaria y de inocuidad para las cadenas láctea y cárnica. Documento 3676. https://www.ica.gov.co/getattachment /3b31038a-72ba-40f9-a34d-cecd89015890/2010cp3676.aspxspa
dc.relation.referencesCorbin CH, OQuinn, T. G., Garmyn A. J., Legako, J. F., Hunt, M. R. Dinh, T. T. y Miller, M. F. (2015). Sensory evaluation of tender beef strip loin steaks of varying marbling levels and quality treatments. Meat Science, 100, 24–31.spa
dc.relation.referencesCórdoba, C. P., Correa, G., Barahona, R. y Tarazona, A. (2017). Comportamiento de machos cebú́ en corrales presacrificio y su relación con el pH de la carne. Archivos de Zootecnia, 66 (256), 579-586.spa
dc.relation.referencesCoria, M. S., Carranza, P. G. y Palma, G. A. (2018). Calpain System in meat tenderization: A molecular approach. Revista MVZ Córdoba, 23(1), 6523-6536 DOI:10.21897/rmvz.1247spa
dc.relation.referencesCorva, P., Soria, L., Papaleo, J., Villarreal, E., Melucci, L., Mezzadra, C., Schor, A. y Motter, M. (2007). Evaluation of genetic markers for beef tenderness in Brangus steers. Sitio Argentino de Producción Animal. http://www.produccion-animal.com.ar/genetica _selección_ cruzamientos/bovinos_de_carne/33-Corva-Calpaina.pdfspa
dc.relation.referencesCrews, D. H. y Kemp, R. A. (2001). Genetic parameters for ultrasound and carcass measures of yield and quality among replacement and slaughter beef cattle. Journal of Animal Science, 79, 3008-3020.spa
dc.relation.referencesCrews, D. H., Enns, R. M., Rumph, J. M. y Pollak, E. J. (2008). Genetic evaluation of retail product percentage in Simmental cattle. The Journal of Animal Breeding and Genetics, 125, 13-19.spa
dc.relation.referencesCrews, D. H., Lowerison, M., Caron, N. y Kemp, R. A. (2004). Genetic parameters among growth and carcass traits of Canadian Charolais cattle. Canadian Journal of Animal Science, 84, 589-597.spa
dc.relation.referencesCrews, D. H., Pollak, E. J., Weaber, R. L., Quaas, R. L. y Lipsey, R. J. (2003). Genetic parameters for carcass traits and their live animal indicators in Simmental cattle. Journal of Animal Science, 81, 1427-1433.spa
dc.relation.referencesCueitía, J. A. (2012). Polimorfismos de los genes calpaína y calpastatina en diez razas bo- vinas criollas mediante siete marcadores de polimorfismos de nucleótido sim- ple (SNPs) [Tesis de maestría]. Universidad Nacional de Colombia, Palmira. http://www.uco.es/conbiand/aica/templatemo110lin_photo/articulos/2011/Cuetia2011_1_191_194.pdfspa
dc.relation.referencesCulioli, J. (1995). Meat tenderness: Mechanical assessment. En A. Ouali, DI. DeMeyer, F. J. M. Smulders (eds.), Expression of tissue proteinases and regulation of protein degradation as related to meat quality (pp. 239–263). Utrecht (The Netherlands): ECCEAMST.spa
dc.relation.referencesCuri, R. A., Chardulo, L. A. L., Giusti, J., Silveira, A. C., Martins, C. L. y de Oliveira, H. N. (2010). Assessment of GH1, CAPN1 and CAST polymorphisms as markers of carcass and meat traits in Bos indicus and Bos taurus–Bos indicus cross beef cattle. Meat Science, 86(4), 915–920. http://doi.org/10.1016/j.meatsci.2010.07.016spa
dc.relation.referencesCuri, R. A., Chardulo, L. A. L., Mason, M. C., Arrigoni, M. D. B., Silveira, A. C. y De Oliveira H. N. (2009). Effect of single nucleotide polymorphisms of CAPN1 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Animal Genetics, 40(4), 456–462. https://doi.org/10.1111/j.1365-2052.2009.01859.xspa
dc.relation.referencesda Silva, R. C., Ferraz, J. B. S., Meirelles, F. V., Eler, J. P., Balieiro, J. C. C., Cucco, D. C., Mattos, E. C., Rezende, F. M. y Silva, S. L. (2012). Association of single nucleotide polymorphisms in the bovine leptin and leptin receptor genes with growth and ultrasound carcass traits in Nellore cattle. Genetics and Molecular Research, 11(4), 3721-3728.spa
dc.relation.referencesDANE, Departamento administrativo Nacional de Estadística. (2017). Encuesta nacional agropecuaria-ENA. https://www.dane.gov.co/files/investigaciones/agropecuario /enda/ena/2019/serie-ena-departamento-pecuario-2017.xlsxspa
dc.relation.referencesDANE, Departamento administrativo nacional de estadística. (2019). Boletín técnico, encuesta nacional agropecuaria (ENA). https://www.dane.gov.co/files/ investigaciones/agropecuario/enda/ena/2019/boletin_ena_2019.pdf ,spa
dc.relation.referencesDavis, M. E. y Simmen, R. C. (2000). Genetic parameter estimates for serum insulin-like growth factor-I concentration and carcass traits in Angus beef cattle. Journal of Animal Science, 78, 2305-2313.spa
dc.relation.referencesDayton, W. R. y Schollmeyer, J. V. (1981). Immunocytochemical localization of calcium activated protease in skeletal muscle cell. Experimental Cell Research , 136, 423-433.spa
dc.relation.referencesde Carvalho, T. D., Siquiera, F., Torres, J. R. A., Medeiros, S. R., Días, G. L., de Souza J. M. D. y Soares, C. O. (2012). Association of polymorphisms in the leptin and thyroglobulin genes with meat quality and carcass traits in beef cattle. Revista Brasileira de Zootecnia, 41(10), 2162-2168.spa
dc.relation.referencesde Oliveira, J. A., Cunha, C. M. D., Crispim, B. D. A, Seno, L. D. O., Fernandes, A. R. M., Nogueira, G. D. P. y Grisolia, A. B. (2013). Association of the leptin gene with carcass characteristics in Nellore cattle. Animal Biotechnology, 24(3), 229-242.spa
dc.relation.referencesdel Campo, G., Brito, J. M., Soares, D., Vaz, C., Sañudo, R., San Julián, P. y Hernández, F. (2008). Effects of feeding strategies including different proportion of pasture and concentrate, on carcass and meat quality traits in Uruguayan steers. Meat Science, 80(3), 753-760.spa
dc.relation.referencesDelgado, H. A. (2011). Farm Animal Welfare in Colombia. A country situation report. WSPA. World Society for the Protection of Animals. https://d31j74p4lpxrfp.cloudfron t.net/sites/default/files/ca_-_en_files/farmanimalwelfareincolombia_tcm22-8296.pdfspa
dc.relation.referencesDestefanis, G., Brugiapaglia, A., Barge, M. T. y Molin, E. D. (2008). Relationship between beef consumer tenderness perception and Warner–Bratzler shear force. Meat Science, 78, 153–156.spa
dc.relation.referencesDevitt, C. J. y Wilton, J. W. (2001). Genetic correlation estimates between ultrasound measurements on yearling bulls and carcass measurements on finished steers. Journal of Animal Science, 79, 2790-2797.spa
dc.relation.referencesDi Marco, O. (2011). Estimación de la calidad de los forrajes. Producir, XXI(20), 24-30. www.produccion-animal.com.ar/tablas_composicion_alimentos/45-calidad.pdfspa
dc.relation.referencesDíaz, M. F. y Burkart, S. (2019). Evolución de las políticas públicas para la ganadería bovina en Colombia: Tensión entre tradición y modernidad. Políticas en Síntesis, 42,1-6spa
dc.relation.referencesDikeman, M. E., Pollak, E. J., Zhang, Z., Moser, D. W., Gill, C. A. y Dressler, E. A. (2005). Phenotypic ranges and relationships among carcass and meat palatability traits for fourteen cattle breeds, and heritabilities and expected progeny differences for Warner-Bratzler shear force in three beef cattle breeds. Journal of Animal Science, 83, 2461-2467.spa
dc.relation.referencesDoumit, M. E. y Koohmaraie, M. (1999). Immunoblot analysis of calpastatin degradation: evidence for cleavage by calpain in postmortem muscle. Journal of Animal Science, 77(6), 1467-73.spa
dc.relation.referencesDow, D. L., Wiegand, B. R., Ellersieck, M. R. y Lorenzen, C. L. (2011). Prediction of fat percentage within marbling score on beef longissimus muscle using 3 different fat determination methods. Journal of Animal Science, 89, 1173–1179spa
dc.relation.referencesDransfield, E. (1994). Modelling postmortem tenderization V: Inactivation of calpains. Meat Science, 37, 391−409.spa
dc.relation.referencesDransfield, E., Francombe, M. y Whelehan, O. (1984). Relationships between sensory attributes in cooked meat. Journal Texture Studies, 15, 337-356.spa
dc.relation.referencesDruml, B. y Cichna-Markl, M. (2014). High resolution melting (HRM) analysis of DNA – Its role and potential in food analysis. Food Chemistry, 158, 245–254.spa
dc.relation.referencesDuitama, O., González, L., García, D., Farah, M. y da Fonseca, R. (2013). Productividad acumulada y su relación genética con características reproductivas en hembras Brahman. Revista MVZ Córdoba, 18, 3658-3664.spa
dc.relation.referencesEC, European Commission (2006). Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Official Journal of the European Union. L404/9eL404/25.spa
dc.relation.referencesElsik CG, Tellam RL y Worley KC. (2009). The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 324(5926): 522–528. https://doi.org/10.1126/science.116958spa
dc.relation.referencesEmerson, M. R., Woerner, D. R., Belk, K. E. y Tatum, J. D. (2013). Effectiveness of USDA instrument-based marbling measurements for categorizing beef carcasses according to differences in longissimus muscle sensory attributes. Journal of Animal Science, 91(2), 1024-1034.spa
dc.relation.referencesEmori, Y., Kawasaki, H., Imajoh, S., Imahori, K., Suzuki, K. (1987). Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proceedings of the National Academy of Sciences, 84(11), 3590-3594.spa
dc.relation.referencesEngland, E. M., Scheffler, T. L., Kasten, S. C., Matarneh, S. K. y Gerrard, D. E. (2013). Exploring the unknowns involved in the transformation of muscle to meat. Meat Sci, 95(4), 837-843.spa
dc.relation.referencesEsquivel, O. (1994). Visual evaluations, cooking characteristics and tenderness profiles of ten muscles form Bos indicus and Bos taurus cattle. Food Science.spa
dc.relation.referencesEstrada-Cely, G.E. (2016). La ganadería del siglo XXI. Revista de Ciencias Agropecuarias. 8(1):43-46 Falconer D.S., Mackay, T.F.C. (1996). Introduction to quantitative genetics. Longman, Edinburgh, 4th Edspa
dc.relation.referencesFarm Animal Welfare Council 1992 FAWC updates the five freedoms Veterinary Record 17: 357. Farm Animal Welfare Council 1993 Second Report on Priorities for Research and Development in Farm Animal Welfare. Londres: DEFRA.spa
dc.relation.referencesFarouk, M. M., Mustafa, N. M., Wu, G., Krsinic, G. (2012). The “sponge effect” hypothesis: An alternative explanation of the improvement in the waterholding capacity of meat with ageing. Meat Science, 90, 670–677.spa
dc.relation.referencesFaucitano, L., Chouinard, P. Y., Fortin, J., Mandell, I., Lafrenière, C., Girard, C. y Berthiaume, R. (2008). Comparison of alternative beef production systems based on forage finishing or grain-forage diets with or without growth promotants: 2. Meat quality, fatty acid composition, and overall palatability. Journal of Animal Science, 86, 1678–1689. doi:10.2527/jas.2007-0756spa
dc.relation.referencesFaustman, C. y Cassens, R. G. (1990). The biochemical basis for discoloration in fresh meat: a review. Journal o Muscle Foods, 1, 217–43spa
dc.relation.referencesFaustman, C. y Suman, S. P. (2017). The Eating Quality of Meat: I – Color. En F. Toldrá, Lawrie’s Meat Science (8TH ed). Woodhead Publishing Series in Food Science, Technology and Nutrition. Elsevier.spa
dc.relation.referencesFedegan, Federación Colombiana de Ganaderos. (2006). Plan estratégico de la ganadería colombiana 2019. Federación Colombiana de Ganaderos.spa
dc.relation.referencesFedegan, Federación Colombiana de Ganaderos. (2011). La ganadería colombiana y las cadenas láctea y cárnica, cifras de referencia Plan estratégico de la ganadería colombiana. http://portal.FEDEGAN.org.co/portal/page?_pageid=93,33690365& _da d=portal&_schema=PORTALspa
dc.relation.referencesFedegan, Federación Colombiana de Ganaderos. (2016). Inventario ganadero - 2016. Consultado el 2 de octubre de 2018. http://www.fedegan.org.co/estadisticas/inventario-ganaderospa
dc.relation.referencesFedegan, Federación Colombiana de Ganaderos. (2021). Cifras de referencia del sector ganadero colombiano. Consultado el 28 de junio de 2021. https://www.fedegan.org.co/estadisticas/consumo-0spa
dc.relation.referencesFedegan, Federación Colombiana de Ganaderos. (2021b). Cifras de referencia del sector ganadero colombiano. Consultado el 28 de junio de 2021. https://estadisticas.fedegan.org.co/DOC/drawStatWidgetFilter.jsp?pIdStat=47&pIndexX=5spa
dc.relation.referencesFedota, O. M., Uban, S. Y., Lysenko, N. G., Kolinyk, A. I. y Goraichuk, I. V. (2016). SNPS of calpain/calpastatin system genes in commercial population of aberdeen angus in Kharkiv region, eastern Ukraine. Journal for Veterinary Medicine, Biotechnology and Biosafety, 2(1).spa
dc.relation.referencesFeed, O. (2010). Metodología para la evaluación de las características cualitativas de la canal y de la carne, p.181-215. G. Bianchi y O. Feed (eds.), Introducción a la ciencia de la carne. Editorial Emisferio Sur.spa
dc.relation.referencesFernandes, J. S., Crispim, B. A., Seno, L. O., Aspilcueta, R. R. y Barufatti, A. (2020). Polymorphisms related to bovine leptin gene and association with productive and reproductive traits in Nellore heifers. Tropical Animal Science Journal, 43(1), 18-24. DOI: https://doi.org/10.5398/tasj.2020.43.1.18spa
dc.relation.referencesFerreira, F. (1999). Gordura da carne bovina e salud humana. I Parte. Pecuaria de Corte, 13(4),146-150. Fiems, L. O. (2012). Double muscling in cattle: Genes, husbandry, carcasses and meat. Animal, 2, 472–506.spa
dc.relation.referencesFlórez Díaz, H., Martínez Correal, G., Ballesteros Chavarro, H., León Llanos, L.M., Castañeda, S., Moreno Moreno, E., Arias Castellanos, L.E., Torres Cardona, J.C., Rodríguez Rojas, C.A., Peña Castellanos, F. y Uribe Botero, A. (2014). Rendimiento en carne de bovinos criollos y europeos y sus cruces con Cebú en las condiciones de la Orinoquia colombiana. Revista AICA, 4:12-15.spa
dc.relation.referencesFlowers, S., Hamblen, H., Leal-Gutiérrez, J. D., Elzo, M. A., Johnson, D. A. y Mateescu, R. G. (2018). Fatty acid profile, mineral content, and palatability of beef from a multibreed Angus–Brahman population. Journal of Animal Science, 96, 4264–4275. doi: 10.1093/jas/sky300spa
dc.relation.referencesFonseca, P. (2016). Informe: Así funcionan los ciclos productivos de las ganaderías. Contexto Ganadero. Consultado en octubre 3 de 2018. http://www.contextoganadero.com/ganaderia-sostenible/informe-asi-funcionan-los-ciclos-productivos-de-las-ganaderiasspa
dc.relation.referencesFontdevila, A. y Moya, A. (1999). Introducción a la genética de poblaciones. Editorial Síntesis.spa
dc.relation.referencesFranco, D., González, L., Bispo, E., Rodríguez, P., Garabal, J. I. y Moreno, T. (2010). Study of hydrolyzed protein composition, free amino acid, and taurine content in different muscles of Galician blonde beef. Journal of Muscle Foods, 21(4), 769-784. https://doi.org/10.1111/j.1745-4573.2010.00218.xspa
dc.relation.referencesFranco, J., Feed, O., Gimeno, D., Aguilar, I. y Avendaño, S. (2002). Calidad de la canal. Seminario de Actualización Técnica: Cruzamientos en bovinos para Carnes. INIA Tacuarembó, Uruguay, 31-37.spa
dc.relation.referencesFraser, D., Weary, D. M., Pajor, E. A. y Milligan, B. N. (1997). A scientific conception of animal welfare that reflects ethical concerns. Animal Welfare 6: 187-205.spa
dc.relation.referencesGállego, A., Araneda, C. (2018). Tema 18: genética cuantitativa. En: Castañeda S., A. y Rodríguez A., R. (coord.). Problemas de genética: cuaderno de ejercicios. 2018. Ciudad de México: Universidad Nacional Autónoma de México, Facultad de Ciencias. pp.: 351-372 .spa
dc.relation.referencesGallo, C. y Tadich TA. (2008). South America. En M. C. Appleby, V. Cussen, L. Garcés, L. Lambert y J. Turner (eds.), Long distance transport and welfare of farm animals (pp. 261–287). CABI Publishing.spa
dc.relation.referencesGandolfi, G., Pomponio, L., Ertbjerg, P., Karlsson, A. H., Costa, L. N., Lametsch, R. y Davoli, R. (2011). Investigation on CAST, CAPN1 and CAPN3 porcine gene polymorphisms and expression in relation to post-mortem calpain activity in muscle and meat quality. Meat Science, 88(4), 694-700.spa
dc.relation.referencesGarrido, M.D., Bañón, S, Álvarez, D. (2005). Medida del pH. Estandarización de las metodologías para evaluar la calidad del producto (animal vivo, canal, carne y grasa) en los rumiantes. In: Cañeque, V, Sañudo C. (ed), Estandarización de las metodologías para evaluar la calidad del producto (animal vivo, canal, carne y grasa) en los rumiantes. Monografías INIA: Serie Ganadera, p. 206-215.spa
dc.relation.referencesGarza-Brenner, E., Sifuentes-Rincón, A. M., Rodríguez-Almeida, F. A., Parra-Bracamonte, G. M., & Arellano-Vera, W. (2019). Efecto de tres marcadores genéticos sobre la eficiencia alimenticia de toretes en prueba de comportamiento. Ecosistemas y recursos agropecuarios, 6(18), 581-586.spa
dc.relation.referencesGeesink, G. H., Koohmaraie, M. (1999a). Effect of calpastatin on degradation of myofibrillar proteins by mu-calpain under postmortem conditions. Journal of Animal Science, 77(10), 2685–2692. http://doi.org/10.2527/1999.77102685xspa
dc.relation.referencesGeesink, G. H., Koohmaraie, M. (1999b). Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb biceps femoris during extended postmortem storage. Journal of Animal Science, 77(6), 1490–1501. http://doi.org/10.2527/1999.7761490xspa
dc.relation.referencesGeesink, G. H., Kuchay, S., Chishti, A., Koohmaraie, M. (2006). µ-Calpain is essential for postmortem proteolysis of muscle proteins. Journal of Animal Science, 84(10), 2834–2840. http://doi.org/10.2527/jas.2006-122spa
dc.relation.referencesGerken, C. L., Tatum, J. D., Morgan, J. B., Smith, G. C. (1995). Use of genetically identical (clone) steers to determine the effects of estrogenic and androgenic implants on beef quality and palatability characteristics. Journal of Animal Science, 73(11), 3317–3324. https://doi.org/10.2527/1995.73113317xspa
dc.relation.referencesGerrard, D. E., Jones, S. J., Aberle, E. D., Lemenger, R. P., Kiekman, M. A., Judge, M. D. (1987). Collagen stability, testosterone secretion and meat tenderness in growing bulls and steers. Journal of Animal Science, 65(5), 1236-1242. https://doi.org/10.2527/jas1987.6551236xspa
dc.relation.referencesGill, J., Bishop, S., McCorquodale, C., Williams, J., Wiener, P. (2010). Associations between single nucleotide polymorphisms in multiple candidate genes and carcass and meat quality traits in a commercial Angus-cross population. Meat Science 86(4), 985–993. https://doi.org/10.1016/j.meatsci.2010.08.005spa
dc.relation.referencesGiraldo, J. J. (2007). Una mirada al uso de la inseminación artificial en bovinos. Revista Lasallista de Investigación, 4(1), 51-57. https://www.redalyc.org/pdf/695/69540108.pdfspa
dc.relation.referencesGiusti, J., Castan, E., Dal, P. M., Arrigoni, M. D. B., Baldin, S. R., De Oliveira, H. N. (2013). Expression of genes related to quality of Longissimus dorsi muscle meat in Nellore (Bos indicus) and Canchim (5/8 Bos taurus× 3/8 Bos indicus) cattle. Meat Science, 94(2), 247-252. https://doi.org/10.1016/j.meatsci.2013.02.006spa
dc.relation.referencesGoll, D. E., Thompson, V. F., Li, H., Wei, W., Cong, J. (2003). The calpain system. Physiological Reviews. 83(3), 731-801. https://doi.org/10.1152/physrev.00029.2002spa
dc.relation.referencesGoll, D. E., Thompson, V. F., Taylor, R. G., Zalewska, T. (1992). Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? BioEssays, 14(8), 549–556. http://doi.org/10.1002/bies.950140810spa
dc.relation.referencesGomes, V. S., Mano, S. B., Freitas, M. Q., Santos, M. D., Conte J. C. A., Silva, J. M., Santos, E. B. (2016). Meat characteristics of cattle fed diets containing whole cottonseed. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68(4), 1069-1076. https://doi.org/10.1590/1678-4162-8636spa
dc.relation.referencesGómez, A., Gómez, P., Carrillo, M. (1995). Sistema ICTA de clasificación de canales y cortes de carne bovina. Cartilla Guía. Ministerio de Agricultura y Desarrollo Rural.spa
dc.relation.referencesGómez, J. D., Rueda, R. A.. (2011). Productividad del sector ganadero bovino en Colombia durante los años 2000 a 2009 [Trabajo de Grado, Colegio Mayor Nuestra Señora del Rosari]. Repositorio Institucional Unrosario. https://repository.urosario.edu.co/handle/10336/2629spa
dc.relation.referencesGómez, Y. M., Fernández, M., Rivera, D., Gómez, G., Bernal, J. E. (2013). Genetic characterization of Colombian Brahman cattle using microsatellites markers. Russian Journal Genetics; 49, 737-745. https://link.springer.com/article/10.1134/S1022795413070041spa
dc.relation.referencesGonzález, R., Sánchez, M. S., Bolívar, D. M., Chirinda, N., Zuluaga, A. F., Barahona, R. (2017). Uso del suelo en sistemas de cría y ceba bovina de diferente tamaño en 13 departamentos en Colombia [ponencia]. IX Congreso Internacional de sistemas silvopastoriles, Manizales, Colombia. https://hdl.handle.net/10568/89102spa
dc.relation.referencesGrayson, A. L., Shackelford, S. D., King, D. A., McKeith, R. O., Miller, R. K., Wheeler, T. L. (2016). Effect of degree of dark cutting on tenderness and sensory attributes of beef. Journal of Animal Science, 94(6), 2583–2591. https://doi.org/10.2527/jas.2016-0388spa
dc.relation.referencesGregory, K. E., Cundiff, L. V., Koch, R. M., Dikeman, M. E., Koohmaraie, M. (1994). Breed effects, retained heterosis, and estimates of genetic and phenotypic parameters for carcass and meat traits of beef cattle. Journal of Animal Science, 72(5), 1174-1183. https://doi.org/10.2527/1994.7251174xspa
dc.relation.referencesGuerrero, L., Guardia, M. D. (1999). La medida de las propiedades mecánicas en la carne y en los derivados cárnicos. Eurocarne, 77, 41–49. https://eurocarne.com/revista?id=77spa
dc.relation.referencesGuignot, F., Touraille, C., Ouali, A., Renerre, M., Monin, G. (1994). Relationships between post-mortem pH changes and some traits of sensory quality in veal. Meat Science, 37(3), 315–325. https://doi.org/10.1016/0309-1740(94)90049-3spa
dc.relation.referencesHamm, R. (1961). Biochemistry of Meat Hydration. En C. O. Chichester, E. M. Mrak (eds.), Advances in Food Research (pp. XX-XX). Academic Press.spa
dc.relation.referencesHamm, R. (1986). Funtional properties of the myofibrilar system and their measurements. En P. J. Bechtel (ed.) Muscle and food (pp. XX-XX). Academic Press.spa
dc.relation.referencesHanna, R. A., Garcia-Diaz, B. E., Davies, P. L. (2007). Calpastatin simultaneously binds four calpains with different kinetic constants. FEBS letters, 581(16), 2894-2898.spa
dc.relation.referencesHarper, G. S. (1999). Trends in skeletal muscle biology and the understanding of toughness in beef. Australian Journal of Agricultural Research, 50(7),1105−1129. https://doi.org/10.1071/AR98191spa
dc.relation.referencesHeaton, M. P, Harhay, G. P, Bennett, G. L, Stone, R. T., Grosse, W. M., Casas, E., et al. (2002). Selection and use of SNP markers for animal identification and paternity analysis in US beef cattle. Mammalian Genome, 13(5), 272–281. https://doi.org/10.1007/s00335-001-2146-3spa
dc.relation.referencesHenchion, M. M., McCarthy, M., Resconi, V. C. (2017). Beef quality attributes: A systematic review of consumer perspectives. Meat Science, 128, 1-7. https://doi.org/10.1016/j.meatsci.2017.01.006spa
dc.relation.referencesHerd, R. M., Oddy, V. H., Richardson, E. C. (2004). Biological basis for variation in residual feed intake in beef cattle. Review of potential mechanisms. Australian Journal of Experimental Agriculture, 44(5), 423-430. https://doi.org/10.1071/EA02221spa
dc.relation.referencesHerrera, C. H., Becila, S., Boudjellal, A., Ouali, A. (2006). Meat ageing: Reconsideration of the current concept. Trends in Food Science and Technolgy, 17(8), 394–405. https://doi.org/10.1016/j.tifs.2006.01.011spa
dc.relation.referencesHocquette, J. F., Lehnert, S., Barendse, W., Cassar-Malek, I., Picard, B. (2007). Recent advances in cattle functional genomics and their application to beef quality. Animal, 1(1), 159−173. https://doi.org/10.1017/s1751731107658042spa
dc.relation.referencesHocquette, J., Gondret, F., Baéza, E., Médale, F., Jurie, C., Pethick, D. (2010). Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal, 4(2), 303–319. https://doi.org/10.1017/S1751731109991091spa
dc.relation.referencesHoldridge, L. R. (1967). Life zone ecology. Tropical Science Center.spa
dc.relation.referencesHolman, B. W., Mao, Y., Coombs, C. E., van de Ven, R. J., Hopkins, D. L. (2016). Relationship between colorimetric (instrumental) evaluation and consumer-defined beef colour acceptability. Meat Science, 121, 104-106. https://doi.org/10.1016/j.meatsci.2016.05.002spa
dc.relation.referencesHouseknecht, K. L. (1998). The biology of leptin: A review. Journal of Animal Science, 76(5), 1405-20. https://doi.org/10.2527/1998.7651405xspa
dc.relation.referencesHoward, T. (2013). Evaluation of 54 years of Louisiana bull testing, and SNP affecting growth and performance of yearling bulls on a forage performance bull test [tesis de maestría, Universidad Estatal de Luisiana]. LSU Masters Theses. https://digitalcommons.lsu.edu/gradschool_theses/2521spa
dc.relation.referencesHoyos, H. J. (2007). Alimentación y suplementación de ganado para producción de carne y leche [seminario]. I Seminario Internacional Competitividad en Carne y Leche. Colanta, Planeta Rica, Córdoba, Colombia. http://escuelasinmurosplanetairis.org/biblioteca/alimentaciondeganadobovino.pdfspa
dc.relation.referencesHuerta, N., Cross, H., Savell, J., Lunt, D., Baker, J., Pelton, L., Smith, S. A. (1993). Comparison of the Fatty acid composition of subcutaneous adipose tissue from mature Brahman and Hereford cows. Journal of Animal Science, 71(3), 625-630. https://doi.org/10.2527/1993.713625xspa
dc.relation.referencesHuff, E. J., Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Science, 71(1),194-204. https://doi.org/10.1016/j.meatsci.2005.04.022spa
dc.relation.referencesHuff, E. J., Parrish, F. C. (1993). Bovine longissimus muscle tenderness as affected by postmortem ageing time, animal age and sex. Journal of Food Science, 58(4), 713–716. https://doi.org/10.1111/j.1365-2621.1993.tb09341.xspa
dc.relation.referencesHuff, E. J., Zhang, W., Lonergan, S. M. (2010). Biochemistry of postmortem muscle – Lessons on mechanisms of meat tenderization. Meat Science, 86(1),184-195. https://doi.org/10.1016/j.meatsci.2010.05.004spa
dc.relation.referencesHuffman, K. L., Miller, M. F., Hoover, L. C., Wu, C. K., Brittin, H. C., Ramsey, C. B. (1996). Effect of beef tenderness on consumer satisfaction with steaks consumed in the home and restaurant. Journal of Animal Science, 74(1), 91–97. https://doi.org/10.2527/1996.74191xspa
dc.relation.referencesHunt, M. R., Garmyn, A. J., OQuinn, T. G., Corbin, C. H., Legako, J. F., Rathmann, R. J., Miller, M. F. (2014). Consumer assessment of beef palatability from four beef muscles from USDA Choice and Select graded carcasses. Meat Science, 98(1), 1-8. https://doi.org/10.1016/j.meatsci.2014.04.004spa
dc.relation.referencesHurtado, G. (2012). Sequía meteorológica y sequía agrícola en Colombia: incidencia y tendencias. Instituto de Hidrología, Meteorología y Estudios Ambientales (Ideam). http://www.ideam.gov.co/documents/21021/21138/Sequias+Incidencias+y+Tendencias.pdf/3e72c86c-cf4a-42f9-95f1-07e7cf88861aspa
dc.relation.referencesHyldig, G, Nielsen, D. (2001). A review of sensory and instrumental methods used to evaluate the texture of fish muscle. Journal of Texture Studies, 32, 219–242. https://doi.org/10.1111/j.1745-4603.2001.tb01045.xspa
dc.relation.referencesIcier, F., Izzetoglu, G. T., Bozkurt, H., Ober, A. (2010). Effects of ohmic thawing on histological and textural properties of beef cuts. Journal of Food Engineering, 99(3), 360-365. https://doi.org/10.1016/j.jfoodeng.2010.03.018spa
dc.relation.referencesIguácel, L. P. (2017). Factores genéticos que afectan a la dureza y grasa intramuscular de la carne de bovino [tesis de doctorado, Universidad de Zaragoza]. Repositorio Institucional UNIZAR. https://pardademontana.com/noticias/factores-gen-ticos-que-afectan-la-dureza-y-grasa-intramuscular-de-la-carne-de-bovinospa
dc.relation.referencesIllian, M., Morton, J. D., Kent, M. P., Le Couteur, C. E., Hickford, J., Cowley, R., Bickerstaffe, R. (2001). Intermuscular variation in tenderness: Association with the ubiquitous and muscle-specific calpains. Journal of Animal Science, 79(1), 122-132. https://doi.org/10.2527/2001.791122xspa
dc.relation.referencesImmonen, K., Puolanne, E. (2000). Variation of residual glycogen–glucose concentration at ultimate pH values below 5.75. Meat Science, 55(3), 279–283. https://doi.org/10.1016/S0309-1740(99)00152-7spa
dc.relation.referencesInstituto Colombiano Agropecuario. (2020). Censo pecuario nacional. ICA. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2020/bovinos-censo-2020.aspxspa
dc.relation.referencesInstituto colombiano de normas técnicas y certificación. (1973). Alimentos y materias primas. Determinación de los contenidos de grasa y fibra cruda. https://www.icontec.org/rules/alimentos-y-materias-primas-determinacion-de-los-contenidos-de-grasa-y-fibra-cruda/spa
dc.relation.referencesInstituto colombiano de normas técnicas y certificación. (1997). Carnes. Sistema de clasificación de la carne bovina en canal. Icontec. https://www.icontec.org/rules/carnes-sistema-de-clasificacion-de-la-carne-bovina-en-canal/spa
dc.relation.referencesInstituto colombiano de normas técnicas y certificación. (1999). Alimento para animales. Determinación del contenido de nitrógeno y cálculo del contenido de proteína cruda. Método Kjeldahl. https://www.icontec.org/rules/alimento-para-nimales-determinacion-del-contenido-de-nitrogeno-y-calculo-del-contenido-de-proteina-cruda-metodo-kjeldahl/spa
dc.relation.referencesInternational Organization for Standardization (1999). Animal feeding stuffs — Determination of moisture and other volatile matter content. https://www.iso.org/standard/12871.html Johnson, P. A. (2010). The Heritability of Factors that Influence Tenderness in Beef Cattle [tesis de doctorado, Texas Tech University]. Repositorio Instituciona TTU. https://ttu-ir.tdl.org/handle/2346/ETD-TTU-2010-12-1047spa
dc.relation.referencesKemp, C. M., Parr, T. (2012). Advances in apoptotic mediated proteolysis in meat tenderisation. Meat Science, 92(3), 252-259. https://doi.org/10.1016/j.meatsci.2012.03.013spa
dc.relation.referencesKillefer, J., Koohmaraie, M. (1994). Bovine skeletal muscle calpastatin: cloning, sequence analysis, and steady-state mRNA expression. Journal of Animal Science, 72(3), 606-614.spa
dc.relation.referencesKing, D. A., Shackelford, S. D., Kuehn, L. A., Kemp, C. M., Rodriguez, A. B., Thallman, R. M., Wheeler, T. L. (2010). Contribution of genetic influences to animal-to-animal variation in myoglobin content and beef lean color stability. Journal of Animal Science, 88(3),1160-1167. https://doi.org/10.2527/jas.2009-2544spa
dc.relation.referencesKoch, R. M., Cundiff, L. V., Gregory, K. E., Van Vleck, L. D. (2004). Genetic response to selection for weaning weight or yearling weight or yearling weight and muscle score in Hereford cattle: Efficiency of gain, growth, and carcass characteristics. Journal of Animal Science, 82(3), 668-682. https://doi.org/10.2527/2004.823668xspa
dc.relation.referencesKök, S., Atalay, S. (2018). The Use of various SNPs in CAST and CAPN1 genes to determine the meat tenderness in turkish grey cattle. Kafkas Universitesi Veteriner Fakultesi Dergisi, 24(1), 1-8. Doi: 10.9775/kvfd.2017.17617spa
dc.relation.referencesKołczak, T., Palka, K., Łącki, J. (2005). Water retention, shear force and texture parameters of cattle psoas and semitendinosus muscles unfrozen and frozen during post-mortem ageing. Polish Journal of Food and Nutrition Science, 55(1), 17-26. http://journal.pan.olsztyn.pl/WATER-RETENTION-SHEAR-FORCE-AND-TEXTURE-PARAMETERS-OF-CATTLE-PSOAS-AND-SEMITENDINOSUS,97844,0,2.htmlspa
dc.relation.referencesKononoff, P. J., Deobald, H. M., Stewart, E. L., Laycock, A. D., Marquess, F. L. (2005). The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle. Journal of Animal Science, 83(4), 927–32. https://doi.org/10.2527/2005.834927xspa
dc.relation.referencesKoohmaraie, M. (1994). Muscle proteinases and meat aging. Meat science, 36(1-2), 93-104.spa
dc.relation.referencesKoohmaraie, M., Geesink, G. H. (2006). Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science, 74(1), 34−43. https://doi.org/10.1016/j.meatsci.2006.04.025spa
dc.relation.referencesKoohmaraie, M., Kent, M., Shackelford, S., Veiseth, E., Wheeler, T. (2002). Meat tenderness and muscle growth: is there any relationship? Meat Science 62(3), 345-352. https://pubmed.ncbi.nlm.nih.gov/22061610/spa
dc.relation.referencesKoohmaraie, M., Shackelford, S., Wheeler, T. (1997). The biological basis of the beef tenderness and potential approaches for its control and prediction. Reciprocal Meat Conference Proceedings, 48, 69-75. https://meatscience.org/docs/default-source/publications-resources/rmc/1995/the-biological-basis-of-meat-tenderness-and-potential-genetic-approaches-for-its-control-and-prediction.pdf?sfvrsn=154dbbb3_2spa
dc.relation.referencesKristensen, L. S., Dobrovic, A. (2008). Direct Genotyping of Single Nucleotide Polymorphisms in Methyl Metabolism Genes Using Probe-Free High-Resolution Melting Analysis. Cancer Epidemiology Biomarkers and Prevention,17(5), 1240-7. Doi: 10.1158/1055-9965.EPI-07-2531spa
dc.relation.referencesKristensen, L., Therkildsen, M., Riis, B., Sørensen, M. T., Oksbjerg, N., Purslow, P. P., Ertbjerg, P. (2002). Dietary-induced changes of muscle growth rate in pigs: Effects on in vivo and postmortem muscle proteolysis and meat quality. Journal of Animal Science, 80(11), 2862-2871. https://doi.org/10.2527/2002.80112862xspa
dc.relation.referencesKrypuy, M., Newnham, G., Thomas, D., Conron, M., Dobrovic, A. (2006). High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer, 6(1), 295. https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-6-295spa
dc.relation.referencesKu Vera, J. C., Ruiz, G. A., Albores, M. S., Briceño, P. E., Espinoza, H. J. C., Ruiz, R. N., Contreras, H. L. M., Ayala, B. A. J., Ramírez, A. L. (2011). Alimentación de rumiantes en sistemas silvopastoriles intensivos: Avances de investigación básica [ponencia]. 3° Congreso sobre Sistemas Silvopastoriles Intensivos para la ganadería sostenible del siglo XXI. Morelia, Michoacán, México. Enlacespa
dc.relation.referencesKyseľová, J., Rychtářová, J., Sztankóová, Z., Zerneková, V. (2012). Simultaneous identification of CSN3 and LGB genotypes in cattle by high-resolution melting curve analysis. Livestock Science, 145(1-3), 275-279. https://doi.org/10.1016/j.livsci.2011.12.018spa
dc.relation.referencesLagonigro, R., Wiener, P., Pilla, F., Woolliams, J. A., Williams, J. L. (2003). A new mutation in the coding region of the bovine leptin gene associated with feed intake. Animal Genetics, 34(5), 371-4. https://doi.org/10.1046/j.1365-2052.2003.01028.xspa
dc.relation.referencesLamb, M. A., Robison, O. W., Tess, M. W. (1990). Genetic parameters for carcass traits in Hereford bulls. Journal of Animal Science, 68(1), 64-69. https://doi.org/10.1093/ansci/68.1.64spa
dc.relation.referencesLambe, N. R., Krzecio, E., Kocwin, M., Bunger, L., Przybylski, W., Hopkins, D. (2015). Influence of major genes on meat quality. En W. Przybylski, D. Hopkins (eds.), Meat Quality: Genetic and Environmental Factors (pp. 287-332). CRC Press.spa
dc.relation.referencesLarraín, R., Melo, O., Schmidt, M. C. (2019). Informe final sellos de atributos de las carnes bovinas. Oficina de estudios y políticas agrarias del Ministerio de Agricultura, gobierno de Chile. Odepa. https://www.odepa.gob.cl/wp-content/uploads/2019/ 12/Informe-final_SellosAtributosCarnesBovinas.pdfspa
dc.relation.referencesLawrie, R. A. (1998). Chemical and biochemical constitution of muscle, Lawrie’s Meat Science (6.ª ed.) (pp. 58–95). Permagon Press.spa
dc.relation.referencesLeal, J. D. (2013). Marcadores moleculares asociados a la Capacidad de Retención de Agua (CRA) en carne de Bos indicus y sus cruces [tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional UNAL. https://repositorio.unal.edu.co/handle/unal/74958spa
dc.relation.referencesLeal, J. D., Jiménez, L. M., Ariza, M., Manrique, C., López, J., Martínez, C., Pinilla, Y., Castro, S., García, N., Bedoya, C., Jiménez, A. (2015). Polimorfismos de los genes CAPN1, CAST, DES, PRKAG3 y RYR1 asociados a la capacidad de retención de agua en crudo y cocinado en carne de bovino en cruces Bos indicus y Bos taurus en Colombia. Archivos de Zootecnia 64(245), 29-35. https://www.uco.es/ucopress/az/index.php/az/article/view/371spa
dc.relation.referencesLeal, J. D., Mateescu, R. G. (2019). Genetic basis of improving the palatability of beef cattle: current insights. Food Biotechnology, 33(3), 193–216 https://doi.org/10.1080/08905436.2019.1616299spa
dc.relation.referencesLee, H. J., Jin, S., Kim, H. J., Bhuiyan, M. S. A., Lee, D. H., Lee, S. H., Jang, S. B., Han, M. H., Lee, S. H. (2019). Validation Study of SNPs in CAPN1-CAST Genes on the Tenderness of Muscles (Longissimus thoracis and Semimembranosus) in Hanwoo (Korean Cattle). Animals 9(9). Doi:10.3390/ani9090691spa
dc.relation.referencesLee, H. J., Sorimachi, H., Jeong, S. Y., Ishiura, S., Suzuki, K. (1998). Molecular cloning and characterization of a novel tissue-specific calpain predominantly expressed in the digestive tract. Biological chemistry, 379(2), 175-183. https://doi.org/10.1515/bchm.1998.379.2.175spa
dc.relation.referencesLee, S. H., Kim, S. C., Chai, H. H., Cho, S. H., Kim, H. C., Lim, D., Choi, B. H., Dang, C. G., Sharma, A., Gondro, C., Yang, B. S., Hong, S. K. (2014). Mutations in calpastatin and μ-calpain are associated with meat tenderness, flavor and juiciness in Hanwoo (Korean cattle): molecular modeling of the effects of substitutions in the calpastatin/μ-calpain complex. Meat Science 96(4), 1501–1508. https://doi.org/10.1016/j.meatsci.2013.11.026spa
dc.relation.referencesLeeds, A. R., Randle, A., Matthews, K. R. (1997). A study into the practice of trimming fat from meat at the table, and the development of new study methods. Journal of human nutrition and dietetics, 10(4), 245-251. https://doi.org/10.1046/j.1365-277X.1997.00056.xspa
dc.relation.referencesLegako, J. F., Dinh, T. T. N., Miller, M. F., Brooks, J.C. (2015). Effects of USDA beef quality grade and cooking on fatty acid composition of neutral and polar lipid fractions. Meat Science, 100, 246-255. https://doi.org/10.1016/j.meatsci.2014.10.013spa
dc.relation.referencesLeng, R. A. (1990). Ruminant nutrition in the tropics. Grosvenor Press International Limited.spa
dc.relation.referencesLenis, C., Ramos, L., Londoño, M., Hernández, D., Álvarez, L. (2018). Polimorfismos de los genes calpaína y calpastatina en el ganado criollo colombiano Hartón del Valle. Revista de Investigaciones Veterinarias del Perú, 29(3), 818-827. http://dx.doi.org/10.15381/rivep.v29i3.14003spa
dc.relation.referencesLepetit, J., Culioli, J. (1994). Mechanical properties of meat. Meat Science,36(1-2), 203-237. https://doi.org/10.1016/0309-1740(94)90042-6spa
dc.relation.referencesLi, J., Wei, Y., Li, J., Liu, R., Xu, S., Xiong, S., Guo, Y., Qiao, Y., Wang, S. (2021). A novel duplex SYBR Green real-time PCR with melting curve analysis method for beef adulteration detection. Food Chemistry 338, 127932spa
dc.relation.referencesLian, T., Wan, L., Liu, Y. (2013). A new insight into the role of calpains in post-mortem meat tenderization in domestic animals: A review. Asian-Australasian Journal of Animal Sciences, 26(3), 443–454. https://doi.org/10.5713/ajas.2012.12365spa
dc.relation.referencesLiang, R. R., Zhu, H., Mao, Y. W., Zhang, Y. M., Zhu, L. X., Cornforth, D., Luo, X. (2016). Tenderness and sensory attributes of the longissimus lumborum muscles with different quality grades from Chinese fattened yellow crossbred steers. Meat Science, 112, 52–57. https://doi.org/10.1016/j.meatsci.2015.10.004spa
dc.relation.referencesLiew, M., Pryor, R., Palais, R., Meadows, C. M., Erali, M., Lyon, E., Wittwer, C. (2004). Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clinical Chemistry, 50(7), 1156 –1164. https://doi.org/10.1373/clinchem.2004.032136spa
dc.relation.referencesListrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., Bugeon, J. (2016). How muscle structure and composition influence meat and flesh quality. The Scientific World Journal, 2016. http://dx.doi.org/10.1155/2016/3182746.spa
dc.relation.referencesLobato, J. F. P., Freitas, A. K., Devincenzi, T., Cardoso, L. L., Tarouco, J. U., Vieira, R. M., Dillenburg, D. R., Castro, I. (2014). Brazilian beef produced on pastures: Sustainable and healthy. Meat Science 98(3), 336–345. https://doi.org/10.1016/j.meatsci.2014.06.022spa
dc.relation.referencesLombana, J., Martínez, D., Valverde, M., Rubio, J., Castrillón, J., Marino, W. (2012). Caracterización del sector ganadero del caribe colombiano. Editorial Universidad del Norte.spa
dc.relation.referencesLomiwes, D., Farouk, M. M., Frost, D. A., Dobbie, P. M., Young, O. A. (2013). Small heat shock proteins and toughness in intermediate pHu beef. Meat Science, 95(3), 472–479. https://doi.org/10.1016/j.meatsci.2013.05.022spa
dc.relation.referencesLomiwes, D., Farouk, M. M., Wu, G., Young, O. A. (2014). The development of meat tenderness is likely to be compartmentalised by ultimate pH. Meat Science, 96(1), 646–651. https://doi.org/10.1016/j.meatsci.2013.08.022spa
dc.relation.referencesLonergan, E. H., Zhang, W., Lonergan, S. M. (2010). Biochemistry of postmortem muscle- Lessons on mechanisms of meat tenderization. Meat Science, 86(1), 184–195. https://doi.org/10.1016/j.meatsci.2010.05.004spa
dc.relation.referencesLópez-Rojas, L. E., Patiño L, López, A., Zuluaga, J. J. (2017a). Genotyping of SNPs associated with meat tenderness: comparison of two PCR-based methods. Genetics and Molecular Research 16(2). Doi: 10.4238/gmr16029635spa
dc.relation.referencesLópez-Rojas, L. E., Patiño, L., López, A., Zuluaga, J. J. (2017b).Variabilidad genética en seis SNPs de los genes CAPN1, CAST y LEP de toros brahman en ganaderías del trópico bajo colombiano. Revista CES Medicina, Veterinaria y Zootecnia, 12(2), 88-102. http://dx.doi.org/10.21615/cesmvz.12.2.2spa
dc.relation.referencesLópez-Rojas, L. E., Patiño, L., Martínez-Garro, J. M., Durán-Ortiz, S., Correa-Agudelo, L. J., González-Escudero, S., López-Herrera, A., Echeverri-Zuluaga, J. J. (2016). El análisis de alta resolución en la temperatura de disociación permite genotipificación de marcadores relacionados con la carne de bovino. Revista Cubana de Ciencia Animal, 50(1), 5-10. http://hdl.handle.net/10946/1870spa
dc.relation.referencesMáčajová, M., Lamošová, D., Zeman, M. (2004). Role of leptin in farm animals: a review. Journal of Veterinary Medicine Series A, 51(4), 157-166. Doi:10.1111/j.1439-0442.2004.00619.xspa
dc.relation.referencesMadrigal, M., Valverde, A., Murillo, O., Montero, W., Muñoz, B. (2018). Asociación entre marcadores genéticos capn-1, cast y características de crecimiento en ganado brahman en costa rica. Agronomía Costarricense 42(2), 29-42. http://dx.doi.org/10.15517/rac.v42i2.33776spa
dc.relation.referencesMahecha, L., Gallego, L. A., Peláez, F. J. (2002). Situación actual de la ganadería de carne en Colombia y alternativas para impulsar su competitividad y sostenibilidad. Revista Colombiana de Ciencias Pecuarias 15(2), 213-225. https://revistas.udea.edu.co/index.php/rccp/article/view/323816spa
dc.relation.referencesMahmood, S. (2017). Relationships between bovine phenotype, production practices, muscle proteins and the incidence of dark cutting beef [tesis de doctorado, University of Alberta]. Repositorio Institucional (U de A). https://era.library.ualberta.ca/items/659177b8-6fb4-4772-bdd1-50d321c1414dspa
dc.relation.referencesMaltin, C., Balcerzak, D., Tilley, R., Deldayet, M. (2003). Determination of meat quality: tenderness. Proceedings of the Nutrition Society, 62(2), 337- 347. Doi:https://doi.org/10.1079/PNS2003248spa
dc.relation.referencesMamani, L. W., Gallo, C. (2011). Composición química y calidad instrumental de carne de bovino, llama (lama glama) y caballo bajo un sistema de crianza extensiva. Revista de Investigaciones Veterinarias del Perú 22(4), 301-311. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1609-91172011000400003spa
dc.relation.referencesMancini, R. A., Hunt, M. C. (2005). Current research in meat color. Meat Science 71,100–121. https://doi.org/10.1016/j.meatsci.2005.03.003spa
dc.relation.referencesMarino, R., Albenzio, M., Della Malva, A., Santillo, A., Loizzo, P., Sevi, A. (2013). Proteolytic pattern of myofibrillar protein and meat tenderness as affected by breed and aging time. Meat Science, 95(2), 281-287. https://doi.org/10.1016/j.meatsci.2013.04.009spa
dc.relation.referencesMarizancén , M.A., Artunduaga, L. (2017). Mejoramiento genético en bovinos a través de la inseminación artificial y la inseminación artificial a tiempo fijo. Revista de Investigación Agraria y Ambiental, 8(2) – julio - diciembre de 2017 – ISSN 2145-6097 Marsh, B. B., Ringkob, T. P., Russell, R. L., Swartz, D. R., Pagel, L. A. (1987). Effects of early-postmortem glycolytic rate on beef tenderness. Meat Science, 21(4), 241−248. https://doi.org/10.1016/0309-1740(87)90061-1spa
dc.relation.referencesMarshall, D. M. (1994). Breed differences and genetic parameters for body composition traits in beef cattle. Journal of Animal Science, 72(10), 2745-2755. https://doi.org/10.2527/1994.72102745xspa
dc.relation.referencesMartínez, C. A., Manrique, C. A., Elzo, M. (2012). Cattle genetic evaluation: a historical perception. Revista Colombiana de Ciencias Pecuarias, 25(2), 293–311. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-06902012000200014spa
dc.relation.referencesMartínez, H. A., Arnold, A. N., Brooks, J. C., Carr, C. C., Gehring, K. B., Griffin, D. B., Hale, D. S., Mafi, G. G., Johnson, D. D., Lorenzen, C. L., Maddock, R. J., Miller, R. K., VanOverbeke, D. L., Wasser, B. E., Savell, J. W. (2017). National Beef Tenderness Survey–2015: Palatability and Shear Force Assessments of Retail and Foodservice Beef. Meat and Muscle Biology 1(1), 138-148. Doi:10.22175/mmb2017.05.0028spa
dc.relation.referencesMartínez, M., Vargas, B., Cordero, J. M., Chacón, I., León, B. (2015). Diversidad genética entre subpoblaciones raciales bovinas de Costa Rica. Agronomía Costarricense, 39(2), 33-46. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0377-94242015000200033spa
dc.relation.referencesMartínez, O., Salmerón, J., Casas, C., Guillén, M. D.. (2004). Evaluación de cambios de textura en salchichas tipo Frankfurt tratadas con dos aromas de ahumado líquido, mediante el análisis de perfil de textura (TPA). Alimentaria, 3 (53), 89-91.spa
dc.relation.referencesMartínez, R. A., Dassonneville, R., Bejarano, D., Jimenez, A., Even, G., Mészáros, G., Sölkner, J. (2016b). Direct and maternal genetic effects on growth, reproduction, and ultrasound traits in zebu Brahman cattle in Colombia. Journal of Animal Science, 94(7), 2761–2769. Doi:10.2527/jas2016-0453spa
dc.relation.referencesMartínez, R.A., Dassonneville, R., Bejarano, R., Jimenez, G., Even, G., Mészáros, G., Sölkner J. (2016a). Efectos genéticos directos y maternos sobre el crecimiento, reproducción y rasgos de ultrasonido en ganado cebú Brahman en Colombia , Journal of Ciencia Animal, 94(7): 2761–2769.spa
dc.relation.referencesMassey, J. W., Vogt, D. W. (2018). Heritability and its use in animal breeding. University of Missouri Extension, Department of Animal science. https://goo.gl/6cdVaqspa
dc.relation.referencesMberema, C. H. H., Lietz, G., Kyriazakis, I., Sparagano, O. A. (2016). The effects of gender and muscle type on the mRNA levels of the calpain proteolytic system and beef tenderness during post-mortem aging. Livestock Science, 185, 123-130. https://doi.org/10.1016/j.livsci.2016.01.020spa
dc.relation.referencesMcAfee, A. J., McSorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M. W., Bonham, M. P., Fearon, A. M. (2010). Red meat consumption: An overview of the risks and benefits. Meat Science, 84(1), 1-13. https://doi.org/10.1016/j.meatsci.2009.08.029spa
dc.relation.referencesMeirelles, F. V., Rosa, A. J. M., Lobo, R.B., García, J.M., Smith, L. C., Duarte, F. A. M. (1999). Is the zebu really Bos indicus? Genetics and Molecular Biology, 22(4), 543-546. https://doi.org/10.1590/S1415-47571999000400013spa
dc.relation.referencesMendoza, J. M., Díaz, D., Ávila, F. (2016). Sistemas de matanza tif, kosher y halal: religión vs bienestar animal. En R. Martínez (ed.) Bioética, Inocuidad y Bienestar Animal: Carne y Leche (pp. 48-72). Universidad de Guanajuato.spa
dc.relation.referencesMeyers, S. N., Beever, J. E. (2008). Investigating the genetic basis of pork tenderness: Genomic analysis of porcine CAST. Animal genetics, 39(5), 531-543.spa
dc.relation.referencesMiller, M. F., Hoover, L. C., Cook, K. D., Guerra, A. L., Huffman, K. L., Tinney, K. S., Ramsey, C. B., Brittin, H. C., Huffman, L. M.. (1995). Consumer acceptability of beef steak tenderness in the home and restaurant. Journal of Food Science, 60, 963–965. https://doi.org/10.1111/j.1365-2621.1995.tb06271.xspa
dc.relation.referencesMiller, R. (2003). Assessing consumer preferences and attitudes toward meat and meat products. 49º International Congress of Meat Science and Technology, 67-80. https://digicomst.ie/wp-content/uploads/2020/05/2003_00_07.pdfspa
dc.relation.referencesMiranda, G. C. (2013). Transporte y logística pre-sacrificio: principios y tendencias en bienestar animal y su relación con la calidad de la carne. Veterinaria México, 44(1), 31-56.spa
dc.relation.referencesMöller, A. (1980). Analysis of Warner-Bratzler shear pattern with regard to myofibrillar and connective tissue components of tenderness. Meat Science, 5(4), 247-260. https://doi.org/10.1016/0309-1740(81)90015-2spa
dc.relation.referencesMontaño, M., Martínez, G. (2010). Guía técnica de programas de control de producción y mejoramiento genético en bovinos de carne. Bovinos de Carne, Conargen, México.spa
dc.relation.referencesMontoya, C. M., Restrepo, E. M., Barahona, R. B. (2015). Terneza y color en carne de novillos cebados en sistemas silvopastoriles intensivos y tradicionales en el Trópico Colombiano [conferencia]. En 3° P. L. Peri (comp), Congreso Nacional de Sistemas Silvopastoriles: VII Congreso Internacional Sistemas Agroforestales (pp. 229-233.). Santa Cruz: Ediciones.spa
dc.relation.referencesMontoya, R. (2014). Caracterización de algunas variables de calidad de carne en bovinos manejados bajo diferentes condiciones de producción en el trópico colombiano [tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional UNAL. https://repositorio.unal.edu.co/handle/unal/54351spa
dc.relation.referencesMora, M. A., Ríos-Pescador, L., Ríos-Ramos, L., Almario, J. L.. (2017). Impacto de la actividad ganadera sobre el suelo en Colombia. Ingeniería y Región, 17, 1-12. doi.org/10.25054/issn.2216-1325spa
dc.relation.referencesMoreno, F., Derr, J., Bermúdez, N., Ossa, J., Estrada, L., Scott, D., Bedoya, G., Carvajal, L. G, Zuluaga, F. N., Berdugo, J., Barrera, J., Ruíz, A. (2001). Diversidad genética y relaciones filogenéticas del ganado criollo colombiano. Revista Corpoica 3(2),17-23. https://doi.org/10.21930/rcta.vol3_num2_art:183spa
dc.relation.referencesMorgan, J. B., Savell, J. W., Hale, D. S., Miller, R. K., Griffin, D. B., Cross, H. R. et al. (1991). National beef tenderness survey. Journal of Animal Science, 69(8), 3274–3283. https://doi.org/10.2527/1991.6983274xspa
dc.relation.referencesMorris, C. A., Cullen, N. G., Hickey, S. M., Dobbie, P. M., Veenvliet, B. A., Manley, T. R., Pitchford, W. S., Kruk, Z. A., Bottema, C. D. K., Wilson, T. (2006). Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey × Limousin, Angus and Hereford-cross cattle. Animal Genetics 37, 411–414. https://doi.org/10.1111/j.1365-2052.2006.01483.xspa
dc.relation.referencesMotter, M. M., Corva, P. M., Marrube, G., Miquel, M. C., Papaleo, J., Villarreal, E. L., Melucci, M. L., Mezzadra, C. A., Schor, A., Soria, L. A. (2013). Asociación de dos marcadores del gen de la calpastatina con variables productivas de novillos Brángus engordados en pasturas. Revista Argentina de Producción Animal 33(1), 21-29. https://ppct.caicyt.gov.ar/index.php/rapa/article/view/3563spa
dc.relation.referencesMotter, M., Corva, P., Krause, M., Pérez, M., Soria, L. (2009). Rol de la calpastatina en la variabilidad de la terneza de la carne bovina. Journal of Basic and Applied Genetics, 20(1), 15-24. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-62332009000100003spa
dc.relation.referencesMuchenje, V., Dzama, K., Chimonyo, M., Strydom, P. E., Hugo, A., Raats, J. G. (2009). Some biochemical aspects pertaining to beef eating quality and consumer health: A review. Food Chemistry, 112(2), 279–289. https://doi.org/10.1016/j.foodchem.2008.05.103spa
dc.relation.referencesMuir, P. D., Beaker, J. M., Bown, M. D. (1998). Effects of forage and grain-based feeding systems on beef quality: A review. New Zealand Journal of Agricultural Research, 41(4), 623-635. https://doi.org/10.1080/00288233.1998.9513346spa
dc.relation.referencesMullen, M. P., Berry, D. P., Howard, D. J., Diskin, M. G., Lynch, C. O., Berkowicz, E. W., Magee, D. A., MacHugh, D. E., Waters, S. M. (2010). Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Fresian dairy cattle. Journal of Dairy Science, 94(12), 5959-5969. https://doi.org/10.3168/jds.2010-3385spa
dc.relation.referencesMuñoz, M. (2014). Bienestar animal: un reto en la producción pecuaria. Spei Domus, 10 (20): 31-40.spa
dc.relation.referencesMur, A. A., Molano, J. P. (2016). Buenas prácticas ganaderas: ¿mito, inconsciencia ganadera o falta de apoyo estratégico?. Fagropec, 8(1), 12-18. http://www.udla.edu.co/revistas/index.php/fagropec/article/view/451spa
dc.relation.referencesMuroya, S., Neath, K. E., Nakajima, I., Oe, M., Shibata, M., Ojima, K., Chikuni, K. (2012). Differences in mRNA expression of calpains, calpastatin isoforms and calpain/calpastatin ratios among bovine skeletal muscles. Animal Science Journal, 83(3), 252-259. https://doi.org/10.1111/j.1740-0929.2011.00954.xspa
dc.relation.referencesMwangi, F. W., Charmley, E., Gardiner, C. P., Malau, B. S., Kinobe, R. T., Malaui, A. E. (2019). Diet and genetics influence beef cattle performance and meat quality characteristics. Foods, 8(12), 648. Doi: 10.3390/foods8120648spa
dc.relation.referencesNattrass, G. S., Cafe, L. M., McIntyre, B. L., Gardner, G. E., McGilchrist, P., Robinson, D. L., Greenwood, P. L. (2014). A post-transcriptional mechanism regulates calpastatin expression in bovine skeletal muscle. Journal of Animal Science, 92(2), 443-455. https://doi.org/10.2527/jas.2013-6978spa
dc.relation.referencesNephawe, K. A., Cundiff, L. V., Dikeman, M. E., Crouse, J. D., Van Vleck, L. D. (2004). Genetic relationships between sex-specific traits in beef cattle: Mature weight, weight adjusted for body condition score, height and body condition score of cows, and carcass traits of their steer relatives. Journal of Animal Science, 82, 647-653. https://doi.org/10.2527/2004.823647xspa
dc.relation.referencesNiciura, S. C. M., Ibelli, A. M. G., Gouveia, G. V., Gromboni, J. G. G., Rocha, M. I. P., de Souza, M. M., de Almeida Regitano, L. C. (2012). Polymorphism and parent-of-origin effects on gene expression of CAST, leptin and DGAT1 in cattle. Meat Science, 90(2), 507-510. https://doi.org/10.1016/j.meatsci.2011.08.005spa
dc.relation.referencesNielsen, R., Slatkin, M. (2013). An introduction to population genetics: theory and applications. Sinauer Associates.spa
dc.relation.referencesNishimura, T. (2010). The role of intramuscular connective tissue in meat texture. Animal Science Journal, 81, 21 – 27. https://doi.org/10.1111/j.1740-0929.2009.00696.xspa
dc.relation.referencesNkrumah, J. D., Li, C., Yu, J., Hansen, C., Keisler, D. H., Moore, S. S. (2005). Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. Journal of Animal Science, 83, 20–8. doi:10.2527/2005.83120xspa
dc.relation.referencesNorambuena, P. A., Copeland, J. A., Krenková, P., Stambergová, A., Macek, M. J. (2009). Diagnostic method validation: High resolution melting (HRM) of small amplicons genotyping for the most common variants in the MTHFR gene. Clinical Biochemistry 42, 1308–1316. https://doi.org/10.1016/j.clinbiochem.2009.04.015spa
dc.relation.referencesNovaković, S., Tomašević, I. (2017). A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: a review. IOP Conference Series: Earth and Environmental Science, 85, 1-6. https://iopscience.iop.org/article/10.1088/1755-1315/85/1/012063/pdfspa
dc.relation.referencesNovoa, M. A., Usaquen, W. (2010). Population genetic analysis of the Brahman cattle (Bos indicus) in Colombia with microsatellite markers. Journal of Animal Breeding and Genetics, 127(2): 161-8. Doi: 10.1111/j.1439-0388.2009.00811.x.spa
dc.relation.referencesOQuinn, T. G., Brooks, J. C., Polkinghorne, R. J., Garmyn, A. J., Johnson, B. J., Starkey, J. D., Miller, M. F. (2012). Consumer assessment of beef strip loin steaks of varying fat levels. Journal of Animal Science, 90(2), 626-634. https://doi.org/10.2527/jas.2011-4282spa
dc.relation.referencesO’Connor, S. F, Tatum, J. D., Wulf, D. M., Green, R. D, Smith, G. C. (1997). Genetic effects on beef tenderness in Bos indicus composite and Bos taurus cattle. Journal of Animal Science, 75(7), 1822-1830. https://doi.org/10.2527/1997.7571822xspa
dc.relation.referencesOffer, G., Knight, P. (1988). The structural basis of water-holding in meat. Part 1: general principles and water uptake in processing. En R. A. Lawrie, (ed.), Developments in Meat Science (vol. 4). Elsevier Science.spa
dc.relation.referencesOkumura, T., Saito, K., Nade, T., Misumi, S., Masuda, Y., Sakuma, H., Kawamura, T. (2007). Effects of intramuscular fat on the sensory characteristics of M. longissimus dorsi in Japanese black steers as judged by a trained analytical panel. Asian Australasian Journal of Animal Sciences, 20(4), 577–581. https://doi.org/10.5713/ajas.2007.577spa
dc.relation.referencesOliván, M., Mocha, M., Martínez, M. J., García, M. J., Noval, G., Osoro, K. (2000). Análisis químico de la carne. En V. Cañeque, C. Añudo (eds.), Metodología para el estudio de la calidad de la canal y de la carne en rumiantes (pp. XX-XX). Instituto Nacional Investigación y Tecnología Agraria y Alimentaria, Madrid.spa
dc.relation.referencesOnega, M. (2003). Evaluación de la calidad de carnes frescas [tesis de doctorado, Universidad Complutense de Madrid]. Repositorio Institucional UCM. https://eprints.ucm.es/id/eprint/5138/spa
dc.relation.referencesOno, Y., & Sorimachi, H. (2012). Calpains—An elaborate proteolytic system. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1824(1), 224-236.spa
dc.relation.referencesOsorio-Arce, M.M., Segura-Correa, J.C. (2011) . Sustentabilidad de los sistemas de producción bovina en el trópico: mejoramiento genético. Livestock Research for Rural Development 23 (8). https://lrrd.cipav.org.co/lrrd23/8/osor23180.htmspa
dc.relation.referencesOuali, A., Herrera, C. H., Coulis, G., Becila, S., Boudjellal, A., Aubry, L., Sentandreu, M. A. (2006). Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Science, 74(1), 44-58. https://doi.org/10.1016/j.meatsci.2006.05.010spa
dc.relation.referencesPage, B. T, Casas, E., Quaas, R. L., Thallman, R. M., Wheeler, T. L., Shackelford, S. D., et al. (2004). Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. Journal of Animal Science, 82(12), 3474–3481. https://doi.org/10.2527/2004.82123474xspa
dc.relation.referencesPage, B. T., Casas, E., Heaton, M. P., Cullen, N. G., Hyndman, D. L., Morris, C. A., Smith, T. P. L. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. Journal of Animal Science, 80, 3077–3085. https://doi.org/10.2527/2002.80123077xspa
dc.relation.referencesPanea, B., Monson, F., Olleta, J. L., Martínez-Cerezo, S., Pardos, J. J., Sañudo, C. (2003). Estudio textural de la carne de vacuno. II. Análisis sensorial. [A texture study of bovine meat. II. Sensory analysis]. Información Técnico-Económica Agraria, 24, 31–33. Enlace. Pareja, R. I. (2002). El ganado brahman para la zona tropical. Revista de la Universidad de La Salle, 34, 85-92. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1580&context=rulsspa
dc.relation.referencesPariacote, F., Van Vleck, L. D., Hunsley, R. E. (1998). Genetic and phenotypic parameters for carcass traits of American Shorthorn beef cattle. Journal of Animal Science, 76(10), 2584-2588. https://doi.org/10.2527/1998.76102584xspa
dc.relation.referencesParr, T., Jewell, K. K., Sensky, P. L., Brameld, J. M., Bardsley, R. G., & Buttery, P. J. (2004). Expression of calpastatin isoforms in muscle and functionality of multiple calpastatin promoters. Archives of Biochemistry and Biophysics, 427(1), 8-15.spa
dc.relation.referencesPeakall, R., Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchdan update. Bioinformatics, 28(19), 2537-2539. https://doi.org/10.1093/bioinformatics/bts460spa
dc.relation.referencesPearce, K. L., Rosenvold, K., Andersen, H. J., Hopkins, D. L. (2011). Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes – A review. Meat Science, 89(2), 111- 124. https://doi.org/10.1016/j.meatsci.2011.04.007spa
dc.relation.referencesPeaston, A., Whitelaw, E. (2006). Epigenetics and phenotypic variation in mammals. Mammalian Genome 17, 365−374. Doi: 10.1007/s00335-005-0180-2spa
dc.relation.referencesPereira, N. I., Soares, W. V. B., Lara, M. A. C. (2015). Polimorfismos dos genes calpaína e calpastatina em bovinos. AICA, 6, 272-279. Perez-Marquez, A., Correa-Calderon, A. Ponce-Medina, F., Guerrero, J. 2004. Estimates of genetic parameters of final weight at slaughter, yield grade and marbling score in beef cattle. Journal of Animal Science, 82, 110.spa
dc.relation.referencesPethick, D. W., Harper, G. S., Oddy, V. H. (2004). Growth, development and nutritional manipulation of marbling in cattle: A review. Australian Journal of Experimental Agriculture, 44(7), 705–715. Doi:10.1071/EA02165spa
dc.relation.referencesPike, M. M., Ringkob, T. P., Beekman, D. D., Koh, Y. O., Gerthoffer, W. T. (1993). Quadratic relationship between early-post-mortem glycolytic rate and beef tenderness. Meat Science, 34(1),13−26. https://doi.org/10.1016/0309-1740(93)90015-Aspa
dc.relation.referencesPinilla, Y. C.. (2014). Efecto de SNPs de genes candidatos asociados a textura de la carne en bovinos Bos indicus y sus cruces [tesis de Maestría, Universidad Nacional de Colombia]. Repositorio Institucional UNAL. https://repositorio.unal.edu.co/handle/unal/52166spa
dc.relation.referencesPinto, L. F. B., Ferraz, J. B. S., Meirelles, F. V., Eler, J. P., Rezende, F. M., Carvalho, M. E. (2010). Association of SNPs on CAPN 1 and CAST genes with tenderness in Nellore cattle. Genetics and Molecular Research, 9(3), 1431–1442. https://doi.org/10.4238/vol9-3gmr881spa
dc.relation.referencesPinto, L. F., Ferraz, J., Pedrosa, V. B., Eler, J. P., Meirelles, F. V., Bonin, M. N. (2011). Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Genetics and Molecular Research, 10(3), 2057–2064. http://dx.doi.org/10.4238/vol10-3gmr1263spa
dc.relation.referencesPiñero, D., Barahona, A., Eguiarte, L., Rocha, A., Salas, R.. (2008). La variabilidad genética de las especies: aspectos conceptuales y sus aplicaciones y perspectivas en México. En Capital natural de México. Conocimiento actual de la biodiversidad (vol. 1) (pp. 415-435). Conabio, México.spa
dc.relation.referencesPla, M. (2000). Medida de la capacidad de retención de agua. En V. Cañeque, C. Sañudo (eds.), Metodología para el estudio de la calidad de la canal y de la carne en rumiantes (pp. XX-XX). Instituto Nacional Investigación y Tecnología Agraria y Alimentaria.spa
dc.relation.referencesPratiwi, N., Maskur, M., Priyanto, R., Jakaria, K. (2016). Novel SNP of calpain-1 (CAPN1) gene and its association with carcass and meat characteristics traits in Bali cattle. Journal of Indonesian Tropical Animal Agriculture 41(3), 109-116. Doi: 10.14710/jitaa.41.3.109-116spa
dc.relation.referencesPreston, T. R., Leng, R. A. (1989). Ajustando los sistemas de producción pecuaria a los recursos disponibles: Aspectos básicos y aplicados del nuevo enfoque sobre la nutrición de rumiantes en el trópico. CONDRIT.spa
dc.relation.referencesPriolo, A., Micol, D., Agabriel, J. (2001). Effects of grass feeding systems on ruminant meat colour and flavour. A review. Animal Research, 50(3),185-200. https://doi.org/10.1051/animres:2001125spa
dc.relation.referencesPriore, E., Bianchi, G. (2011). Jerarquización de factores en la cadena cárnica para modelar el pH de la carne vacuna. Agrociencia Uruguay, 15(2),134-143. http://www.scielo.edu.uy/scielo.php?script=sci_abstract&pid=S2301-15482011000200016&lng=pt&nrm=isospa
dc.relation.referencesProexport, Fedegan. (2010). Sector Cárnico en Colombia. http://www.inviertaencolombia.com.co/Adjuntos/294_(Microsoft%20Word%20-%20PerfilCarnicoEspa. pdfspa
dc.relation.referencesPulford, D. J., Dobbie, P., Vazquez, S. F., Fraser-Smith, E., Frost, D. F., Morris, C. A. (2009). Variation in bull beef quality due to ultimate muscle pH is correlated to endopeptidase and small heat shock protein levels. Meat Science, 83, 1–9. https://doi.org/10.1016/j.meatsci.2008.11.008spa
dc.relation.referencesPulford, D. J., Fraga Vazquez, S., Frost, D. F., Fraser-Smith, E., Dobbie, P., Rosenvold, K. (2008). The intracellular distribution of small heat shock proteins in post-mortem beef is determined by ultimate pH. Meat Science 79(4), 623–630. https://doi.org/10.1016/j.meatsci.2007.10.027spa
dc.relation.referencesPurchas, R. W. (1990). An assessment of the role of pH differences in determining the relative tenderness of meat from bulls and steers. Meat Science, 27(2), 129–140. https://doi.org/10.1016/0309-1740(90)90061-Aspa
dc.relation.referencesPurchas, R. W., Aungsupakorn, R. (1993). Further investigations into the relationship between ultimate pH and tenderness for beef samples from bulls and steers. Meat Science, 34(2), 163–178. https://doi.org/10.1016/0309-1740(93)90025-Dspa
dc.relation.referencesQuiróz, K., Restrepo, D. A., Barahona, R. (2016). Efecto del tiempo de ayuno sobre el rendimiento en canal y el pH en canales bovinas. Revista Lasallista de Investigación, 13(2), 80-87. http://dx.doi.org/10.22507/rli.v13n2a7spa
dc.relation.referencesRamayo, Y., Renand, G., Ballester, M., Saintilan, R., Rocha, D. (2016). Multi-breed and multi-trait co-association analysis of meat tenderness and other meat quality traits in three French beef cattle breeds. Genetics Selecyion Evolution, 48(37), XX-XX. Doi:10.1186/s12711-016-0216-yspa
dc.relation.referencesRaphaka, K., Dzama, K. (2010). Genetic analyses for growth traits of two indigenous beef cattle breeds in Botswana. Livestock Science, 129(1-3), 194-199. https://doi.org/10.1016/j.livsci.2010.01.024spa
dc.relation.referencesRazminowicz, R. H., Kreuzer, M., Scheeder, M. R. L. (2006). Quality of retail beef from two grass-based production systems in comparison with conventional beef. Meat Science, 73(2), 351–361. https://doi.org/10.1016/j.meatsci.2005.12.013spa
dc.relation.referencesReardon, W., Mullen, A. M., Sweeney, T., Hamill, R. M. (2010). Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Science, 86(2): 270–275. https://doi.org/10.1016/j.meatsci.2010.04.013spa
dc.relation.referencesReed, G. H., Kent, J. O., Wittwer, C. T. (2007). High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics, 8(6), 597-608. https://doi.org/10.2217/14622416.8.6.597spa
dc.relation.referencesReed, G. H., Wittwer, C. T. (2004). Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clinical Chemistry, 50(10), 1748-54. https://doi.org/10.1373/clinchem.2003.029751spa
dc.relation.referencesReynolds, W. L., Urick, J. J., Veseth, D. A., Kress, D. D., Nelson, T. C., Short, R. E. (1991). Genetic parameters by son-sire covariances for growth and carcass traits of Hereford bulls in a nonselected herd. Journal of Animal Science, 69(3), 1000-1007. https://doi.org/10.2527/1991.6931000xspa
dc.relation.referencesRiaño, A. L., Sierra, C. I. (2008). Evaluación del comportanmiento de los rendimientos en canal carne, hueso y grasa de los cruces comerciales bovinos realizados en Colombia. Revista Ciencia Animal, 1(1), 37-50. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1004&context=caspa
dc.relation.referencesRichardson, E., Herd, R., Oddy, V., Thompson, J., Archer, J., Arthur, P. (2001). Body composition and implications for heat production of Angus steer progeny of parents selected for and against residual feed intake. Animal Production Science, 41(7), 1065–1072. Doi:10.1071/EA00095spa
dc.relation.referencesRiley, D. G., Chase, C. C., Hammond, A. C., West, R. L., Johnson, D. D., Olson, T. A., Coleman, S. W. (2002). Estimated genetic parameters for carcass traits of Brahman cattle. Journal of Animal Science, 80(4), 955-962. https://doi.org/10.2527/2002.804955xspa
dc.relation.referencesRiley, D. G., Chase, C. C., Hammond, A. C., West, R. L., Johnson, D. D., Olson, T. A., Coleman, S. W. (2003). Estimated genetic parameters for palatability traits of steaks from Brahman cattle. Journal of Animal Science, 81(1), 54-60. https://doi.org/10.2527/2003.81154xspa
dc.relation.referencesRivera, J. E., Molina, I., Chará, J., Murgueitio, E., Barahona, R. (2017). Sistemas silvopastoriles intensivos con Leucaena leucocephala (Lam.) de Wit: alternativa productiva en el trópico ante el cambio climático. Pastos y Forrajes, 40(3): 171-183. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942017000300001spa
dc.relation.referencesRodríguez, J. M. ( 1993). Razas Bovinas en Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesRodríguez, J., Llano, M., Waldrón, A.. (2018, julio). Estudio sectorial sobre la producción cárnica en la Región Caribe. Contraloría General de la República. https://www.contraloria.gov.co/documents/20181/996701/2018+ESD+Carne+bovina+2018+.pdf/156ff515-af06-4047-b5a1-886da96ff09d?version=1.0spa
dc.relation.referencesRodríguez, S. L., Southey, B. R., Heyen, D. W., Lewin, H. A. (2002). Interval and composite interval mapping of somatic cell score, yield, and components of milk in dairy cattle. Journal of Dairy Science, 85(11), 3081–3091. https://doi.org/10.3168/jds.S0022-0302(02)74395-6spa
dc.relation.referencesRojas, C. D. (2013). Caracterización de la actividad minera, ganadera y forestal de los municipios de Colombia. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. Instituto Humbolt Colombia. Consultado 28 de agosto de 2018: http://repository.humboldt.org.co/handle/20.500.11761/31270spa
dc.relation.referencesRomero, M.H., Uribe-Velásquez, L.F., Sánchez, J.A., Miranda-de la Lama, G.C. (2013). Risk factors influencing bruising and high muscle pH in Colombian cattle carcasses due to transport and pre-slaughter operations. Meat Science 95: 256–263spa
dc.relation.referencesRon, O., Woolley, L., OQuinn, T., Legako, J., Brooks, C., Miller, M. (2015). Trained sensory panel evaluation of beef strip steaks of varying marbling and enhancement levels cooked to three degrees of doneness. Meat Science, 101, 130–131. Doi:10.1016/j.meatsci.2014.09.075spa
dc.relation.referencesRosenthal, A. (2001). Textura de los alimentos medida y percepción. Editorial Acribia.spa
dc.relation.referencesRubenson, J. G., Wasch, K. A., Riegelman, R. K. (1989). Studying a Study and Testing a Test: How to Read the Medical Literature (2.ª ed.). Little, Brown and Company.spa
dc.relation.referencesRubio, M. S. (1992). Parámetros que definen la calidad de la carne alternativas para su mejora. Universidad de Texas.spa
dc.relation.referencesRubio, M. S., Alfaro, S., Sifuentes, A., Parra, G., Braña, D., Méndez, R. D., Pérez, C., Rios, F., Sánchez, A., Torrescano, G., Figueroa, F. (2016). Meat tenderness genetic and genomic variation sources in commercial beef cattle. Journal Food Quality, 39(2), 150-156. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfq.12185spa
dc.relation.referencesRuiz de Huidobro, F. R., Miguel, E., Blázquez,. B, Onega, E. (2005). A comparison between two methods (Warner–Bratzler and texture profile analysis) for testing either raw meat or cooked meat. Meat Science, 69(3), 527-536. Doi: 10.1016/j.meatsci.2004.09.008spa
dc.relation.referencesRuiz de Huidobro, F., Cañeque, V., Lauzurica, S., Velasco, S., Pérez, C., Onega, E. (2001). Sensory characterization of meat texture in sucking lambs. Methodology. Investigación Agraria: Producción y Sanidad Animales, 16(2), 223–234. https://dialnet.unirioja.es/servlet/articulo?codigo=112386spa
dc.relation.referencesSaccà, E., Corazzin, M., Pizzutti, N., Lippe, G., Piasentier, E. (2015). Early postmortem expression of genes related to tenderization in two I talian S immental young bulls skeletal muscles differing in contractile type. Animal Science Journal, 86(12), 992-999. https://doi.org/10.1111/asj.12386spa
dc.relation.referencesSafari, E., Fogarty, N. M., Ferrier, G. R., Hopkins, D. L., Gilmour, A. R. (2001). Diverse lamb genotypes. 3. Eating quality and the relationship between its objective measurement and sensory assessment. Meat Science, 58(2), 153–159. https://doi.org/10.1016/S0309-1740(00)00087-5spa
dc.relation.referencesSakaridis, I., Ganopoulos, I., Argiriou, A., Tsaftaris, A. (2013). A fast and accurate method for controlling the correct labeling of products containing buffalo meat using High Resolution Melting (HRM) analysis. Meat Science, 94(1), 84–88. https://doi.org/10.1016/j.meatsci.2012.12.017spa
dc.relation.referencesSales, F., Piñeira, J., Morales, R. (2019) . Herramientas genómicas, una nueva alternativa para mejoramiento genético en bovinos de carne en Magallanes. Instituto de Investigaciones Agropecuarias, Informativo N°88. https://biblioteca.inia.cl/bitstream/handle/123456789/4940/NR41512.pdf?sequence=spa
dc.relation.referencesSañudo, C., Olleta, J. L., Campo, M. M., Alfonso, M., Panea, B. (2000). Propuesta de muestreo [Sampling suggestion]. En V. Cañeque, C. Sañudo (eds.), Metodología para el estudio de la calidad de la canal y de la carne en rumiantes [A methodology for the study of carcass and meat quality in ruminants] (pp.139–144).Instituto Nacional Investigación y Tecnología Agraría y Alimentaria.spa
dc.relation.referencesSavell, J. W., Cross, H. R., Smith, G. C. (1986). Percentage ether extractable fat and moisture content of beef longissimus muscle as related to USDA marbling score. Journal of Food Science, 51(3), 838-839. https://doi.org/10.1111/j.1365-2621.1986.tb13946.xspa
dc.relation.referencesSchenkel, F. S., Miller, S. P., Jiang, Z., Mandell, I. B., Ye, X., Li, H., Wilton, J. W. (2006). Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. Journal of Animal Science, 84(2), 291–299. https://doi.org/10.2527/2006.842291xspa
dc.relation.referencesSchenkel, F. S., Miller, S. P., Ye, X., Moore, S. S., Nkrumah, J. D., Li, C. (2005). Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. Journal of Animal Science, 83(9): 2009-20. Doi:10.2527/2005.8392009xspa
dc.relation.referencesScholtz, M. M., McManus, C., Okeyo, A. M., Theunissen, A. (2011). Opportunities for beef production in developing countries of the southern hemisphere. Livestock Science, 142(1-3), 195-202. https://doi.org/10.1016/j.livsci.2011.07.014spa
dc.relation.referencesSchroeder, T., Tonsor, G., James, M. (2013). Beef demand determinant study. Beef checkoff. EN: http://www.beefboard.org/evaluation/130612demanddetermi-nantstudy.aspspa
dc.relation.referencesSerra, X., Gil, M., Gispert, M., Guerrero, L., Oliver, M. A. (2004). Characterization of Young bulls of the Bruna Perineus cattle breed (selected from old Brown swiss) in relation to carcass. Meat Science, 66(2), 425-436. https://doi.org/10.1016/S0309-1740(03)00131-1spa
dc.relation.referencesShackelford, S. D., Koohmaraie, M., Cundiff, L. V., Gregory, K. E., Rohrer, G. A., Savell, J. W. (1994). Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner-Bratzler shear force, retail product yield, and growth rate. Journal of Animal Scence,. 72(4), 857-863. https://doi.org/10.2527/1994.724857xspa
dc.relation.referencesShackelford, S. D., Wheeler, T. L., Koohmaraie, M. (1995). Relationship between shear force and trained sensory panel tenderness ratings of 10 major muscles from Bos indicus and Bos taurus cattle. Journal of Animal Science, 73(11), 3333–3340. https://doi.org/10.2527/1995.73113333xspa
dc.relation.referencesShackelford, S. D., Wheeler, T. L., Koohmaraie, M. (1999). Evaluation of slice shear force as an objective method of assessing beef longissimus tenderness. Journal of Animal Science, 77(10), 2693–2699. https://doi.org/10.2527/1999.77102693xspa
dc.relation.referencesShackelford, S., Wheeler, T., Koohmaraie, M. (1988). Coupling of image analysis and tenderness classification to simultaneously evaluate carcass cutability, longissimus area, subprimal cut weights and tenderness of beef. Journal of Animal Science 76(10), 2631-2640. https://doi.org/10.2527/1998.76102631xspa
dc.relation.referencesShange, N., Gouws, P., Hoffman, L. C. (2019). Changes in pH, colour and the microbiology of black wildebeest (Connochaetes gnou) longissimus thoracis et lumborum (LTL) muscle with normal and high (DFD) muscle pH. Meat Science, 147, 13-19. https://doi.org/10.1016/j.meatsci.2018.08.021spa
dc.relation.referencesShanks, B. C., Tess, M. W., Kress, D. D. (2001). Genetic evaluation of carcass traits in Simmental-sired cattle at different slaughter end points. Journal of Animal Science, 79(3), 595-604. https://doi.org/10.2527/2001.793595xspa
dc.relation.referencesSilva, J. A., Patarata, L., Martins, C. (1999). Influence of ultimate pH on bovine meat tenderness during ageing. Meat Science, 52(4), 453–459. https://doi.org/10.1016/S0309-1740(99)00029-7spa
dc.relation.referencesSmith, B. L., Lu, C. P., Bremer, J. R. A. (2009). High-resolution melting analysis (HRMA): a highly sensitive inexpensive genotyping alternative for population studies. Molecular Ecology Resources, 1-4. Doi: 10.1111/j.1755-0998.2009.02726.xspa
dc.relation.referencesSmith, T. P. L., Casas, E., Rexroad, C. E., Kappes, S. M., Keele, J. W. (2000). Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. Journal of Animal Science, 78(10), 2589-2594. https://doi.org/10.2527/2000.78102589xspa
dc.relation.referencesSmith, T., Domingue, J. D., Paschal, J. C., Franke, D. E., Bidner, T. D., Whipple, G. (2007). Genetic parameters for growth and carcass traits of Brahman steers. Journal of Animal Science, 85(6), 1377-1384. https://doi.org/10.2527/jas.2006-653spa
dc.relation.referencesSmith, T., Thomas, M. G., Bidner, T. D., Paschal, J. C., Franke, D. E. (2009). Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits. Genetics and Molecular Research, 8(1), 39–46. https://doi.org/10.4238/vol8-1gmr537spa
dc.relation.referencesSoria, L. A., Corva, P. M. (2004). Factores genéticos y ambientales que determinan la terneza de la carne bovina. Archivos Latinoamericanos de Producción Animal, 12(2), 73-88. http://www.bioline.org.br/request?la04010spa
dc.relation.referencesSoria, L. A., Corva, P. M., Huguet, M. J., Miño, S., Miquel, M. C. (2010). Bovine μ-calpain (CAPN1) gene polymorphisms in Brangus and Brahman bulls. Journal of Basic and Applied Genetics, 21(1), 61–69. https://www.researchgate.net/publication/262648341_Bovine_mcalpain_CAPN1_gene_polymorphisms_in_Brangus_and_Brahman_bullsspa
dc.relation.referencesSoto, C. (2014). Establecimiento de un sistema de pastoreo Voisin y evaluación de la productividad forrajera en una finca de ceba en Puerto Berrio Antioquia [trabajo de grado, Corporación Universitaria Lasallista]. Repositorio Institucional Lasallista. http://repository.lasallista.edu.co/dspace/bitstream/10567/1505/1/Establecimiento_sistema_pastoreo_Voisin_Puerto_Berrio_Antioquia.pdfspa
dc.relation.referencesSplan, R. K., Cundiff, L. V., Dikeman, M. E., Van Vleck, L. D. (2002). Estimates of parameters between direct and maternal genetic effects for weaning weight and direct genetic effects for carcass traits in crossbred cattle. Journal of Animal Science, 80(12), 3107-3111. https://doi.org/10.2527/2002.80123107xspa
dc.relation.referencesSplan, R. K., Cundiff, L. V., Van Vleck, L. D. (1998). Genetic parameters for sex-specific traits in beef cattle. Journal of Animal Science, 76(9), 2272-2278. https://doi.org/10.2527/1998.7692272xspa
dc.relation.referencesSuksombat, W., Meeprom, C., Orkdaeng, K., Phonkert, T. (2018). Performance, carcass quality and fatty acid profile of crossbred brahman beef steers receiving palm or rice bran oil. Songklanakarin Journal of Science and Technology, 40(1), 197-203. Doi:10.14456/sjst-psu.2018.19spa
dc.relation.referencesSuperintendencia de Industria y Comercio. (2009). Estudio Sectorial Carne Bovina en Colombia. Colombia: S.I.C. Recuperado de http://www.sic.gov.co/recursos_user/documentos/publicaciones/ pdf/Carne2012.pdfspa
dc.relation.referencesSurendranath, P. S., Poulson, J. (2013). Myoglobin Chemistry and Meat Color. Annual Review Food Science and Technology, 4, 79-99. https://doi.org/10.1146/annurev-food-030212-182623spa
dc.relation.referencesSzczesniak, A. S. (1963a). Classification of Textural Characteristics. Journal of food Science, 28(4), 385-389. Doi:10.1111/j.1365-2621.1963.tb00215.xspa
dc.relation.referencesSzczesniak, A. S. (1963b). Objective Measurements of Food Texture. Journal of Food Science, 28(4), 410-420. https://doi.org/10.1111/j.1365-2621.1963.tb00219.xspa
dc.relation.referencesSzczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13(1), 215-225. https://doi.org/10.1016/S0950-3293(01)00039-8spa
dc.relation.referencesTafur, M., Acosta, J.M. (2006). Bienestar animal: nuevo reto para la ganadería. Instituto Colombiano Agropecuario. Bogotá, Colombia.spa
dc.relation.referencesTapasco, J., LeCoq, J. F., Ruden, A., Rivas, J. S., Ortiz, J. (2019). The livestock sector in Colombia: Toward a program to facilitate large-scale adoption of mitigation and adaptation practices. Frontiers in Sustainable Food Systems 3, 61. Doi: 10.3389/fsufs.2019.00061spa
dc.relation.referencesTatsuda, K., Oka, A., Iwamoto, E., Kuroda, Y., Takeshita, H., Kataoka, H., Kouno, S. (2008). Relationship of the Bovine Growth Hormone Gene to Carcass Traits in Japanese Black Cattle. Journal of Animal Breeding and Genetics, 125(1), 45–49. https://doi.org/10.1111/j.1439-0388.2007.00688.xspa
dc.relation.referencesTaylor, G. H., Geesink, V. F., Thompson, Koohmaraie, M., Goll, D. E. (1995). Is Z-disk degradation responsible for postmortem tenderization? Journal of Animal Science, 73(5), 1351–1367. http://doi.org/doi:/1995.7351351xspa
dc.relation.referenceste Pas, M. F. (2004). Muscle Development of Livestock Animals Physiology Genetics and Meat Quality. CABI.spa
dc.relation.referencesTeira, G. A. (2004). Actualidad y perspectivas de un componente principal de la calidad de carnes bovinas: terneza. Ciencia, Docencia y Tecnología, 28, 215-244. https://www.researchgate.net/publication/26418288_Actualidad_y_perspectivas_de_un_componente_principal_de_la_calidad_de_carnes_bovinas_la_ternezaspa
dc.relation.referencesTeira, G., Perlo, F., Bonato, P., Tissoco, O. (2006). Calidad de carnes bovinas. Aspectos nutritivos y organolépticos relacionados con sistemas de alimentación y prácticas de elaboración. Ciencia, Docencia y Tecnología, 33, 173-193. https://www.redalyc.org/pdf/145/14503307.pdfspa
dc.relation.referencesThaller, G., Kuhn, C., Winter, A., Ewald, G., Bellmann, O., Wegner, J., Zuhlke, H., Fries, R. (2003). DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Animal Genetics, 34(5), 354–357. https://doi.org/10.1046/j.1365-2052.2003.01011.xspa
dc.relation.referencesThompson, J. M., Perry, D., Daly, B., Gardner, G. E., Johnston, D. J., Pethick, D. W. (2006). Genetic and environmental effects on the muscle structure response post-mortem. Meat Science, 74, 59–65. https://doi.org/10.1016/j.meatsci.2006.04.022spa
dc.relation.referencesToledo, V. M., Vargas, M. L. (2016). Bienestar animal y calidad de la carne. Sistemas de matanza tif, kosher y halal: religión vs bienestar animal. En R. Martínez (ed.), Bioética, Inocuidad y Bienestar Animal: Carne y Leche (pp. 1-24). Universidad de Guanajuato.spa
dc.relation.referencesTornberg, E. (1996). Biophysical aspects of meat tenderness. Meat Science, 43(1),175. https://doi.org/10.1016/0309-1740(96)00064-2spa
dc.relation.referencesUnited States department of agriculture [USDA]. (1996). Standards for grades of slaughter cattle and standards for grades of carcass beef. Federal Register, 61(20), 2891- 2898. Enlace.spa
dc.relation.referencesUytterhaegen, L., Claeys, E., Demeyer, D., Lippens, M., Fiems, L, O, Boucque, C. Y, Vandevoorde, G, Bastiaens, A. (1994). Effects of double-muscling on carcass quality, beef tenderness and myofibrillar protein-degradation in Belgian Blue White bulls. Meat Science, 38(2), 255–267. https://doi.org/10.1016/0309-1740(94)90115-5spa
dc.relation.referencesUzcátegui, S., Rodas, A., Hennig, K., de Moreno, L. A., Leal, M., Vergara, J., Jerez, N. (2008). Composición proximal, mineral y contenido de colesterol del músculo Longissimus dorsi de novillos criollo limonero suplementados a pastoreo. Revista Científica, 18(5), 589-594. http://ve.scielo.org/scielo.php?pid=S0798-22592008000500010&script=sci_abstractspa
dc.relation.referencesVan Eenennaam, A. L., Li, J., Thallman, R. M., Quaas, R. L., Dikeman, M. E., Gill, C. A., Franke, D. E., Thomas, M. G. (2007). Validation of commercial DNA tests for quantitative beef quality traits. Journal of Animal Science, 85(4), 891–900. https://doi.org/10.2527/jas.2006-512spa
dc.relation.referencesVarricchio, E., Russolillo, M. G., Maruccio, L., Velotto, S., Campanile, G., Paolucci, M., Russo, F. (2013). Immunological detection of m-and µ-calpains in the skeletal muscle of Marchigiana cattle. European journal of histochemistry: EJH, 57(1):10-15.spa
dc.relation.referencesVásquez, R. E., Ballesteros, H. H., Muñoz, C. A. (2007). Factores asociados con la calidad de la carne. I parte: la terneza de la carne bovina en 40 empresas ganaderas de la región Caribe y el Magdalena Medio. Revista Corpoica. Ciencia y Tecnología Agropecuaria 8(2), 60-65. https://www.redalyc.org/articulo.oa?id=449945023008spa
dc.relation.referencesVásquez, R., Abadía, B., Arreaza, L. C., Ballesteros, H. H., Muñoz, C. A. (2007). Factores asociados con la calidad de la carne. II parte: perfil de ácidos grasos de la carne bovina en 40 empresas ganaderas de la región Caribe y el Magdalena Medio. Revista Corpoica. Ciencia y Tecnología Agropecuaria 8(2), 66-73. https://www.redalyc.org/articulo.oa?id=449945023009spa
dc.relation.referencesVásquez, R., Pulido, J., Abuabara, Y., Onofre, G., Martínez, R., Abadía, B., Arreaza, C., Silva, J., Sánchez, L., Ballesteros, H., Muñoz, C., Rivero, T., Nivia, A., Barrera, G. (2005). Patrones tecnológicos y calidad de la carne bovina en el caribe colombiano. Corporación Colombiana de Investigación Agropecuaria, Corpoica. http://hdl.handle.net/20.500.12324/13528spa
dc.relation.referencesVaz, F. N., Restle, J. (2000). Aspectos qualitativos de carcaça e de carne de machos hereford, inteiro ou castrado, abatidos aos quatorze meses. Revista Brasileira de Zootecnia, 29(6),1894-1901.spa
dc.relation.referencesVeland, J. O., Torrissen, O. J. (1999). The texture of Atlantic salmon (Salmo salar) muscle as measured instrumentally using TPA and Warner–Bratzler shear test. Journal of the Science of Food and Agriculture, 79, 1737–1746. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1737::AID-JSFA432>3.0.CO;2-Yspa
dc.relation.referencesVelásquez, J. C., Álvarez, L. A. (2004). Relación de medidas bovinométricas y de composición corporal in vivo con el peso de la canal en novillos Brahman en el valle del Sinú. Acta Agronómica, 53(3), 61-68. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/100spa
dc.relation.referencesVélez, I. C., Chica, A., Urrego, R., Torres, V., Jimenez, C., Zambrano, J. (2017). Producción in vitro de embriones a partir de complejos cúmulos oocitos tipo II en bovinos Bos indicus. Revista CES Medicina Veterinaria y Zootecnia. 12(2), 76-87. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S1900-96072017000200076&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesVertel, M. L., Botero, L. M., Cepeda, J. A. (2016). Análisis multivariado de datos. Aplicación: sistema de producción doble propósito. Ediciones Universidad Simón Bolívar.spa
dc.relation.referencesVestergaard, M., Oksbjerg, N., Henckel, P. (2000). Influence of feed intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls. Meat Science, 54(2),177–185. https://doi.org/10.1016/S0309-1740(99)00097-2spa
dc.relation.referencesViitala, S. M., Schulman, N. F., de Koning, D. J., Elo, K., Kinos, R., Virta, A. (2003). Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. Journal of Dairy Science, 86(5), 1828–1836. https://doi.org/10.3168/jds.S0022-0302(03)73769-2spa
dc.relation.referencesViljoen, H. F., De Koch, H. L., Webb, E. C. (2002). Consumer acceptability of dark, firm and dry (DFD) and normal pH beef steaks. Meat Science, 61(2), 181-185. https://doi.org/10.1016/S0309-1740(01)00183-8spa
dc.relation.referencesWang, G., Zhang, S., Wei, S., Zhang, Y., Li, Y., Fu, C., Zhao, C., Zan, L. (2014) Novel polymorphisms of SIX4 gene and their association with body measurement traits in Qinchuan cattle. Gene 539 (2014) 107–110spa
dc.relation.referencesWarner, K. F. (1928). Progress report of the mechanical test for tenderness of meat. Proceedings of the American Society of Animal Production, 21, 114. https://doi.org/10.2527/jas1929.19291114xspa
dc.relation.referencesWarner, R. (2014). Measurement of meat quality: I measurements of water-holding capacity and color: objective and subjective. En C. Devine, M. Dikeman (eds.), Encyclopedia of Meat Sciences (2.ª ed.). Academic Press.spa
dc.relation.referencesWarner, R. D., Greenwood, P. L., Pethick, D. W., Ferguson, D. M. (2010). Genetic and environmental effects on meat quality. Meat Science, 86(1), 171-183. https://doi.org/10.1016/j.meatsci.2010.04.042spa
dc.relation.referencesWarriss, P. D. (2009). Meat Science: an introductory text (2.ª ed). CABI.spa
dc.relation.referencesWęglarz, A., Balakowska, A., Kułaj, D., Makulska, J. (2020). Associations of CAST, CAPN1 and MSTN genes polymorphism with slaughter value and beef quality – A review. Annals of Animal Science, 20(3), 757–774. Doi: 10.2478/aoas-2020-0006spa
dc.relation.referencesWheeler, T. L., Cundiff, L. V., Koch, R. M. (1994). Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. Journal of Animal Science, 72, 3145-3151. https://www. ncbi.nlm.nih.gov/pubm ed/7759364spa
dc.relation.referencesWheeler, T. L., Shackelford, S. D., Johnson, L. P., Miller, M. F., Miller, R. K., Koohmaraie, M. (1997). A comparison of Warner–Bratzler shear force assessment within and among institutions. Journal of Animal Science, 75(9), 2423–2432. https://doi.org/10.2527/1997.7592423xspa
dc.relation.referencesWhite, S. N., Casas, E., Wheeler, T. L., Shackelford, S. D., Koohmaraie, M., Riley, D. G., Smith, T. P. (2005). A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. Journal of Animal Science, 83(9), 2001–8. https://doi.org/10.2527/2005.8392001xspa
dc.relation.referencesWicks, J., Beline, M., Gomez, J. F. M., Luzardo, S., Silva, S. L., y Gerrard, D. (2019). Muscle energy metabolism, growth, and meat quality in beef cattle. Agriculture, 9(9), 195. 5; doi:10.3390/agriculture9090195spa
dc.relation.referencesWilliams, J. L., Dunner, S., Valentini, A., Mazza, R., Amarger, V., Checa, M. L., Levéziel, H. (2009). Discovery, characterization and validation of single nucleotide polymorphisms within 206 bovine genes that may be considered as candidate genes for beef production and quality. Animal Genetics, 40(4), 486-491. https://doi.org/10.1111/j.1365-2052.2009.01874.xspa
dc.relation.referencesWilson, D. E., Rouse, G. H., Greiner, S. (1998). Relationship Between Chemical Percentage Intramuscular Fat and USDA Marbling Score. Beef research report, 1. https://lib.dr.iastate.edu/beefreports_1998/1spa
dc.relation.referencesWilson, D. E., Willham, R. L., Northcutt, S. L., Rouse, G. H. (1993). Genetic parameters for carcass traits estimated from Angus field records. Journal of Animal Science, 71(9), 2365-2370. https://doi.org/10.2527/1993.7192365xspa
dc.relation.referencesWood, J. D. (2017). Meat Composition and Nutritional Value. En F. Toldrá (ed.), Lawrie’s Meat Science. Woodhead Publishing.spa
dc.relation.referencesWood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343–358. https://doi.org/10.1016/j.meatsci.2007.07.019spa
dc.relation.referencesWorld Organization of Animal Health. (2008). Introduction to the recommendations for animal welfare, Article 7.1.1. Pages 235-236. En: Terrestrial Animal Health Code (2008). World Organization for Animal Health (OIE), Paris, Francia.spa
dc.relation.referencesWright, S. (1969). Evolution and Genetics of Populations, The theory of gene frequencies (vol. 2). University of Chicago Press.spa
dc.relation.referencesWright, S. A., Ramos, P., Johnson, D. D., Scheffler, J. M., Elzo, M. A., Mateescu, R. G., Bass, A. L., Carr, C. C., Scheffler, T. L. (2018). Brahman genetics influence muscle fiber properties, protein degradation, and tenderness in an Angus-Brahman multibreed herd. Meat Science, 135, 84–93. https://doi.org/10.1016/j.meatsci.2017.09.006spa
dc.relation.referencesWu, G, Farouk, M. M., Clerens, S., Rosenvold, K. (2014). Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Science, 98, 637-645. http://dx.doi.org/10.1016/j.meatsci.2014.06.010spa
dc.relation.referencesWulf, D. M., Emmett, R. S., Leheska, J. M., Moeller, S. J. (2002). Relationship among glycolitys potential, dark cutting (dark, firm, and dry) beef, and cooked beef palability. Journal of Animal Science, 80, 1895-1903. https://doi.org/10.2527/2002.8071895xspa
dc.relation.referencesWulf, D. M., Tatum, J. D., Green, R. D., Morgan, J. B., Golden, B. L., Smith, G. C. (1996). Genetic influences on beef longissimus palatability in Charolais- and Limousin-sired steers and heifers. Journal of Animal Science, 74(10), 2394-2405. https://doi.org/10.2527/1996.74102394xspa
dc.relation.referencesXargayó, M., Lagares, J., Fernández, E., Borrell, D., Juncá, G. (2004). Marinado por efecto “spray”: una solución definitiva para mejorar la textura de la carne (Marinating “spray” a definitive solution to improve the texture of meat). Eurocarne: La revista internacional del sector cárnico, 14(129), 117-127.spa
dc.relation.referencesYoung, O. A., West, J. (2001). Meat color. En: H. Y. Hui, W. K. Nip, R. W. Rogers, O. A. Young (eds.), Meat Science and applications (pp. 39-69). Marcel Dekker, Inc.spa
dc.relation.referencesYu, L. H., Lee, E. S., Jeong, J. Y., Paik, H. D., Choi, J. H., Kim, C. J. (2005). Effects of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles. Meat Science, 71(2), 375–382. https://doi.org/10.1016/j.meatsci.2005.04.020spa
dc.relation.referencesZhang, L., Cui, G., Li, Z., Wang, H., Ding, H., Wang, D. W. (2013). Comparison of High-Resolution Melting Analysis, TaqMan Allelic Discrimination Assay, and Sanger Sequencing for Clopidogrel Efficacy Genotyping in Routine Molecular Diagnostics. Journal of Molecular Diagnostics, 15(5), 600-6. doi: 10.1016/j.jmoldx.2013.04.005spa
dc.relation.referencesZhang, S. X., Farouk, M. M., Young, O. A., Wieliczko, K. J., Podmore, C. (2005). Functional stability of frozen normal and high pH beef. Meat Science, 69, 765–772. https://doi.org/10.1016/j.meatsci.2004.11.009spa
dc.relation.referencesZhang, Y., Qin, L., Mao, Y., Hopkins, D. L., Han, G., Zhu, L., Luo, X. (2018). Carbon monoxide packaging shows the same color improvement for dark cutting beef as high oxygen packaging. Meat Science, 137, 153–159. https://doi.org/10.1016/j.meatsci.2017.11.016spa
dc.relation.referencesZhao, J, Zhang, C., Fang, F., Zhang, H., Liu, X., Li, J., Liu, Y., Yang, D., Chen, H. (2012). Polymorphisms of the bovine WNT10B gene and their associations with growth traits Research in Veterinary Science 93 (2012) 1301–1306spa
dc.relation.referencesZumaqué, J, I., Hoyos D. (2019). Estrategia de marketing para la internacionalización de cortes finos de ganado vacuno de Colombia hacia Arabia Saudita. [Trabajo de grado] Universidad de Córdoba, Colombia.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc590 - Animalesspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.lemGanado de carne
dc.subject.lembCarne - Producción
dc.subject.lembEvaluación sesnsorial
dc.subject.proposalcanalspa
dc.subject.proposalgenotipificaciónspa
dc.subject.proposalmarmoleospa
dc.subject.proposalternezaspa
dc.subject.proposalcarcasseng
dc.subject.proposalgenotypingeng
dc.subject.proposalmarblingeng
dc.subject.proposaltendernesseng
dc.titleEfecto del sistema de producción sobre la asociación de algunos polimorfismos de los genes CAPN, CAST y LEP con su expresión génica y el efecto fenotípico en la producción y calidad de la carne en ganado brahman comercial.spa
dc.title.translatedEffect of the production system on the association of some polymorphisms of the CAPN, CAST and LEP genes with their gene expression and the phenotypic effect on the production and quality of meat in commercial Brahman cattle.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa
oaire.fundernameUniversidad CESspa
oaire.fundernameInstituto Colombiano de Medicina Tropicalspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71709299.2021.pdf
Tamaño:
4.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: