Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas

dc.contributor.advisorCamargo, Sandra Milena
dc.contributor.advisorPatarroyo Gutierrez, Manuel Alfonso
dc.contributor.authorHernandez Buelvas, Lauren Dayam
dc.contributor.researchgroupBiología Molecular e InmunologíaFundación Instituto de Inmunología de Colombiaspa
dc.date.accessioned2022-09-06T14:37:57Z
dc.date.available2022-09-06T14:37:57Z
dc.date.issued2021
dc.descriptiongráficas, ilustraciones,tablasspa
dc.description.abstractLas Infecciones de Transmisión Sexual (ITS) son una causa importante de morbilidad, generando gran impacto por las secuelas a las que conllevan. Trichomonas vaginalis (T. vaginalis), es la ITS parasitaria de mayor distribución, siendo sugerida su asociación con el desarrollo de Cáncer de Cérvix (CC). En la actualidad es considerada como una infección desatendida, por lo que estudios dirigidos a determinar su distribución e impacto en la población resultan relevantes. El objetivo de este estudio fue determinar la dinámica de infección, depuración y persistencia de T. vaginalis en una cohorte retrospectiva de mujeres provenientes de tres ciudades de Colombia y la evolución de asociaciones longitudinales de diversos factores de riesgo en relación con el curso clínico de las infecciones parasitarias. Este estudio hace parte de una cohorte bidireccional (componente prospectivo y retrospectivo); en el análisis prospectivo, se realizó la toma de muestras cervicales entre abril de 2007 y marzo de 2010 en tres centros hospitalarios de Colombia: Hospital San Juan Bautista – Chaparral, el Nuevo Hospital San Rafael – Girardot, y el Hospital de Engativá Nivel II; en el componente prospectivo, se determinó la historia natural de la infección por VPH y C. trachomatis. En el componente retrospectivo (correspondiente a este estudio), se realizó la identificación de T. vaginalis por PCR convencional con el uso de dos juegos de cebadores: TVK1/7 y BTUB2/9 y Mycoplasma hominis (M. hominis) usando el juego de cebadores RNAH1/2. Se empelaron modelos de riesgo proporcional de Cox para evaluar la relación entre el desenlace de las infecciones por T. vaginalis y los factores de riesgo (como ITS activas, factores sociodemográficos y comportamentales). Un total de 264 mujeres fueron incluidas en el estudio retrospectivo; la media de edad fue 41,8 años (DE= 10,9); un 26,1% (n= 64) presentaron T. vaginalis al inicio 6 del estudio, un 40,9% (n= 108) tuvieron al menos un episodio de infección incidente y el 13,0% (n= 23) presentó más de un episodio de T. vaginalis; las tasas de infección y depuración fueron 3,4 y 15,0 por cada 100 personas en un mes, respectivamente. En cuanto a los factores de riesgo asociados con el desenlace de T. vaginalis, mujeres con VPH tuvieron mayor riesgo (aHR= 1,59; IC 95%= 1,08-2,35) de infección parasitaria, siendo la carga viral (CV) alta (>102) para VPH-16 relacionada con un mayor riesgo de infección parasitaria y para VPH-18 y -33 una menor probabilidad de depuración de T. vaginalis, la etnia (afrodescendiente/indígena) y más de dos compañeros sexuales fueron factores relacionados con un mayor riesgo (aHR= 5,11 and aHR=1,94, respectivamente) de infección parasitaria; en contraste, aquellas con antecedentes de abortos presentaron menor probabilidad (aHR= 0,50; IC 95%= 0,27-0,94) de presentar T. vaginalis. En cuanto a los factores relacionados con la persistencia parasitaria, los resultados mostraron que mujeres entre los 35 a 49 años (aHR= 2,08; IC 95%= 1,12-3,88), el incremento en el número de años desde el inicio de la vida sexual (aHR= 1,10; IC 95%= 1,02-1,19), múltiples parejas sexuales (aHR= 8,86; IC 95%= 1, ,13-12,33) y mujeres multíparas (aHR= 3,85; IC 95%= 1,16-12,81), fueron características que aumentaron la probabilidad de tener infecciones persistentes. Finalmente, mujeres con empeoramiento del hallazgo cervical (diagnosticado por colposcopia) a través del tiempo, presentaron 9,99 veces más probabilidad de persistencia de T. vaginalis. Se sabe que la mayor parte de las infecciones por T. vaginalis cursan asintomáticas, por lo que la epidemiología y la verdadera carga de éstas en términos de la salud pública, aún son desconocidos. Nuestros resultados mostraron que la distribución del parásito es elevada en la población analizada; la coexistencia con VPH y otros factores riesgo, influyen en la dinámica de las infecciones de T. vaginalis y la progresión de lesiones a nivel cervical; estos datos sugieren la relevancia de la detección rutinaria de esta parasitosis, principalmente en población en riesgo. 7 Este estudio aporta información sobre la epidemiología, depuración y persistencia de las infecciones causadas por esta parasitosis en población colombiana; la comprensión de los factores relacionados con la dinámica de T. vaginalis y la influencia de factores de riesgo es relevante y plantea nuevos retos en el abordaje e implementación de estrategias acertadas que mejoren la calidad de vida en la población femenina. (Texto tomado de la fuente)spa
dc.description.abstractTrichomonas vaginalis (TV), the most common non-viral sexually-transmitted infection is considered a neglected infection and its epidemiology is not well known. This study determined TV-infection dynamics in a retrospective cohort of Colombian women and evaluated associations between risk factors and TV-outcome. TV was identifed by PCR. Cox proportional risk models were used for evaluating the relationship between TV-outcome (infection, clearance and persistence) and risk factors (sexually-transmitted infections and sociodemographic characteristics). Two hundred and sixty-four women were included in the study; 26.1% had TV at the start of the study, 40.9% sufered at least one episode of infection and 13.0% sufered more than one episode of TV during the study. Women sufering HPV had a greater risk of TV-infection (aHR 1.59), high viral-load (> 102 ) for HPV16 being related to a greater risk of persistent parasite infection; a high viral load (> 102 ) for HPV-18 and -33 was related to a lower probability of TV-clearance. Ethnicity (afrodescendent/indigenous people: aHR 5.11) and having had more than two sexual partners (aHR 1.94) were related to greater risk of infection, contrasting with women having a background of abortions and lower probability of having TV (aHR 0.50). Women aged 35- to 49-years-old (aHR 2.08), increased years of sexual activity (aHR 1.10), multiple sexual partners (aHR 8.86) and multiparous women (aHR 3.85) led to a greater probability of persistence. Women whose cervical fndings worsened had a 9.99 greater probability of TVpersistence. TV distribution was high in the study population; its coexistence with HPV and other risk factors infuenced parasite infection dynamics. The results suggested that routine TV detection should be considered regarding populations at risk of infection.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaEpidemiología Molecularspa
dc.format.extent102 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82256
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnología (IBUN)spa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAdjei, Collins, Boateng, Richard, Dompreh, A., Okyere, B., & Owiredu, E. W. (2019). Prevalence and the evaluation of culture, wet mount, and ELISA methods for the diagnosis of Trichomonas vaginalis infection among Ghanaian women using urine and vaginal specimens. Tropical Medicine and Health, 47(1). https://doi.org/10.1186/s41182-019-0162-9.spa
dc.relation.referencesAiyar, A., Quayle, A. J., Buckner, L. R., Sherchand, S. P., Chang, T. L., Zea, A. H., Belland, R. J. (2014). Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: Role of vaginal co-infections. Frontiers in Cellular and Infection Microbiology, 4(JUN). https://doi.org/10.3389/fcimb.2014.00072.spa
dc.relation.referencesAlessio, C., & Nyirjesy, P. (2019). Management of Resistant Trichomoniasis. Current Infectious Disease Reports, 21(9). https://doi.org/10.1007/s11908-019-0687-4.spa
dc.relation.referencesAmbrozio, Lima, C., Nagel, Saggin, Andréia, Jeske, S., Villela, M. M. (2016). Trichomonas vaginalis prevalence and risk factors for women in southern Brazil. Revista Do Instituto de Medicina Tropical de Sao Paulo, 58(1). https://doi.org/10.1590/S1678-9946201658061.spa
dc.relation.referencesAmin, Aziza, Bilic, Ivana, Liebhart, Dieter, & Hess, M. (2014). Trichomonads in birds-a review. Parasitology, 141(6), 733–747. https://doi.org/10.1017/S0031182013002096.spa
dc.relation.referencesArbyn, M., Weiderpass, E., Bruni, L., de Sanjosé, S., Saraiya, M., Ferlay, J., & Bray, F. (2020). Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. The Lancet Global Health, 8(2), e191–e203. https://doi.org/10.1016/S2214-109X(19)30482-6.spa
dc.relation.referencesArroyo, R., Cárdenas-Guerra, R. E., Figueroa-Angulo, E. E., Puente-Rivera, J., Zamudio-Prieto, O., & Ortega-López, J. (2015). Trichomonas vaginalis cysteine proteinases: Iron response in gene expression and proteolytic activity. BioMed Research International, 2015. https://doi.org/10.1155/2015/946787.spa
dc.relation.referencesAsmah, R. H., Agyeman, R. O., Obeng-Nkrumah, N., Blankson, H., Awuah-Mensah, G., Cham, M., Ayeh-Kumi, P. F. (2018). Trichomonas vaginalis infection and the diagnostic significance of detection tests among Ghanaian outpatients. BMC Women’s Health, 18(1). https://doi.org/10.1186/s12905-018-0699-5.spa
dc.relation.referencesBalkus, J. E., Richardson, B. A., Rabe, L. K., Taha, T. E., Mgodi, N., Kasaro, M. P., Abdool Karim, S. S. (2014). Bacterial vaginosis and the risk of trichomonas vaginalis acquisition among HIV-1-negative women. Sexually Transmitted Diseases, 41(2), 123–128. https://doi.org/10.1097/OLQ.0000000000000075.spa
dc.relation.referencesBenabdelkader, S., Andreani, J., Gillet, A., Terrer, E., Pignoly, M., Chaudet, H., Scola, B. La. (2019). Specific clones of Trichomonas tenax are associated with periodontitis. PLoS ONE, 14(3). https://doi.org/10.1371/journal.pone.0213338.spa
dc.relation.referencesBenchimol, M. (2004, October). Trichomonads under microscopy. Microscopy and Microanalysis, Vol. 10, pp. 528–550. https://doi.org/10.1017/S1431927604040905.spa
dc.relation.referencesBernier, A., Rumyantseva, T., Reques, L., Volkova, N., Kyburz, Y., Maximov, O., Pataut, D. (2020). HIV and other sexually transmitted infections among female sex workers in Moscow (Russia): Prevalence and associated risk factors. Sexually Transmitted Infections, 96(8), 601–607. https://doi.org/10.1136/sextrans-2019-054299.spa
dc.relation.referencesBhakta, S. B., Moran, J. A., & Mercer, F. (2020). Neutrophil interactions with the sexually transmitted parasite Trichomonas vaginalis: implications for immunity and pathogenesis: Neutrophils in Trichomoniasis. Open Biology, 10(9). https://doi.org/10.1098/rsob.200192.spa
dc.relation.referencesBouchemal, K., Bories, C., & Loiseau, P. M. (2017, July 1). Strategies for prevention and treatment of Trichomonas vaginalis infections. Clinical Microbiology Reviews, Vol. 30, pp. 811–825. https://doi.org/10.1128/CMR.00109-16.spa
dc.relation.referencesBoulet, G. A. V., Benoy, I. H., Depuydt, C. E., Horvath, C. A. J., Aerts, M., Hens, N., Bogers, J. J. (2009). Human papillomavirus 16 load and E2/E6 ratio in HPV16-positive women: Biomarkers for cervical intraepithelial neoplasia ≥2 in a liquid-based cytology setting? Cancer Epidemiology Biomarkers and Prevention, 18(11), 2992–2999. https://doi.org/10.1158/1055-9965.EPI-09-0025.spa
dc.relation.referencesBremer, Viviane, Haar, Karin, Gassowski, Martyna., Nielsen, S. (2016). STI tests and proportion of positive tests in female sex workers attending local public health departments in Germany in 2010/11. BMC Public Health, 16(1), 1–9. https://doi.org/10.1186/s12889-016-3847-6.spa
dc.relation.referencesCampbell, L., Woods, V., Lloyd, T., Church, D. L. (2008). Evaluation of the OSOM Trichomonas rapid test versus wet preparation examination for detection of Trichomonas vaginalis vaginitis in specimens from women with a low prevalence of infection. Journal of Clinical Microbiology, 46(10), 3467–3469. https://doi.org/10.1128/JCM.00671-08.spa
dc.relation.referencesCárdenas, R., Guerraa, R., Arroyo, R., Andradec, I., Benchimolc, M., & Ortega, L. (2013). The iron-induced cysteine proteinase TvCP4 plays a key role in Trichomonas vaginalis haemolysis. Microbes and Infection, 15(13), 958–968. https://doi.org/10.1016/j.micinf.2013.09.002.spa
dc.relation.referencesCarlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Johnson, P. J. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 315(5809), 207–212. https://doi.org/10.1126/science.1132894.spa
dc.relation.referencesCarrillo-Ávila, J. A., Serrano-Garcóa, M. L., Fernández-Parra, J., Sorlózano-Puerto, A., Navarro-Maró, J. M., Stensvold, C. R., & Gutiérrez-Fernández, J. (2017). Prevalence and genetic diversity of Trichomonas vaginalis in the general population of Granada and co-infections with Gardnerella vaginalis and Candida species. Journal of Medical Microbiology, 66(10), 1436–1442. https://doi.org/10.1099/jmm.0.000603.spa
dc.relation.referencesCDC. (2009). Morbidity and Mortality Weekly Report Sexually Transmitted Diseases Treatment Guidelines, 2010. Retrieved from www.cdc.gov/mmwr.spa
dc.relation.referencesChemaitelly, H., Weiss, H. A., Smolak, A., Majed, E., & Abu-Raddad, L. J. (2019). Epidemiology of Treponema pallidum, Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and herpes simplex virus type 2 among female sex workers in the Middle East and North Africa: systematic review and meta-analytics. Journal of Global Health, 9(2). https://doi.org/10.7189/jogh.09.020408.spa
dc.relation.referencesChen, Pei, Y., Riestra, M., A., Rai, Kumar, A., & Johnson, P. J. (2019). A novel cadherin-like protein mediates adherence to and killing of host cells by the parasite trichomonas vaginalis. MBio, 10(3). https://doi.org/10.1128/mBio.00720-19.spa
dc.relation.referencesCollántes-Fernández, Esther, Fort, C., M., Ortega-Mora, M., L., & Schares, G. (2018). Trichomonas. Parasitic Protozoa of Farm Animals and Pets, 313–388. https://doi.org/10.1007/978-3-319-70132-5_14.spa
dc.relation.referencesConrad, D., M., Bradic, Martina, Warring, D., S., Carlton, J. M. (2013). Getting trichy: Tools and approaches to interrogating Trichomonas vaginalis in a post-genome world. Trends in Parasitology, 29(1), 17–25. https://doi.org/10.1016/j.pt.2012.10.004.spa
dc.relation.referencesConrad, M. D., Gorman, A. W., Schillinger, J. A., Fiori, P. L., Arroyo, R., Malla, N., Carlton, J. M. (2012). Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis. PLoS Neglected Tropical Diseases, 6(3). https://doi.org/10.1371/journal.pntd.0001573.spa
dc.relation.referencesCornelius, D. C., Robinson, D. A., Muzny, C. A., Mena, L. A., Aanensen, D. M., Lushbaugh, W. B., & Meade, J. C. (2012). Genetic characterization of Trichomonas vaginalis isolates by use of multilocus sequence typing. Journal of Clinical Microbiology, 50(10), 3293–3300. https://doi.org/10.1128/JCM.00643-12.spa
dc.relation.referencesCosta-Lira, E., Jacinto, A. H. V. L., Silva, L. M., Napoleão, P. F. R., Barbosa-Filho, R. A. A., Cruz, G. J. S., Borborema-Santos, C. M. (2017). Prevalence of human papillomavirus, Chlamydia trachomatis, and Trichomonas vaginalis infections in Amazonian women with normal and abnormal cytology. Genetics and Molecular Research, 16(2). https://doi.org/10.4238/gmr16029626.spa
dc.relation.referencesCrucitti, T., Jespers, V., Mulenga, C., Khondowe, S., Vandepitte, J., & Buvé, A. (2011). Non-sexual transmission of Trichomonas vaginalis in adolescent girls attending school in Ndola, Zambia. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0016310.spa
dc.relation.referencesDe, M., Von Glehn, P., Cristina, L., Ferreira Sá, E., Ferreira Da Silva, H. D., & Rodrigues Machado, E. (2017). Prevalence of Trichomonas vaginalis in women of reproductive age at a family health clinic. The Journal of Infection In Developing Countries, 11(3), 269–276. https://doi.org/10.3855/jidc.8143.spa
dc.relation.referencesDe Waaij, D. J., Dubbink, J. H., Ouburg, S., Peters, R. P. H., & Morré, S. A. (2017). Prevalence of Trichomonas vaginalis infection and protozoan load in South African women: A cross-sectional study. BMJ Open, 7(10). https://doi.org/10.1136/bmjopen-2017-016959.spa
dc.relation.referencesDepuydt, C. E., Leuridan, E., Van Damme, P., Bogers, J., Vereecken, A. J., & Donders, G. (2010). Epidemiology of Trichomonas vaginalis and Human Papillomavirus Infection Detected by Real-Time PCR in Flanders. Gynecologic and Obstetric Investigation, 70(4), 273–280. https://doi.org/10.1159/000314017.spa
dc.relation.referencesDessì, D., Margarita, V., Cocco, A. R., Marongiu, A., Fiori, P. L., & Rappelli, P. (2019). Trichomonas vaginalis and Mycoplasma hominis: New tales of two old friends. Parasitology, 146(9), 1150–1155. https://doi.org/10.1017/S0031182018002135.spa
dc.relation.referencesDharma, Vijaya, M. N., Umashankar, M., K., Sudha, Nagure, G., Kavitha, G. (2013). Prevalence of the Trichomonas vaginalis infection in a tertiary care hospital in rural Bangalore, Southern India. Journal of Clinical and Diagnostic Research, 7(7), 1401–1403. https://doi.org/10.7860/JCDR/2013/5375.3140.spa
dc.relation.referencesDheilly, M., N., Ewald, W., P., Brindley, J., P., Thomas, F. (2019). Parasite-microbe-host interactions and cancer risk. PLoS Pathogens, 15(8). https://doi.org/10.1371/journal.ppat.1007912.spa
dc.relation.referencesEdwards, T., Burke, P., Smalley, H., & and Hobbs, G. (2014). Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Critical Reviews in Microbiology, 42(3), 406–417. https://doi.org/10.3109/1040841X.2014.958050.spa
dc.relation.referencesFeng, R. M., Z.Wang, M., Smith, J. S., Dong, L., Chen, F., Pan, Q. J., Zhao, F. H. (2018). Risk of high-risk human papillomavirus infection and cervical precancerous lesions with past or current trichomonas infection: a pooled analysis of 25,054 women in rural China. Journal of Clinical Virology, 99–100, 84–90. https://doi.org/10.1016/j.jcv.2017.12.015.spa
dc.relation.referencesFigueroa-Angulo, E. E., Rendón-Gandarilla, F. J., Puente-Rivera, J., Calla-Choque, J. S., Cárdenas-Guerra, R. E., Ortega-López, J., Arroyo, R. (2012). The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes and Infection, 14(15), 1411–1427. https://doi.org/10.1016/j.micinf.2012.09.004.spa
dc.relation.referencesFisher, C., Mikolajczak, G., Ezer, P., Kerr, L., Bellamy, R., Brown, G., Lucke, J. (2019). Study Protocol: 6th National Survey of Australian Secondary Students and Adolescent Sexual Health, 2018. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00217.spa
dc.relation.referencesGaitán-Duarte, H. (2017). Sexually transmitted infections: A public health problem that Colombia needs to face. Revista Colombiana de Obstetricia y Ginecologia, 68(3), 164–167. https://doi.org/10.18597/rcog.3080.spa
dc.relation.referencesGimenes, F., Souza, R. P., Bento, J. C., Teixeira, J. J. V., Maria-Engler, S. S., Bonini, M. G., & Consolaro, M. E. L. (2014). Male infertility: A public health issue caused by sexually transmitted pathogens. Nature Reviews Urology, 11(12), 672–687. https://doi.org/10.1038/nrurol.2014.285.spa
dc.relation.referencesGinocchio, C. C., Chapin, K., Smith, J. S., Aslanzadeh, J., Snook, J., Hill, C. S., & Gaydos, C. A. (2012). Prevalence of Trichomonas vaginalis and coinfection with Chlamydia trachomatis and Neisseria gonorrhoeae in the United States as determined by the aptima Trichomonas vaginalis nucleic acid amplification assay. Journal of Clinical Microbiology, 50(8), 2601–2608. https://doi.org/10.1128/JCM.00748-12.spa
dc.relation.referencesGómez-, Carmen, Del, L., Campo-, Luz, M., Ortega-Ariza., Parody-Muñoz, A. (2019). Prevalence of potentially pathogenic microbiological agents in vaginal exudates of asymptomatic pregnant women, Barranquilla, Colombia, 2014-2015. Revista Colombiana de Obstetricia y Ginecologia, 70(1), 49–56. https://doi.org/10.18597/rcog.3183.spa
dc.relation.referencesGoo, Y. K., Shin, W. S., Yang, H. W., Joo, S. Y., Song, S. M., Ryu, J. S., Hong, Y. (2016). Prevalence of trichomonas vaginalis in women c, South Korea. Korean Journal of Parasitology, 54(1), 75–80. https://doi.org/10.3347/kjp.2016.54.1.75.spa
dc.relation.referencesGoodman, R. P., Freret, T. S., Kula, T., Geller, A. M., Talkington, M. W. T., Tang-Fernandez, V., Nibert, M. L. (2011). Clinical Isolates of Trichomonas vaginalis Concurrently Infected by Strains of Up to Four Trichomonasvirus Species (Family Totiviridae). Journal of Virology, 85(9), 4258–4270. https://doi.org/10.1128/jvi.00220-11.spa
dc.relation.referencesGoodman, Russell P., Ghabrial, S. A., Fichorova, R. N., & Nibert, M. L. (2011). Trichomonasvirus: A new genus of protozoan viruses in the family Totiviridae. Archives of Virology, 156(1), 171–179. https://doi.org/10.1007/s00705-010-0832-8spa
dc.relation.referencesGould, B., S., Woehle, Christian, Kusdian, Gary., Martin, W. F. (2013). Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. International Journal for Parasitology, 43(9), 707–719. https://doi.org/10.1016/j.ijpara.2013.04.002spa
dc.relation.referencesGrabowski, M. K., Gray, R. H., Serwadda, D., Kigozi, G., Gravitt, P. E., Nalugoda, F., Tobian, A. A. R. (2014). High-risk human papillomavirus viral load and persistence among heterosexual HIV-negative and HIV-positive men. Sexually Transmitted Infections, 90(4), 337–343. https://doi.org/10.1136/sextrans-2013-051230spa
dc.relation.referencesGrama, D. F., Casarotti, L. da S., Morato, M. G. V. de A., Silva, L. S., Mendonça, D. F., Limongi, J. E., Cury, M. C. (2013). Prevalence of Trichomonas vaginalis and risk factors in women treated at public health units in Brazil: A transversal study. Transactions of the Royal Society of Tropical Medicine and Hygiene, 107(9), 584–591. https://doi.org/10.1093/trstmh/trt063spa
dc.relation.referencesGraves, K. J., Ghosh, A. P., Schmidt, N., Augostini, P., Evan Secor, W., Schwebke, J. R., Muzny, C. A. (2019). Trichomonas vaginalis Virus among Women with Trichomoniasis and Associations with Demographics, Clinical Outcomes, and Metronidazole Resistance. Clinical Infectious Diseases, 69(12), 2170–2176. https://doi.org/10.1093/cid/ciz146spa
dc.relation.referencesHaltas, H., Bayrak, R., & Yenidunya, S. (2012). To determine of the prevalence of bacterial vaginosis, Candida sp, mixed infections (bacterial vaginosis +candida sp), trichomonas vaginalis, actinomyces sp in Turkish women from Ankara, Turkey. Ginekologia Polska, 83(10), 744–748. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23383559/spa
dc.relation.referencesHelms, D. J., Mosure, D. J., Metcalf, C. A., Douglas, J. M., Malotte, C. K., Paul, S. M., & Peterman, T. A. (2008). Risk factors for prevalent and incident Trichomonas vaginalis among women attending three sexually transmitted disease clinics. Sexually Transmitted Diseases, 35(5), 484–488. https://doi.org/10.1097/OLQ.0b013e3181644b9cspa
dc.relation.referencesHernández, H. M., Marcet, R., & Sarracent, J. (2014). Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. Parasite, 21. https://doi.org/10.1051/parasite/2014054spa
dc.relation.referencesHinderfeld, S., Annabel, Simoes-Barbosa, & Augusto. (2020). Vaginal dysbiotic bacteria act as pathobionts of the protozoal pathogen Trichomonas vaginalis. Microbial Pathogenesis, 138. https://doi.org/10.1016/j.micpath.2019.103820spa
dc.relation.referencesHirt, R. P. (2013). Trichomonas vaginalis virulence factors: An integrative overview. Sexually Transmitted Infections, 89(6), 439–443. https://doi.org/10.1136/sextrans-2013-051105spa
dc.relation.referencesHoots, B. E., Peterman, T. A., Torrone, E. A., Weinstock, H., Meites, E., & Bolan, G. A. (2013). A Trich-y question: Should trichomonas vaginalis infection be reportable? Sexually Transmitted Diseases, 40(2), 113–116. https://doi.org/10.1097/OLQ.0b013e31827c08c3spa
dc.relation.referencesHuneeus, A., Schilling, A., & Fernandez, M. I. (2018). Prevalence of Chlamydia Trachomatis, Neisseria Gonorrhoeae, and Trichomonas Vaginalis Infection in Chilean Adolescents and Young Adults. Journal of Pediatric and Adolescent Gynecology, 31(4), 411–415. https://doi.org/10.1016/j.jpag.2018.01.003spa
dc.relation.referencesJike, Cui, Das, Suchismita, Smith, T. F., & Samuelson, J. (2010). Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes. PLoS Neglected Tropical Diseases, 4(8). https://doi.org/10.1371/journal.pntd.0000782spa
dc.relation.referencesJohnson, B. K. (2013). Sexually transmitted infections and older adults. Journal of Gerontological Nursing, 39(11), 53–60. https://doi.org/10.3928/00989134-20130918-01spa
dc.relation.referencesKenyon, C. R., & Hamilton, D. T. (2016). Correlation between Trichomonas vaginalis and Concurrency: An Ecological Study. Interdisciplinary Perspectives on Infectious Diseases, 2016. https://doi.org/10.1155/2016/5052802spa
dc.relation.referencesKirkcaldy, D., R., Augostini, Peter, Asbel, Len., Weinstock, H. S. (2012). Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD surveillance network, 2009-2010. Emerging Infectious Diseases, 18(6), 939–943. https://doi.org/10.3201/eid1806.111590spa
dc.relation.referencesKissinger, P., & Adamski, A. (2013, September). Trichomoniasis and HIV interactions: A review. Sexually Transmitted Infections, Vol. 89, pp. 426–433. https://doi.org/10.1136/sextrans-2012-051005spa
dc.relation.referencesKissinger, P., Muzny, C. A., Mena, L. A., Lillis, R. A., Schwebke, J. R., Beauchamps, L., Martin, D. H. (2018). Single-dose versus 7-day-dose metronidazole for the treatment of trichomoniasis in women: an open-label, randomised controlled trial. The Lancet Infectious Diseases, 18(11), 1251–1259. https://doi.org/10.1016/S1473-3099(18)30423-7spa
dc.relation.referencesKovachev, S. M. (2019). Cervical cancer and vaginal microbiota changes. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01747-4spa
dc.relation.referencesKrüger, T., & Engstler, M. (2015). Flagellar motility in eukaryotic human parasites. Seminars in Cell and Developmental Biology, 46, 113–127. https://doi.org/10.1016/j.semcdb.2015.10.034spa
dc.relation.referencesKusdian, G., & Gould, S. B. (2014). The biology of Trichomonas vaginalis in the light of urogenital tract infection. Molecular and Biochemical Parasitology, Vol. 198, pp. 92–99. https://doi.org/10.1016/j.molbiopara.2015.01.004spa
dc.relation.referencesKusdian, G., Woehle, C., Martin, W. F., & Gould, S. B. (2013). The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cellular Microbiology, 1707–1721. https://doi.org/10.1111/cmi.12144spa
dc.relation.referencesLazenby, B., Gweneth, Taylor, T., Peyton., Young Pierce, J. (2014). An association between trichomonas vaginalis and high-risk human papillomavirus in rural tanzanian women undergoing cervical cancer screening. Clinical Therapeutics, 36(1), 38–45. https://doi.org/10.1016/j.clinthera.2013.11.009spa
dc.relation.referencesLazenby, G. B., Taylor, P. T., Badman, B. S., McHaki, E., Korte, J. E., Soper, D. E., & Young Pierce, J. (2014). An association between trichomonas vaginalis and high-risk human papillomavirus in rural tanzanian women undergoing cervical cancer screening. Clinical Therapeutics, 36(1), 38–45. https://doi.org/10.1016/j.clinthera.2013.11.009spa
dc.relation.referencesLeitsch, D. (2016). Recent Advances in the Trichomonas vaginalis Field. F1000Research, 5(162), 1–7. https://doi.org/10.12688/f1000research.7594.1spa
dc.relation.referencesLeli, C., Castronari, R., Levorato, L., Luciano, E., Pistoni, E., Perito, S., Mencacci, A. (2016). Molecular sensitivity threshold of wet mount and an immunochromatographic assay evaluated by quantitative real-time PCR for diagnosis of Trichomonas vaginalis infection in a low-risk population of childbearing women - PubMed. Infez Med, 112(6), 1–24. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27367320/spa
dc.relation.referencesLeón, Soto-DeC, S., Río-Ospina Del, L., Camargo, M., Sánchez, R., Moreno-Pérez, D. A., Pérez-Prados, A., Patarroyo, M. A. (2014). Persistence, clearance and reinfection regarding six high risk human papillomavirus types in Colombian women: a follow-up study. BMC Infectious Diseases, 14(395). Retrieved from http://www.biomedcentral.com/1471-2334/14/395spa
dc.relation.referencesLeon, S. R., Konda, K. A., Bernstein, K. T., Pajuelo, J. B., Rosasco, A. M., Caceres, C. F., Klausner, J. D. (2009a). Trichomonas vaginalis infection and associated risk factors in a socially-Marginalized female population in coastal peru. Infectious Diseases in Obstetrics and Gynecology, 2009. https://doi.org/10.1155/2009/752437spa
dc.relation.referencesLeon, S. R., Konda, K. A., Bernstein, K. T., Pajuelo, J. B., Rosasco, A. M., Caceres, C. F., Klausner, J. D. (2009b). Trichomonas vaginalis Infection and Associated Risk Factors in a Socially-Marginalized Female Population in Coastal Peru. Infectious Diseases in Obstetrics and Gynecology, 6, 6. https://doi.org/10.1155/2009/752437spa
dc.relation.referencesLing, M., & Murali, M. (2019). Analysis of the Complement System in the Clinical Immunology Laboratory. Clinics in Laboratory Medicine, 39(4), 579–590. https://doi.org/10.1016/j.cll.2019.07.006spa
dc.relation.referencesLópez de Munain, J. (2019). Epidemiology and current control of sexually transmitted infections. The role of STI clinics. Enfermedades Infecciosas y Microbiologia Clinica, 37(1), 45–49. https://doi.org/10.1016/j.eimc.2018.10.015spa
dc.relation.referencesLustig, G, Ryan, C, Secor, E, & Johnson, P. (2013). Trichomonas vaginalis contact-dependent cytolysis of epithelial cells. Infection and Immunity, 81(5), 1411–1419. https://doi.org/10.1128/IAI.01244-12spa
dc.relation.referencesMahto, M., Evans-Jones, J., Zia, S., Robinson, T. I., Rothburn, M. M., & Mallinson, H. (2011). Finding cases of Trichomonas vaginalis infection in England. International Journal of STD and AIDS, 22(8), 471–473. https://doi.org/10.1258/ijsa.2011.011102spa
dc.relation.referencesMalagón, T., Louvanto, K., Ramanakumar, A. V., Koushik, A., Coutlée, F., & Franco, E. L. (2019). Viral load of human papillomavirus types 16/18/31/33/45 as a predictor of cervical intraepithelial neoplasia and cancer by age. Gynecologic Oncology, 155(2), 245–253. https://doi.org/10.1016/j.ygyno.2019.09.010spa
dc.relation.referencesMargarita, V., Fiori, P. L., & Rappelli, P. (2020). Impact of Symbiosis Between Trichomonas vaginalis and Mycoplasma hominis on Vaginal Dysbiosis: A Mini Review. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00179spa
dc.relation.referencesMargarita, V., Rappelli, P., Dessì, D., Pintus, G., Hirt, R. P., & Fiori, P. L. (2016). Symbiotic Association with Mycoplasma hominis Can Influence Growth Rate, ATP Production, Cytolysis and Inflammatory Response of Trichomonas vaginalis. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00953spa
dc.relation.referencesMartínez-Herrero, Carmen, M. Del, Garijo-Toledo, Magdalena, M., González, Fernando., Gómez-Muñoz, M. T. (2019). Membrane associated proteins of two Trichomonas gallinae clones vary with the virulence. PLoS ONE, 14(10). https://doi.org/10.1371/journal.pone.0224032spa
dc.relation.referencesMasha, S. C., Cools, P., Descheemaeker, P., Reynders, M., Sanders, E. J., & Vaneechoutte, M. (2018). Urogenital pathogens, associated with Trichomonas vaginalis, among pregnant women in Kilifi, Kenya: A nested case-control study 11 Medical and Health Sciences 1108 Medical Microbiology. BMC Infectious Diseases, 18(1). https://doi.org/10.1186/s12879-018-3455-4spa
dc.relation.referencesMatlung, H. L., Babes, L., Zhao, X. W., van Houdt, M., Treffers, L. W., van Rees, D. J., van den Berg, T. K. (2018). Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Reports, 23(13), 3946-3959.e6. https://doi.org/10.1016/j.celrep.2018.05.082spa
dc.relation.referencesMeade, J. C., & Carlton, J. M. (2013). Genetic diversity in Trichomonas vaginalis. Sexually Transmitted Infections, 89(6), 444–448. https://doi.org/10.1136/sextrans-2013-051098spa
dc.relation.referencesMeade, J. C., De Mestral, J., Stiles, J. K., Secor, W. E., Finley, R. W., Cleary, J. D., & Lushbaugh, W. B. (2009). Genetic diversity of Trichomonas vaginalis clinical isolates determined by EcoRI restriction fragment length polymorphism of heat-shock protein 70 genes. American Journal of Tropical Medicine and Hygiene, 80(2), 245–251. https://doi.org/10.4269/ajtmh.2009.80.245spa
dc.relation.referencesMenezes, C. B., Amanda Piccoli Frasson, A. P., & Tasca, T. (2016a). Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial Cell, 3(9), 404–418. https://doi.org/10.15698/mic2016.09.526spa
dc.relation.referencesMenezes, C. B., Amanda Piccoli Frasson, A. P., & Tasca, T. (2016b). Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial Cell, 3(9), 404–418. https://doi.org/10.15698/mic2016.09.526spa
dc.relation.referencesMenezes, C. B., & Tasca, T. (2016). Trichomoniasis immunity and the involvement of the purinergic signaling. Biomedical Journal, 39(4), 234–243. https://doi.org/10.1016/j.bj.2016.06.007spa
dc.relation.referencesMenon, S., Broeck, D. Vanden, Rossi, R., Ogbe, E., Harmon, S., & Mabeya, H. (2016). Associations Between Vaginal Infections and Potential High-risk and High-risk Human Papillomavirus Genotypes in Female Sex Workers in Western Kenya. Clinical Therapeutics, 38(12), 2567–2577. https://doi.org/10.1016/j.clinthera.2016.10.005spa
dc.relation.referencesMercer, F. and, & Johnson, P. J. (2018). Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses. Trends in Parasitology, xx. https://doi.org/10.1016/j.pt.2018.05.006spa
dc.relation.referencesMercer, Frances, Ng, S., Hang, H., Brown, T. M., Boatman, G., & Johnson, P. J. (2018). Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis. PLoS Biology, 16(2). https://doi.org/10.1371/journal.pbio.2003885spa
dc.relation.referencesMielczarek, E., & Blaszkowska, J. (2015). Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Springer, 44(4), 447–458. https://doi.org/10.1007/s15010-015-0860-0spa
dc.relation.referencesMinisterio de Protección Social. (2007). Recomendaciones para la tamización de neoplasias del cuello uterino en mujeres sin antecedentes de patología cervical (preinvasora o invasora) en Colombia. Retrieved January 17, 2021, from http://www.cancer.gov.co/files/libros/archivos/1b244b0cbac755bffb2b14154a3effc0_Guia N3 tamización de cuello uterino.pdfspa
dc.relation.referencesMinisterio de Salud. (2012). Situación de las Infecciones de Transmisión Sexual diferentes al VIH, Colombia 2009 - 2011. Retrieved from https://www.minsalud.gov.co/salud/Documents/observatorio_vih/documentos/monitoreo_evaluacion/1_vigilancia_salud_publica/a_situacion_epidimiologica/SITUACION DE LAS INFECCIONES DE TRANSMISION1.pdfspa
dc.relation.referencesMorada, M., Manzur, M., Lam, B., Tan, C., Tachezy, J., Rappelli, P., Yarlett, N. (2010). Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis. Microbiology, 156(12), 3734–3743. https://doi.org/10.1099/mic.0.042192-0spa
dc.relation.referencesMuñoz, , Ramírez, A., López, Monteon, A., Ramos, Ligonio, A., … Guapillo-Vargas, M. R. B. (2018). Prevalence of Trichomonas vaginalis and Human papillomavirus in female sex workers in Central Veracruz, Mexico. Revista Argentina de Microbiologia, 50(4), 351–358. https://doi.org/10.1016/j.ram.2017.11.004spa
dc.relation.referencesNemati, M., Malla, N., Yadav, M., … Jafarzadeh, A. (2018). Humoral and T cell–mediated immune response against trichomoniasis. Parasite Immunology, 40(3), 36. https://doi.org/10.1111/pim.12510spa
dc.relation.referencesNoël, J., C., Diaz, Nicia, Sicheritz, -Ponten, T., Hirt, R. P. (2010). Trichomonas vaginalis vast BspA-like gene family: Evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics, 11(1), 99. https://doi.org/10.1186/1471-2164-11-99spa
dc.relation.referencesNoël, Jean-Christophe, Fayt, Isabelle, Romero, Munoz, M. R., Engohan-Aloghe, C. (2010). High prevalence of high-risk human papillomavirus infection among women with Trichomonas vaginalis infection on monolayer cytology. Archives of Gynecology and Obstetrics, 282(5), 503–505. https://doi.org/10.1007/s00404-009-1291-xspa
dc.relation.referencesNu, P. A. T., Nguyen, V. Q. H., Cao, N. T., DessÌ, D., Rappelli, P., & Fiori, P. L. (2015). Prevalence of trichomonas vaginalis infection in symptomatic and asymptomatic women in central vietnam. Journal of Infection in Developing Countries, 9(6), 655–660. https://doi.org/10.3855/jidc.7190spa
dc.relation.referencesNu Ton, Anh, P., Rapp, elli, Paola, Dessì., Fiori, P. L. (2015). Kinetics of circulating antibody response to Trichomonas vaginalis: Clinical and diagnostic implications. Sexually Transmitted Infections, 91(8), 561–563. https://doi.org/10.1136/sextrans-2014-051839spa
dc.relation.referencesOkumura, C. Y. M., Baum, L. G., & Johnson, P. J. (2008). Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cellular Microbiology, 10(10), 2078–2090. https://doi.org/10.1111/j.1462-5822.2008.01190.xspa
dc.relation.referencesOnderdonk, A. B., Delaney, M. L., & Fichorova, R. N. (2016). The human microbiome during bacterial vaginosis. Clinical Microbiology Reviews, 29(2), 223–238. https://doi.org/10.1128/CMR.00075-15spa
dc.relation.referencesPardo, C., & de Vries, E. (2018). Breast and cervical cancer survival at instituto nacional de cancerología, Colombia. Colombia Medica, 49(1), 102–108. https://doi.org/10.25100/cm.v49i1.2840spa
dc.relation.referencesPatel, Eshan, Gaydos, Charlotte, Packman, R., Z., A.R., A. (2018). Prevalence and correlates of trichomonas vaginalis infection among men and women in the United States. Clinical Infectious Diseases, 67(2), 211–217. https://doi.org/10.1093/cid/ciy079spa
dc.relation.referencesPatel, U., Eshan, Gaydos, A., C., Harlotte., Tobian, A. A. R. (2018). Prevalence and correlates of trichomonas vaginalis infection among men and women in the United States. Clinical Infectious Diseases, 67(2), 211–217. https://doi.org/10.1093/cid/ciy079spa
dc.relation.referencesPekmezovic, Marina, Mogavero, Selene, Naglik, J., R., U., & Hube, B. (2019). Host–Pathogen Interactions during Female Genital Tract Infections. Trends in Microbiology, 15. https://doi.org/10.1016/j.tim.2019.07.006spa
dc.relation.referencesPellrud, H., Golparian, D., Nilsson, C. S., Falk, M., Fredlund, H., & Unemo, M. (2015). Trichomonas vaginalis infections are rare among young patients attending an STI clinic in Sweden. Acta Dermato-Venereologica, Vol. 95, pp. 343–344. https://doi.org/10.2340/00015555-1946spa
dc.relation.referencesPerazzi, B. E., Menghi, C. I., Coppolillo, E. F., Gatta, C., Eliseth, M. C., De Torres, R. A., Famiglietti, A. M. R. (2010). Prevalence and comparison of diagnostic methods for Trichomonas vaginalis infection in pregnant women in Argentina. Korean Journal of Parasitology, 48(1), 61–65. https://doi.org/10.3347/kjp.2010.48.1.61spa
dc.relation.referencesPereyre, S., Laurier Nadalié, C., Bébéar, C., Arfeuille, C., Beby-Defaux, A., Berçot, B., Verhoeven, P. (2017). Mycoplasma genitalium and Trichomonas vaginalis in France: a point prevalence study in people screened for sexually transmitted diseases. Clinical Microbiology and Infection, 23(2), 122.e1-122.e7. https://doi.org/10.1016/j.cmi.2016.10.028spa
dc.relation.referencesPeterman, T. A., Lin, L. S., Newman, D. R., Kamb, M. L., Bolan, G., Zenilman, J., Malotte, C. K. (2000). Does measured behavior reflect STD risk?: An analysis of data from a randomized controlled behavioral intervention study. Sexually Transmitted Diseases, 27(8), 446–451. https://doi.org/10.1097/00007435-200009000-00004spa
dc.relation.referencesPeters, A., Das, S., & Raidal, S. R. (2020). Diverse Trichomonas lineages in Australasian pigeons and doves support a columbid origin for the genus Trichomonas. Molecular Phylogenetics and Evolution, 143. https://doi.org/10.1016/j.ympev.2019.106674spa
dc.relation.referencesQuinónez-Calvache, E. M., Ríos-Chaparro, D. I., Ramírez, J. D., Soto-De León, S. C., Camargo, M., Río-Ospina, L., Patarroyo, M. A. (2016). Chlamydia trachomatis Frequency in a Cohort of HPV-infected colombian women. PLoS ONE, 11(1). https://doi.org/10.1371/journal.pone.0147504spa
dc.relation.referencesRai, A. K., & Johnson, P. J. (2019). Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proceedings of the National Academy of Sciences, 201912356. https://doi.org/10.1073/pnas.1912356116spa
dc.relation.referencesReighard, S. D., Sweet, R. L., Vicetti Miguel, C., Vicetti Miguel, R. D., Chivukula, M., Krishnamurti, U., & Cherpes, T. L. (2011). Endometrial leukocyte subpopulations associated with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis genital tract infection. American Journal of Obstetrics and Gynecology, 205(4), 324.e1-324.e7. https://doi.org/10.1016/j.ajog.2011.05.031spa
dc.relation.referencesRío-Ospina, L. Del, Cecilia, S., León, S.-D., Camargo, M., Andrés Moreno-Pérez, D., Sánchez, R., Patarroyo, M. A. (2015). The DNA load of six high-risk human papillomavirus types and its association with cervical lesions. BMC Cancer, 15(100), 11. https://doi.org/10.1186/s12885-015-1126-zspa
dc.relation.referencesRío-Ospina, L. Del, León, S. C. S. De, Camargo, M., Sánchez, R., Mancilla, C. L., Patarroyo, M. E., & Patarroyo, M. A. (2016). The prevalence of high-risk HPV types and factors determining infection in female colombian adolescents. PLoS ONE, 11(11). https://doi.org/10.1371/journal.pone.0166502spa
dc.relation.referencesRodriguez-Cerdeira, C., Sanchez-Blanco, E., & Alba, A. (2012). Evaluation of Association between Vaginal Infections and High-Risk Human Papillomavirus Types in Female Sex Workers in Spain. ISRN Obstetrics and Gynecology, 2012, 1–7. https://doi.org/10.5402/2012/240190spa
dc.relation.referencesRosales, C. (2020). Neutrophils at the crossroads of innate and adaptive immunity. Journal of Leukocyte Biology, 108(1), 377–396. https://doi.org/10.1002/JLB.4MIR0220-574RRspa
dc.relation.referencesRowley, J., Vander Hoorn, S., Korenromp, E., Low, N., Unemo, M., Abu-Raddad, L. J., Taylor, M. M. (2019). Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bulletin of the World Health Organization, 97(8), 548-562P. https://doi.org/10.2471/blt.18.228486spa
dc.relation.referencesRyan, C., De Miguel, N., & Johnson, P. (2011). Trichomonas vaginalis: Current understanding of host-parasite interactions. Essays in Biochemistry, 51(1), 161–175. https://doi.org/10.1042/BSE0510161spa
dc.relation.referencesSalas, N., Ramirez, J., Ruiz, B., Torres, E., Nevio, L., & Gómez, J. (2009). Prevalencia de microorganismos asociados a infecciones vaginales en 230 mujeres gestantes y no gestantes sintomáticas del Centro de Salud La Milagrosa en el municipio de Armenia (Colombia). Revista Colombiana de Obstetricia y Ginecología, 60(0034–7434), 135–142. Retrieved from http://www.scielo.org.co/scielo.php?pid=S0034-74342009000200003&script=sci_abstract&tlng=esspa
dc.relation.referencesSalfa, M. C., Suligoi, B., Latino, M. A., Sacchi, A., Dapiran, L., Crotti, G., Bruno, A. R. (2016). Prevalence of Chlamydia trachomatis, trichomonas vaginalis and Neisseria gonorrhoeae based on data collected by a network of clinical microbiology laboratories, in Italy. Advances in Experimental Medicine and Biology, 901, 47–57. https://doi.org/10.1007/5584_2015_5015spa
dc.relation.referencesScott, M. L., Woodby, B. L., Ulicny, J., Raaikhy, G., Orr, A. W., K., W., & Songock, and J. M. B. (2019). Human papillomavirus type 16 E5 inhibits interferon signaling and supports episomal viral maintenance. Journal of Virology, (October). https://doi.org/10.1128/JVI.01582-19spa
dc.relation.referencesSecor, W. E., Meites, E., Starr, M. C., & Workowski, K. A. (2014). Neglected parasitic infections in the United States: Trichomoniasis. American Journal of Tropical Medicine and Hygiene, 90(5), 800–804. https://doi.org/10.4269/ajtmh.13-0723spa
dc.relation.referencesSehgal, R., Goyal, K., & Sehgal, A. (2012). Trichomoniasis and lactoferrin: Future prospects. Infectious Diseases in Obstetrics and Gynecology, 2012. https://doi.org/10.1155/2012/536037spa
dc.relation.referencesSeña, A., Bachmann, L., & Hobbs, M. (2014). Persistent and recurrent Trichomonas vaginalis infections: Epidemiology, treatment and management considerations. Expert Review of Anti-Infective Therapy, 12(6), 673–685. https://doi.org/10.1586/14787210.2014.887440spa
dc.relation.referencesSerwin, A. B., Bulhak-Koziol, Violetta, Sokolowska, M., Golparian, D., & Unemo, M. (2017). Trichomonas vaginalis is very rare among women with vaginal discharge in Podlaskie province, Poland. APMIS, 125(9), 840–843. https://doi.org/10.1111/apm.12713spa
dc.relation.referencesSilver, B. J., Guy, R. J., Kaldor, J. M., Jamil, M. S., & Rumbold, A. R. (2014). Trichomonas vaginalis as a cause of perinatal morbidity: A systematic review and Meta-analysis. Sexually Transmitted Diseases, 41(6), 369–376. https://doi.org/10.1097/OLQ.0000000000000134spa
dc.relation.referencesSmith, J. D., & Garber, G. E. (2015). Trichomonas vaginalis Infection Induces Vaginal CD4 + T-Cell Infiltration in a Mouse Model: A Vaccine Strategy to Reduce Vaginal Infection and HIV Transmission. The Journal of Infectious Diseases. https://doi.org/10.1093/infdis/jiv036spa
dc.relation.referencesSnipes, L. J., Gamard, P. M., Narcisi, E. M., Beard, C. B., Lehmann, T., & Secor, W. E. (2000). Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. Journal of Clinical Microbiology, 38(8), 3004–3009. https://doi.org/10.1128/jcm.38.8.3004-3009.2000spa
dc.relation.referencesSodhani, P., Gupta, S., Gupta, R., & Mehrotra, R. (2017). Bacterial vaginosis and cervical intraepithelial neoplasia: Is there an association or is co-existence incidental? Asian Pacific Journal of Cancer Prevention, 18(5), 1289–1292. https://doi.org/10.22034/APJCP.2017.18.5.1289spa
dc.relation.referencesSoto-De Leon, S., Camargo, M., Sanchez, R., Munoz, M., Perez-Prados, A., Purroy, A., Patarroyo, M. A. (2011). Distribution patterns of infection with multiple types of human papillomaviruses and their association with risk factors. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0014705spa
dc.relation.referencesStemmer, S. M., Mordechai, E., Adelson, M. E., Gygax, S. E., & Hilbert, D. W. (2018). Trichomonas vaginalis is most frequently detected in women at the age of peri-/premenopause: an unusual pattern for a sexually transmitted pathogen. American Journal of Obstetrics and Gynecology, 218(3), 328.e1-328.e13. https://doi.org/10.1016/j.ajog.2017.12.006spa
dc.relation.referencesStorti-Filho, A., Souza, P. C., Chassot, F., Pereira, M. W., Souza, R. J. S., Mello, I. C. J., Consolaro, M. E. L. (2009). Association of public versus private health care utilization and prevalence of Trichomonas vaginalis in Maringá, Paraná, Brazil. Archives of Gynecology and Obstetrics, 280(4), 593–597. https://doi.org/10.1007/s00404-009-0971-xspa
dc.relation.referencesSutcliffe, S. (2010, August). Sexually transmitted infections and risk of prostate cancer: Review of historical and emerging hypotheses. Future Oncology, Vol. 6, pp. 1289–1311. https://doi.org/10.2217/fon.10.95spa
dc.relation.referencesTao, L., Han, L., Li, X., Gao, Q., Pan, L., Wu, L., Guo, X. (2014). Prevalence and risk factors for cervical neoplasia: A cervical cancer screening program in Beijing. BMC Public Health, 14(1). https://doi.org/10.1186/1471-2458-14-1185spa
dc.relation.referencesTaylor, S. N. (2014, September 15). Trichomonas vaginalis testing and screening in a high-risk population: Is this a glimpse into the future? Clinical Infectious Diseases, Vol. 59, pp. 842–844. https://doi.org/10.1093/cid/ciu448spa
dc.relation.referencesTine, R. C., Sylla, K., Ka, R., Dia, L., Sow, D., Lelo, S., Sow, A. Y. (2019). A Study of Trichomonas vaginalis Infection and Correlates in Women with Vaginal Discharge Referred at Fann Teaching Hospital in Senegal. Journal of Parasitology Research, 2019. https://doi.org/10.1155/2019/2069672spa
dc.relation.referencesTwu, O., de Miguel, N., Lustig, G., Stevens, G. C., Vashisht, A. A., Wohlschlegel, J. A., & Johnson, P. J. (2013). Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions. PLoS Pathogens, 9(7), e1003482. https://doi.org/10.1371/journal.ppat.1003482spa
dc.relation.referencesValencia-, Arredondo, M., Yepes-, & López, W. A. (2018). Prevalence of bacterial vaginosis, candidiasis, trichomoniasis, and associated factors in two hospitals of Apartadó and Rionegro – Antioquia, 2014. Iatreia, 31(2), 133–144. https://doi.org/10.17533/udea.iatreia.v31n2a02spa
dc.relation.referencesVan, B., & Pol, D. (2015). Clinical and Laboratory Testing for Trichomonas vaginalis Infection. Journal Of C, 54(1). https://doi.org/10.1128/JCM.02025-15spa
dc.relation.referencesVan Der Veer, C., Himschoot, M., & Bruisten, S. M. (2016). Multilocus sequence typing of Trichomonas vaginalis clinical samples from Amsterdam, the Netherlands. BMJ Open, 6(10). https://doi.org/10.1136/bmjopen-2016-013997spa
dc.relation.referencesVan Gerwen, O. T., & Muzny, C. A. (2019). Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000Research, 8, 1666. https://doi.org/10.12688/f1000research.19972.1spa
dc.relation.referencesVan Roy, F., & Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences, 65(23), 3756–3788. https://doi.org/10.1007/s00018-008-8281-1spa
dc.relation.referencesVorobjeva, N. V., & Chernyak, B. V. (2020). NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry (Moscow), 85(10), 1178–1190. https://doi.org/10.1134/S0006297920100065spa
dc.relation.referencesWatts, D. H., Fazarri, M., Minkoff, H., Hillier, S. L., Sha, B., Glesby, M., … Strickler, H. D. (2005). Effects of Bacterial Vaginosis and Other Genital Infections on the Natural History of Human Papillomavirus Infection in HIV‐1–Infected and High‐Risk HIV‐1–Uninfected Women. The Journal of Infectious Diseases, 191(7), 1129–1139. https://doi.org/10.1086/427777spa
dc.relation.referencesWei, Yanxia, Gao, Jing, Kou, Yanbo., Wanga, Y. (2020). Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Applied and Environmental Microbiology, 86(11). https://doi.org/10.1128/AEM.00303-20spa
dc.relation.referencesWHO. (2012). Global incidence and prevalence of selected curable sexually transmitted infections-2008.spa
dc.relation.referencesWHO. (2016). Global Helth Sector Strategy on sexually trasmitted infections 2016-2021 towards ending STIs.spa
dc.relation.referencesWHO. (2018). 2018 Report on global sexually transmitted infection surveillance. Retrieved from http://apps.who.int/bookorders.spa
dc.relation.referencesWHO. (2020). Colombia. Retrieved from https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdfspa
dc.relation.referencesWiringa, E, A., Ness, B, R., Darville, Toni., Haggerty, C. L. (2019). Trichomonas vaginalis , endometritis and sequelae among women with clinically suspected pelvic inflammatory disease. Sexually Transmitted Infections, sextrans-2019-054079. https://doi.org/10.1136/sextrans-2019-054079spa
dc.relation.referencesWorkowski, K. A., & Bolan, G. A. (2015). Sexually Transmitted Diseases Treatment Guidelines, 2015. Retrieved from www.cdc.gov/std/treatment/resources.htmspa
dc.relation.referencesYusof, A., & Kumar, S. (2012). Ultrastructural changes during asexual multiple reproduction in Trichomonas vaginalis. Parasitology Research, 110(5), 1823–1828. https://doi.org/10.1007/s00436-011-2705-9spa
dc.relation.referencesZhang, Z., Kang, L., Wang, W., Zhao, X., Li, Y., Xie, Q., Li, X. (2018). Prevalence and genetic diversity of Trichomonas vaginalis clinical isolates in a targeted population in Xinxiang City, Henan Province, China. Parasites and Vectors, 11(1). https://doi.org/10.1186/s13071-018-2753-4spa
dc.relation.referencesZhou, F.-Y., Zhou, Q., Zhu, Z.-Y., Hua, K.-Q., Chen, L.-M., & Ding, J.-X. (2020). Types and viral load of human papillomavirus, and vaginal microbiota in vaginal intraepithelial neoplasia: a cross-sectional study. Annals of Translational Medicine, 8(21), 1408–1408. https://doi.org/10.21037/atm-20-622spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcWomen - diseaseseng
dc.subject.lembSalud de la mujerspa
dc.subject.lembWomen's healtheng
dc.subject.lembMujeres enfermedadesspa
dc.subject.proposalTrichomonas vaginalisspa
dc.subject.proposalPersistenciaspa
dc.subject.proposalDepuraciónspa
dc.subject.proposalInfección de trasmisión sexualspa
dc.subject.proposalEpidemiologíaspa
dc.subject.proposalFactores de Riesgospa
dc.subject.proposalTrichomonas vaginaliseng
dc.subject.proposalPersistenceeng
dc.subject.proposalsexually-transmitted infectioneng
dc.subject.proposalClearanceeng
dc.subject.proposalRisk factorseng
dc.subject.proposalEpidemiologyeng
dc.titlePersistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianasspa
dc.title.translatedPersistence and clearance of Trichomonas vaginalis in a cohort of Colombian womeneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032447029.2021.pdf
Tamaño:
1.91 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: