Detección de alteraciones genéticas en gliomas pediátricos y asociación con factores clínicos: Análisis retrospectivo de una muestra poblacional en el Hospital Fundación la Misericordia de la ciudad de Bogotá, Colombia
| dc.contributor.advisor | Olaya Morales, Natalia | |
| dc.contributor.author | Guerrero Criollo, Maria Fernanda | |
| dc.contributor.orcid | Guerrero Criollo, Maria Fernanda [0000000328420755] | spa |
| dc.contributor.researchgroup | Anatomopatología | spa |
| dc.date.accessioned | 2025-03-11T14:20:56Z | |
| dc.date.available | 2025-03-11T14:20:56Z | |
| dc.date.issued | 2025-03 | |
| dc.description | ilustraciones, diagramas, fotografías, tablas | spa |
| dc.description.abstract | Objetivo: Establecer la presencia de alteraciones genéticas de las principales vías de crecimiento y proliferación celular en una muestra piloto de pacientes pediátricos colombianos con diagnóstico de glioma mediante el uso de técnicas de citogenética molecular FISH e inmunohistoquímica. Diseño: Estudio observacional descriptivo: serie de casos. Lugar: Fundación Hospital la Misericordia. Pacientes: Población pediátrica con gliomas diagnosticada entre 2016 y 2020 en un hospital de referencia en Bogotá. Metodología: Se analizaron 50 pacientes pediátricos mediante microarreglos de tejido e hibridación in situ con fluorescencia (FISH) para detectar las alteraciones fusión KIAA1549::BRAF, deleción de CDKN2A, amplificación de EGFR, N-MYC, y codeleción 1p/19q. Además, se usó inmunohistoquímica para evaluar la expresión de la marca epigenética H3K27me3. Resultados: La edad media al diagnóstico fue de 8.05 años, el 54 % de los pacientes eran mujeres. El 44 % de los casos fueron de alto grado y el 56 % de bajo grado. El 18% presentó alteraciones en los marcadores estudiados, destacándose la fusión KIAA1549::BRAF en el 10 %, con predominio en astrocitomas pilocíticos infratentoriales. También se identificaron pérdida de H3K27me3 (4 %), alteraciones en EGFR (4 %), deleción homocigota de CDKN2A (2 %) y pérdida heterocigota de 1p (2 %). Conclusiones: Los resultados son consistentes con la literatura, pese a las limitaciones económicas para aplicar los criterios OMS 2021, la metodología empleada ofrece un enfoque asequible y preciso para la identificación de biomarcadores y el desarrollo de terapias dirigidas. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Objective: To establish the presence of genetic alterations of the main cell growth and proliferation pathways in a pilot sample of Colombian pediatric patients diagnosed with glioma using FISH molecular cytogenetic and immunohistochemical techniques. Design: Descriptive observational study: case series. Hospital: Fundación Hospital la Misericordia. Patients: Pediatric population with gliomas diagnosed between 2016 and 2020 in a referral hospital in Bogota. Methodology: 50 pediatric patients were analyzed by tissue microarrays and fluorescence in situ hybridization (FISH) to detect alterations KIAA1549::BRAF fusion, CDKN2A deletion, EGFR amplification, N-MYC, and 1p/19q codeletion. In addition, immunohistochemistry was used to evaluate the expression of the epigenetic mark H3K27me3. Loss of H3K27me3 was also assessed by immunohistochemistry. Results: The mean age at diagnosis was 8.05 years, 54 % of the patients were female. Forty-four percent of the cases were high grade and 56% were low grade. Eighteen percent presented alterations in at least one of the markers studied, with KIAA1549::BRAF fusion standing out in 10 %, predominantly in infratentorial pilocytic astrocytoma. Loss of H3K27me3 (4%), EGFR alterations (4%), homozygous deletion of CDKN2A (2%) and heterozygous loss of 1p (2%) were also identified. Conclusions: The results are consistent with the literature. Despite the economic limitations of applying the WHO 2021 criteria, the methodology employed offers an affordable and accurate approach for biomarker identification and targeted therapy development. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Genética Humana | spa |
| dc.description.researcharea | Tumores sólidos | spa |
| dc.format.extent | 102 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87633 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Medicina | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Medicina - Maestría en Genética Humana | spa |
| dc.relation.references | Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice [Internet]. 2017;4(4):127–9. Available from: https://www.sciencedirect.com/science/article/pii/S2311300617300125 | spa |
| dc.relation.references | Geneva:World Health Organization. CureAll Framework: WHO Global Initiative for Childhood Cancer Increasing access, advancing quality, saving lives. 2021. | spa |
| dc.relation.references | Bhakta N, Force LM, Allemani C, Atun R, Bray F, Coleman MP, et al. Childhood cancer burden: a review of global estimates. Lancet Oncol [Internet]. 2019 Jan 1;20(1):e42–53. Available from: https://doi.org/10.1016/S1470-2045(18)30761-7 | spa |
| dc.relation.references | Lam CG, Howard SC, Bouffet E, Pritchard-Jones K. Science and health for all children with cancer. Science (1979) [Internet]. 2019 Mar 15;363(6432):1182–6. Available from: https://doi.org/10.1126/science.aaw4892 | spa |
| dc.relation.references | Ministerio de Salud y Protección social M de H y C público. Situación del cáncer en la población pediátrica atendida en el SGSSS de Colombia 2023 [Internet]. Bogotá; 2023 [cited 2023 Sep 17]. Available from: https://cuentadealtocosto.org/site/publicaciones/situacion-del-cancer-en-la-poblacion-pediatrica-atendida-en-el-sgsss-de-colombia-2021/?1675388137385 | spa |
| dc.relation.references | Johnston WT, Erdmann F, Newton R, Steliarova-Foucher E, Schüz J, Roman E. Childhood cancer: Estimating regional and global incidence. Cancer Epidemiol [Internet]. 2021;71:101662. Available from: https://www.sciencedirect.com/science/article/pii/S1877782119301729 | spa |
| dc.relation.references | Magrath I, Steliarova-Foucher E, Epelman S, Ribeiro RC, Harif M, Li CK, et al. Paediatric cancer in low-income and middle-income countries. Lancet Oncol [Internet]. 2013 Mar 1;14(3):e104–16. Available from: https://doi.org/10.1016/S1470-2045(13)70008-1 | spa |
| dc.relation.references | Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021 Aug 1;23(8):1231–51. | spa |
| dc.relation.references | Bale TA, Rosenblum MK. The 2021 WHO Classification of Tumors of the Central Nervous System: An update on pediatric low-grade gliomas and glioneuronal tumors. Vol. 32, Brain Pathology. John Wiley and Sons Inc; 2022. | spa |
| dc.relation.references | Bailey S, Davidson A, Parkes J, Tabori U, Figaji A, Epari S, et al. How Can Genomic Innovations in Pediatric Brain Tumors Transform Outcomes in Low- and Middle-Income Countries? JCO Glob Oncol [Internet]. 2022 Oct 17;(8):e2200156. Available from: https://doi.org/10.1200/GO.22.00156 | spa |
| dc.relation.references | González OE, Casas C, Bermúdez YM. State of the art: pediatric brain stem gliomas. Revista Colombiana de Cancerología. 2017 Oct;21(4):202–11. | spa |
| dc.relation.references | Lizarazo-Ortega D, Bermúdez S. Gliomas de alto grado, correlación radiopatológica. Repositorio Universidad del Bosque [Internet]. 2023 [cited 2023 Jul 2]; Available from: https://repositorio.unbosque.edu.co/bitstream/handle/20.500.12495/9883/DLO.%202023.%20Enero.%20Tesis.%20Gliomas%20de%20alto%20grado%2C%20correlaci%C3%B3n%20radiopatol%C3%B3gica.pdf?sequence=5&isAllowed=y | spa |
| dc.relation.references | Wain L V, Armour JAL, Tobin MD. Genomic copy number variation, human health, and disease. The Lancet [Internet]. 2009 Jul 25;374(9686):340–50. Available from: https://doi.org/10.1016/S0140-6736(09)60249-X | spa |
| dc.relation.references | Perry A, Wesseling P. Histologic classification of gliomas. In: Handbook of Clinical Neurology. Elsevier; 2016. p. 71–95. | spa |
| dc.relation.references | Zong H, Verhaak RGW, Canolk P. The cellular origin for malignant glioma and prospects for clinical advancements. Vol. 12, Expert Review of Molecular Diagnostics. 2012. p. 383–94. | spa |
| dc.relation.references | Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol. 2021 Oct 1;23:III1–105. | spa |
| dc.relation.references | Blionas A, Giakoumettis D, Klonou A, Neromyliotis E, Karydakis P, Themistocleous MS. Paediatric gliomas: diagnosis, molecular biology and management. Ann Transl Med. 2018 Jun;6(12):251–251. | spa |
| dc.relation.references | The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature [Internet]. 2020 Feb 6;578(7793):82–93. Available from: http://www.nature.com/articles/s41586-020-1969-6 | spa |
| dc.relation.references | Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell [Internet]. 2022;185(12):2184-2199.e16. Available from: https://www.sciencedirect.com/science/article/pii/S0092867422005360 | spa |
| dc.relation.references | Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462. | spa |
| dc.relation.references | Westphal M, Lamszus K. The neurobiology of gliomas: From cell biology to the development of therapeutic approaches. Vol. 12, Nature Reviews Neuroscience. 2011. p. 495–508. | spa |
| dc.relation.references | McLendon R, Friedman A, Bigner D, van Meir EG, Brat DJ, Mastrogianakis GM, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008 Oct 23;455(7216):1061–8. | spa |
| dc.relation.references | Wang J, Yi-Ting Huang T, Hou Y, Bartom E, Lu X, Shilatifard A, et al. Epigenomic landscape and 3D genome structure in pediatric high-grade glioma [Internet]. Vol. 7, Sci. Adv. 2021. Available from: https://www.science.org | spa |
| dc.relation.references | Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Vol. 447, Developmental Biology. Elsevier Inc.; 2019. p. 71–89. | spa |
| dc.relation.references | Wintheiser GA SP. Physiology, Tyrosine Kinase Receptors. 2022. | spa |
| dc.relation.references | Sievers P, Sill M, Schrimpf D, Stichel D, Reuss DE, Sturm D, et al. A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR. Neuro Oncol. 2021 Jan 1;23(1):34–43. | spa |
| dc.relation.references | Deng MY, Sturm D, Pfaff E, Sill M, Stichel D, Balasubramanian GP, et al. Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nat Commun. 2021 Dec 1;12(1). | spa |
| dc.relation.references | French PJ, Eoli M, Sepulveda JM, de Heer I, Kros JM, Walenkamp A, et al. Defining EGFR amplification status for clinical trial inclusion. Neuro Oncol. 2019 Oct 9;21(10):1263–72. | spa |
| dc.relation.references | Saadeh FS, Mahfouz R, Assi HI. Egfr as a clinical marker in glioblastomas and other gliomas. Vol. 33, International Journal of Biological Markers. SAGE Publications Ltd; 2018. p. 22–32. | spa |
| dc.relation.references | Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Vol. 141, Cell. Elsevier B.V.; 2010. p. 1117–34. | spa |
| dc.relation.references | Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Vol. 36, Trends in Biochemical Sciences. 2011. p. 320–8. | spa |
| dc.relation.references | Ryall S, Krishnatry R, Arnoldo A, Buczkowicz P, Mistry M, Siddaway R, et al. Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun. 2016 Aug 31;4(1):93. | spa |
| dc.relation.references | Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R, et al. Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. Journal of Clinical Oncology [Internet]. 2017 Jul 20;35(25):2934–41. Available from: https://doi.org/10.1200/JCO.2016.71.8726 | spa |
| dc.relation.references | Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, et al. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol [Internet]. 2023;13. Available from: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1154246 | spa |
| dc.relation.references | Appay R, Fina F, Macagno N, Padovani L, Colin C, Barets D, et al. Duplications of KIAA1549 and BRAF screening by Droplet Digital PCR from formalin-fixed paraffin-embedded DNA is an accurate alternative for KIAA1549-BRAF fusion detection in pilocytic astrocytomas. Modern Pathology [Internet]. 2018;31(10):1490–501. Available from: https://doi.org/10.1038/s41379-018-0050-6 | spa |
| dc.relation.references | Han F, Hu R, Yang H, Liu J, Sui J, Xiang X, et al. PTEN gene mutations correlate to poor prognosis in glioma patients: A meta-analysis. Onco Targets Ther. 2016 Jun 13;9:3485–92. | spa |
| dc.relation.references | Zhang W, Fine HA. Mechanisms of Gliomagenesis. In: Janigro D, editor. Springer Link. 2006. p. 449–62. | spa |
| dc.relation.references | Savatier P, Malashicheva A. 5 - Cell-Cycle Control in Embryonic Stem Cells. In: Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R, Thomson J, et al., editors. Handbook of Stem Cells [Internet]. Burlington: Academic Press; 2004. p. 53–62. Available from: https://www.sciencedirect.com/science/article/pii/B9780124366435500146 | spa |
| dc.relation.references | Frazão L, Do Carmo Martins M, Nunes VM, Pimentel J, Faria C, Miguéns J, et al. BRAF V600E mutation and 9p21: CDKN2A/B and MTAP co-deletions - Markers in the clinical stratification of pediatric gliomas. BMC Cancer. 2018 Dec 17;18(1). | spa |
| dc.relation.references | Barinfeld O, Zahavi A, Weiss S, Toledano H, Michowiz S, Goldenberg-Cohen N. Genetic Alteration Analysis of IDH1, IDH2, CDKN2A, MYB and MYBL1 in Pediatric Low-Grade Gliomas. Front Surg. 2022 Apr 28;9. | spa |
| dc.relation.references | Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, et al. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. Journal of Clinical Oncology. 2015 Mar 20;33(9):1015–22. | spa |
| dc.relation.references | Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science (1979) [Internet]. 2008 Sep 26;321(5897):1807–12. Available from: https://doi.org/10.1126/science.1164382 | spa |
| dc.relation.references | Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer [Internet]. 2020;122(11):1580–9. Available from: https://doi.org/10.1038/s41416-020-0814-x | spa |
| dc.relation.references | Sharma N, Mallela AN, Shi DD, Tang LW, Abou-Al-Shaar H, Gersey ZC, et al. Isocitrate dehydrogenase mutations in gliomas: A review of current understanding and trials. Neurooncol Adv [Internet]. 2023 Jan 1;5(1):vdad053. Available from: https://doi.org/10.1093/noajnl/vdad053 | spa |
| dc.relation.references | Mosaab A, El-Ayadi M, Khorshed EN, Amer N, Refaat A, El-Beltagy M, et al. Histone H3K27M Mutation Overrides Histological Grading in Pediatric Gliomas. Sci Rep. 2020 Dec 1;10(1). | spa |
| dc.relation.references | Tan JY, Wijesinghe IVS, Kamarudin MNA, Parhar I. Paediatric gliomas: BRAF and histone H3 as biomarkers, therapy and perspective of liquid biopsies. Vol. 13, Cancers. MDPI AG; 2021. p. 1–18. | spa |
| dc.relation.references | Huang T, Garcia R, Qi J, Lulla R, Horbinski C, Behdad A, et al. Detection of histone H3 K27M mutation and post-translational modifications in pediatric diffuse midline glioma via tissue immunohistochemistry informs diagnosis and clinical outcomes [Internet]. Vol. 9, Oncotarget. 2018. Available from: www.oncotarget.comwww.oncotarget.com | spa |
| dc.relation.references | Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet [Internet]. 2017;18(11):643–58. Available from: https://doi.org/10.1038/nrg.2017.57 | spa |
| dc.relation.references | Castel D, Philippe C, Calmon R, le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015 Dec 1;130(6):815–27. | spa |
| dc.relation.references | Venneti S, Garimella MT, Sullivan LM, Martinez D, Huse JT, Heguy A, et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathology. 2013 Sep;23(5):558–64. | spa |
| dc.relation.references | Jenseit A, Camgöz A, Pfister SM, Kool M. EZHIP: a new piece of the puzzle towards understanding pediatric posterior fossa ependymoma. Vol. 143, Acta Neuropathologica. Springer Science and Business Media Deutschland GmbH; 2022. | spa |
| dc.relation.references | Vuong HG, Le HT, Dunn IF. The prognostic significance of further genotyping H3G34 diffuse hemispheric gliomas. Cancer [Internet]. 2022 May 15;128(10):1907–12. Available from: https://doi.org/10.1002/cncr.34156 | spa |
| dc.relation.references | Malbari F, Lindsay H. Genetics of Common Pediatric Brain Tumors. Vol. 104, Pediatric Neurology. Elsevier Inc.; 2020. p. 3–12. | spa |
| dc.relation.references | Fangusaro J, Jones DT, Packer RJ, Gutmann DH, Milde T, Witt O, et al. Pediatric low-grade glioma: State-of-the-art and ongoing challenges. Neuro Oncol [Internet]. 2024 Jan 1;26(1):25–37. Available from: https://doi.org/10.1093/neuonc/noad195 | spa |
| dc.relation.references | Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et al. International incidence of childhood cancer, 2001–10: a population-based registry study. Lancet Oncol. 2017 Jun 1;18(6):719–31. | spa |
| dc.relation.references | Ministerio de Salud y Protección social de Colombia IN de CESE. Plan decenal para el control del cáncer en Colombia 2012-2021 [Internet]. Bogotá; 2012 [cited 2022 Oct 27]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/PSP/PDSP.pdf | spa |
| dc.relation.references | AlRayahi J, Alwalid O, Mubarak W, Maaz AUR, Mifsud W. Pediatric Brain Tumors in the Molecular Era: Updates for the Radiologist. Semin Roentgenol [Internet]. 2023;58(1):47–66. Available from: https://www.sciencedirect.com/science/article/pii/S0037198X22000645 | spa |
| dc.relation.references | Attia NM, Sayed SAA, Riad KF, Korany GM. Magnetic resonance spectroscopy in pediatric brain tumors: how to make a more confident diagnosis. Egyptian Journal of Radiology and Nuclear Medicine [Internet]. 2020;51(1):14. Available from: https://doi.org/10.1186/s43055-020-0135-3 | spa |
| dc.relation.references | Lutz K, Jünger ST, Messing-Jünger M. Essential Management of Pediatric Brain Tumors. 2022; Available from: https://doi.org/10.3390/childrenAttribution | spa |
| dc.relation.references | Ryall S, Tabori U, Hawkins C. Pediatric low-grade glioma in the era of molecular diagnostics. Vol. 8, Acta Neuropathologica Communications. BioMed Central Ltd.; 2020. | spa |
| dc.relation.references | Lyubimova N V, Timofeev YuS, Mitrofanov AA, Bekyashev AKh, Goncharova ZA, Kushlinskii NE. Glial Fibrillary Acidic Protein in the Diagnosis and Prognosis of Malignant Glial Tumors. Bull Exp Biol Med [Internet]. 2020;168(4):503–6. Available from: https://doi.org/10.1007/s10517-020-04741-9 | spa |
| dc.relation.references | Zhou J, Shi LF, Wang Z, Li M, Zhang JS, Mao Y, et al. OLIG2 expression level could be used as an independent prognostic factor for patients with cerebellar Glioblastoma (cGBM). Clinics. 2023 Jan 1;78. | spa |
| dc.relation.references | Dunbar E, Yachnis AT. Glioma Diagnosis: Immunohistochemistry and Beyond. Adv Anat Pathol [Internet]. 2010;17(3). Available from: https://journals.lww.com/anatomicpathology/Fulltext/2010/05000/Glioma_Diagnosis__Immunohistochemistry_and_Beyond.4.aspx | spa |
| dc.relation.references | Kwon SE, Chapman ER. Synaptophysin Regulates the Kinetics of Synaptic Vesicle Endocytosis in Central Neurons. Neuron. 2011 Jun 9;70(5):847–54. | spa |
| dc.relation.references | Capper D, Weißert S, Balss J, Habel A, Meyer J, Jäger D, et al. Characterization of r132h mutation-specific idh1 antibody binding in brain tumors. Brain Pathology. 2010 Jan;20(1):245–54. | spa |
| dc.relation.references | Colebatch A. PathologyOutlines.com website . 2022. BRAF V600E. | spa |
| dc.relation.references | Wiestler B, Capper D, Holland-Letz T, Korshunov A, von Deimling A, Pfister SM, et al. ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol [Internet]. 2013;126(3):443–51. Available from: https://doi.org/10.1007/s00401-013-1156-z | spa |
| dc.relation.references | Camila Trejo Paredes M, García Valencia J, Carlos Arango Viana J. Gliomas triple negativo Triple-negative gliomas Revisión. Vol. 30, Acta Neurol Colomb. 2014. | spa |
| dc.relation.references | Vij M, Cho BB, Yokoda RT, Rashidipour O, Umphlett M, Richardson TE, et al. P16 immunohistochemistry is a sensitive and specific surrogate marker for CDKN2A homozygous deletion in gliomas. Acta Neuropathol Commun [Internet]. 2023;11(1):73. Available from: https://doi.org/10.1186/s40478-023-01573-2 | spa |
| dc.relation.references | Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol [Internet]. 2016;131(6):803–20. Available from: https://doi.org/10.1007/s00401-016-1545-1 | spa |
| dc.relation.references | Rodriguez FJ, Vizcaino MA, Lin MT. Recent Advances on the Molecular Pathology of Glial Neoplasms in Children and Adults. Vol. 18, Journal of Molecular Diagnostics. Elsevier B.V.; 2016. p. 620–34. | spa |
| dc.relation.references | Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KYC, et al. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Vol. 10, Frontiers in Genetics. Frontiers Media S.A.; 2019. | spa |
| dc.relation.references | Shimizu D, Taniue K, Matsui Y, Haeno H, Araki H, Miura F, et al. Pan-cancer methylome analysis for cancer diagnosis and classification of cancer cell of origin. Cancer Gene Ther [Internet]. 2022;29(5):428–36. Available from: https://doi.org/10.1038/s41417-021-00401-w | spa |
| dc.relation.references | Giorda R. Chapter 1 - Principles of epigenetics and DNA methylation. In: Provenzi L, Montirosso R, editors. Developmental Human Behavioral Epigenetics [Internet]. Academic Press; 2021. p. 3–26. Available from: https://www.sciencedirect.com/science/article/pii/B9780128192627000015 | spa |
| dc.relation.references | Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature [Internet]. 2018;555(7697):469–74. Available from: https://doi.org/10.1038/nature26000 | spa |
| dc.relation.references | Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017 May 1;13(5). | spa |
| dc.relation.references | Tsimberidou AM, Fountzilas E, Bleris L, Kurzrock R. Transcriptomics and solid tumors: The next frontier in precision cancer medicine. Semin Cancer Biol [Internet]. 2022;84:50–9. Available from: https://www.sciencedirect.com/science/article/pii/S1044579X20301966 | spa |
| dc.relation.references | Shboul ZA, Diawara N, Vossough A, Chen JY, Iftekharuddin KM. Joint Modeling of RNAseq and Radiomics Data for Glioma Molecular Characterization and Prediction. Front Med (Lausanne). 2021 Aug 19;8. | spa |
| dc.relation.references | D’Haene N, Meléndez B, Blanchard O, De Nève N, Lebrun L, Van Campenhout C, et al. Design and validation of a gene-targeted, next-generation sequencing panel for routine diagnosis in gliomas. Cancers (Basel). 2019 Jun 1;11(6). | spa |
| dc.relation.references | Zacher A, Kaulich K, Stepanow S, Wolter M, Köhrer K, Felsberg J, et al. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel. Brain Pathology. 2017 Mar 1;27(2):146–59. | spa |
| dc.relation.references | Petrackova A, Vasinek M, Sedlarikova L, Dyskova T, Schneiderova P, Novosad T, et al. Standardization of Sequencing Coverage Depth in NGS: Recommendation for Detection of Clonal and Subclonal Mutations in Cancer Diagnostics. Front Oncol. 2019 Sep 4;9. | spa |
| dc.relation.references | Wolter M, Felsberg J, Malzkorn B, Kaulich K, Reifenberger G. Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas. Acta Neuropathol Commun. 2022 Dec 1;10(1). | spa |
| dc.relation.references | Hu L, Ru K, Zhang L, Huang Y, Zhu X, Liu H, et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark Res [Internet]. 2014;2(1):3. Available from: https://doi.org/10.1186/2050-7771-2-3 | spa |
| dc.relation.references | Horbinski C, Miller CR, Perry A. Gone FISHing: Clinical lessons learned in brain tumor molecular diagnostics over the last decade. In: Brain Pathology. 2011. p. 57–73. | spa |
| dc.relation.references | Hawkins CE, Blümcke I, Capper D, Ellison DW, Jone DW, Najm I, et al. Difusse astrocytoma, MYB- or MYBL1-altered. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 56–8. | spa |
| dc.relation.references | Ellison DW, Jones DTW, Ligon KL, Preusser WM, Rosenblum MK. Angiocentric glioma. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 59–61. | spa |
| dc.relation.references | Rosenblum MK, Blümcke I, Ellison DW, Huse JT. Polymorphous low-grade neuroepithelial tumour of the young. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 62–4. | spa |
| dc.relation.references | Jacques TS, Capper D, Giannini C, Orr BA, Tabori U. Diffuse low-grade glioma, MAPK pathway-altered. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 65–8. | spa |
| dc.relation.references | Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ. Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer and Metastasis Reviews [Internet]. 2023;42(2):367–88. Available from: https://doi.org/10.1007/s10555-023-10105-2 | spa |
| dc.relation.references | Varlet P, Baker SJ, Ellison DW, Jabado N, Jones C, Jones DTW, et al. Diffuse midline glioma , H3 K27-altered. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 69–73. | spa |
| dc.relation.references | Korshunov A, Capper D, Jones DTW, Leske H, Orr BA, Rodriguez FJ, et al. Diffuse hemispheric glioma, H3 G34-mutant. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 74–6. | spa |
| dc.relation.references | Capper D, Jones DTW, Tabori U, Variet P. Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 77–80. | spa |
| dc.relation.references | Jacques TS, Bandopadhayay P, Jones C, Tabori U, Variet P. Infant-type hemispheric glioma. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 81–2. | spa |
| dc.relation.references | Tihan T, Figarella-Branger D, Giannini C, Gupta K, Hawkins CE, Jacques TS, et al. Pilocytic astrocytoma. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 83–9. | spa |
| dc.relation.references | Capper D, Jones DTW, Rodriguez FJ, Variet P. High-grade astrocytoma with piloid features. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 90–3. | spa |
| dc.relation.references | Giannini C, Capper D, Figarella-Branger D, Jacques TS, Jones DTW, Louis DN, et al. Pleomorphic xanthoastrocytoma. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 94–9. | spa |
| dc.relation.references | Lopes MB, Cotter JA, Rodriguez FJ, Santosh V, Sharma MC, Stemmer-Rachamimov AO. Subependymal giant cell astrocytoma. In: WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours Central Nervous System Tumours. Lyon (France): International Agency for Research on Cancer; 2021. p. 100–3. | spa |
| dc.relation.references | Raynaud F, Mina M, Tavernari D, Ciriello G. Pan-cancer inference of intra-tumor heterogeneity reveals associations with different forms of genomic instability. PLoS Genet [Internet]. 2018 Sep 13;14(9):e1007669-. Available from: https://doi.org/10.1371/journal.pgen.1007669 | spa |
| dc.relation.references | T JNM. Tissue Microarray: A rapidly evolving diagnostic and research tool. Ann Saudi Med [Internet]. 2009 Mar 1;29(2):123–7. Available from: https://doi.org/10.4103/0256-4947.51806 | spa |
| dc.relation.references | Koo M, Squires JM, Ying D, Huang J. Making a Tissue Microarray. In: Yong WH, editor. Biobanking: Methods and Protocols [Internet]. New York, NY: Springer New York; 2019. p. 313–23. Available from: https://doi.org/10.1007/978-1-4939-8935-5_27 | spa |
| dc.relation.references | Kim KH, Choi SJ, Choi Y Il, Kim L, Park IS, Han JY, et al. In-house manual construction of high-density and high-quality tissue microarrays by using homemade recipient agarose-paraffin blocks. Korean J Pathol. 2013;47(3):238–44. | spa |
| dc.relation.references | Cell Signaling Technology. DATASHEET. 2020. Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb | spa |
| dc.relation.references | Pekmezci M, Phillips JJ, Dirilenoglu F, Atasever-Rezanko T, Tihan T, Solomon D, et al. Loss of H3K27 trimethylation by immunohistochemistry is frequent in oligodendroglioma, IDH-mutant and 1p/19q-codeleted, but is neither a sensitive nor a specific marker. Vol. 139, Acta Neuropathologica. Springer; 2020. p. 597–600. | spa |
| dc.relation.references | Ammendola S, Caldonazzi N, Simbolo M, Piredda ML, Brunelli M, Poliani PL, et al. H3K27me3 immunostaining is diagnostic and prognostic in diffuse gliomas with oligodendroglial or mixed oligoastrocytic morphology. Virchows Arch [Internet]. 2021;479:987–96. Available from: https://doi.org/10.1007/s00428-021-03134-1 | spa |
| dc.relation.references | Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, et al. Outcome Prediction in Pediatric Medulloblastoma Based on DNA Copy-Number Aberrations of Chromosomes 6q and 17q and the MYC and MYCN Loci. Journal of Clinical Oncology [Internet]. 2009 Mar 2;27(10):1627–36. Available from: https://doi.org/10.1200/JCO.2008.17.9432 | spa |
| dc.relation.references | French PJ, Eoli M, Sepulveda JM, De Heer I, Kros JM, Walenkamp A, et al. Defining EGFR amplification status for clinical trial inclusion. Neuro Oncol. 2019 Oct 9;21(10):1263–72. | spa |
| dc.relation.references | Marker DF, Pearce TM. Homozygous deletion of CDKN2A by fluorescence in situ hybridization is prognostic in grade 4, but not grade 2 or 3, IDH-mutant astrocytomas. Acta Neuropathol Commun [Internet]. 2020;8(1):169. Available from: https://doi.org/10.1186/s40478-020-01044-y | spa |
| dc.relation.references | Pinkham MB, Telford N, Whitfield GA, Colaco RJ, O’Neill F, McBain CA. FISHing Tips: What Every Clinician Should Know About 1p19q Analysis in Gliomas Using Fluorescence in situ Hybridisation. Clin Oncol [Internet]. 2015;27(8):445–53. Available from: https://www.sciencedirect.com/science/article/pii/S0936655515001624 | spa |
| dc.relation.references | Yamashita S, Takeshima H, Matsumoto F, Yamasaki K, Fukushima T, Sakoda H, et al. Detection of the KIAA1549-BRAF fusion gene in cells forming microvascular proliferations in pilocytic astrocytoma. PLoS One [Internet]. 2019 Jul 22;14(7):e0220146-. Available from: https://doi.org/10.1371/journal.pone.0220146 | spa |
| dc.relation.references | Ryall S, Zapotocky M, Fukuoka K, Nobre L, Guerreiro Stucklin A, Bennett J, et al. Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell. 2020 Apr 13;37(4):569-583.e5. | spa |
| dc.relation.references | Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, et al. Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell [Internet]. 2017 Oct 9;32(4):520-537.e5. Available from: https://doi.org/10.1016/j.ccell.2017.08.017 | spa |
| dc.relation.references | Díaz-Coronado R, Villar RC, Cappellano AM. Pediatric neuro-oncology in Latin America and the Caribbean: a gap to be filled. Front Oncol [Internet]. 2024;14. Available from: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1354826 | spa |
| dc.relation.references | Colli SL, Cardoso N, Massone CA, Cores M, García Lombardi M, De Matteo EN, et al. Molecular alterations in the integrated diagnosis of pediatric glial and glioneuronal tumors: A single center experience. PLoS One [Internet]. 2022 Apr 1;17(4):e0266466-. Available from: https://doi.org/10.1371/journal.pone.0266466 | spa |
| dc.relation.references | Pellerino A, Caccese M, Padovan M, Cerretti G, Lombardi G. Epidemiology, risk factors, and prognostic factors of gliomas. Clin Transl Imaging [Internet]. 2022;10(5):467–75. Available from: https://doi.org/10.1007/s40336-022-00489-6 | spa |
| dc.relation.references | Ramirez O, Piedrahita V, Ardila J, Pardo C, Cabrera-Bernal E, Lopera J, et al. Primary central nervous system tumors survival in children in ten Colombian cities: a VIGICANCER report. Front Oncol [Internet]. 2024;13. Available from: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1326788 | spa |
| dc.relation.references | Diaz-Coronado R, Hernández-Broncano E, Casavilca-Zambrano S, Campos-Sanchez D, Maza I, Tello M, et al. LINC-21. PROGNOSTIC FACTORS AND SURVIVAL OF LOW-GRADE GLIOMAS IN CHILDREN AND ADOLESCENTS – A MULTICENTER STUDY IN PERU. Neuro Oncol [Internet]. 2022 Jun 1;24(Supplement_1):i167–i167. Available from: https://doi.org/10.1093/neuonc/noac079.620 | spa |
| dc.relation.references | Guerreiro Stucklin AS, Ryall S, Fukuoka K, Zapotocky M, Lassaletta A, Li C, et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun. 2019 Dec 1;10(1). | spa |
| dc.relation.references | Schwartzentruber J, Korshunov A, Liu XY, Jones DTW, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature [Internet]. 2012;482(7384):226–31. Available from: https://doi.org/10.1038/nature10833 | spa |
| dc.relation.references | Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol [Internet]. 2012;124(3):439–47. Available from: https://doi.org/10.1007/s00401-012-0998-0 | spa |
| dc.relation.references | Chung C, Sweha SR, Pratt D, Tamrazi B, Panwalkar P, Banda A, et al. Integrated Metabolic and Epigenomic Reprograming by H3K27M Mutations in Diffuse Intrinsic Pontine Gliomas. Cancer Cell [Internet]. 2020 Sep 14;38(3):334-349.e9. Available from: https://doi.org/10.1016/j.ccell.2020.07.008 | spa |
| dc.relation.references | Saratsis AM, Knowles T, Petrovic A, Nazarian J. H3K27M mutant glioma: Disease definition and biological underpinnings. Neuro Oncol [Internet]. 2024 Apr 1;26(Supplement_2):S92–100. Available from: https://doi.org/10.1093/neuonc/noad164 | spa |
| dc.relation.references | Mosaab A, El-Ayadi M, Khorshed EN, Amer N, Refaat A, El-Beltagy M, et al. Histone H3K27M Mutation Overrides Histological Grading in Pediatric Gliomas. Sci Rep [Internet]. 2020;10(1):8368. Available from: https://doi.org/10.1038/s41598-020-65272-x | spa |
| dc.relation.references | Vallero SG, Bertero L, Morana G, Sciortino P, Bertin D, Mussano A, et al. Pediatric diffuse midline glioma H3K27- altered: A complex clinical and biological landscape behind a neatly defined tumor type. Front Oncol [Internet]. 2023;12. Available from: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.1082062 | spa |
| dc.relation.references | Pratt D, Natarajan SK, Banda A, Giannini C, Vats P, Koschmann C, et al. Circumscribed/non-diffuse histology confers a better prognosis in H3K27M-mutant gliomas. Acta Neuropathol [Internet]. 2018;135(2):299–301. Available from: https://doi.org/10.1007/s00401-018-1805-3 | spa |
| dc.relation.references | Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 2002 Oct 15;16(20):2699–712 | spa |
| dc.relation.references | Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S, et al. Histone H3.3 Mutations Drive Pediatric Glioblastoma through Upregulation of MYCN. Cancer Discov [Internet]. 2013 May 8;3(5):512–9. Available from: https://doi.org/10.1158/2159-8290.CD-12-0426 | spa |
| dc.relation.references | Tauziède-Espariat A, Debily MA, Castel D, Grill J, Puget S, Roux A, et al. The pediatric supratentorial MYCN-amplified high-grade gliomas methylation class presents the same radiological, histopathological and molecular features as their pontine counterparts. Acta Neuropathol Commun [Internet]. 2020;8(1):104. Available from: https://doi.org/10.1186/s40478-020-00974-x | spa |
| dc.relation.references | Korshunov A, Schrimpf D, Ryzhova M, Sturm D, Chavez L, Hovestadt V, et al. H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol [Internet]. 2017;134(3):507–16. Available from: https://doi.org/10.1007/s00401-017-1710-1 | spa |
| dc.relation.references | Sturm D, Capper D, Andreiuolo F, Gessi M, Kölsche C, Reinhardt A, et al. Multiomic neuropathology improves diagnostic accuracy in pediatric neuro-oncology. Nat Med [Internet]. 2023;29(4):917–26. Available from: https://doi.org/10.1038/s41591-023-02255-1 | spa |
| dc.relation.references | Guerrini-Rousseau L, Tauziède-Espariat A, Castel D, Rouleau E, Sievers P, Saffroy R, et al. Pediatric high-grade glioma MYCN is frequently associated with Li-Fraumeni syndrome. Acta Neuropathol Commun [Internet]. 2023;11(1):3. Available from: https://doi.org/10.1186/s40478-022-01490-w | spa |
| dc.relation.references | Louis DN, Giannini C, Capper D, Paulus W, Figarella-Branger D, Lopes MB, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol [Internet]. 2018;135(4):639–42. Available from: https://doi.org/10.1007/s00401-018-1826-y | spa |
| dc.relation.references | Stichel D, Ebrahimi A, Reuss D, Schrimpf D, Ono T, Shirahata M, et al. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol [Internet]. 2018;136(5):793–803. Available from: https://doi.org/10.1007/s00401-018-1905-0 | spa |
| dc.relation.references | Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The Somatic Genomic Landscape of Glioblastoma. Cell [Internet]. 2013 Oct 10;155(2):462–77. Available from: https://doi.org/10.1016/j.cell.2013.09.034 | spa |
| dc.relation.references | Wang H, Zhang X, Liu J, Chen W, Guo X, Wang Y, et al. Clinical roles of EGFR amplification in diffuse gliomas: a real-world study using the 2021 WHO classification of CNS tumors. Front Neurosci [Internet]. 2024;18. Available from: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1308627 | spa |
| dc.relation.references | Pandith AA, Zahoor W, Manzoor U, Nisar S, Guru FR, Naikoo NA, et al. Evaluation of chromosome 1p/19q deletion by Fluorescence in Situ Hybridization (FISH) as prognostic factors in malignant glioma patients on treatment with alkylating chemotherapy. Cancer Genet [Internet]. 2023;278–279:55–61. Available from: https://www.sciencedirect.com/science/article/pii/S2210776223000546 | spa |
| dc.relation.references | Jenkins RB, Blair H, Ballman K V, Giannini C, Arusell RM, Law M, et al. A t(1;19)(q10;p10) Mediates the Combined Deletions of 1p and 19q and Predicts a Better Prognosis of Patients with Oligodendroglioma. Cancer Res [Internet]. 2006 Oct 17;66(20):9852–61. Available from: https://doi.org/10.1158/0008-5472.CAN-06-1796 | spa |
| dc.relation.references | Pollack IF, Finkelstein SD, Burnham J, Hamilton RL, Yates AJ, Holmes EJ, et al. Association between Chromosome 1p and 19q Loss and Outcome in Pediatric Malignant Gliomas: Results from the CCG-945 Cohort. Pediatr Neurosurg [Internet]. 2003 Aug 4;39(3):114–21. Available from: https://doi.org/10.1159/000071647 | spa |
| dc.relation.references | Ichimura K, Vogazianou AP, Liu L, Pearson DM, Bäcklund LM, Plant K, et al. 1p36 is a preferential target of chromosome 1 deletions in astrocytic tumours and homozygously deleted in a subset of glioblastomas. Oncogene [Internet]. 2008;27(14):2097–108. Available from: https://doi.org/10.1038/sj.onc.1210848 | spa |
| dc.relation.references | Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N, et al. A Distinct Spectrum of Copy Number Aberrations in Pediatric High-Grade Gliomas. Clinical Cancer Research [Internet]. 2010 Jun 30;16(13):3368–77. Available from: https://doi.org/10.1158/1078-0432.CCR-10-0438 | spa |
| dc.relation.references | Yeo KK, Alexandrescu S, Cotter JA, Vogelzang J, Bhave V, Li MM, et al. Multi-institutional study of the frequency, genomic landscape, and outcome of IDH-mutant glioma in pediatrics. Neuro Oncol [Internet]. 2023 Jan 1;25(1):199–210. Available from: https://doi.org/10.1093/neuonc/noac132 | spa |
| dc.relation.references | Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol [Internet]. 2009;118(4):469–74. Available from: https://doi.org/10.1007/s00401-009-0561-9 | spa |
| dc.relation.references | Lassaletta A, Zapotocky M, Bouffet E, Hawkins C, Tabori U. An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: an update. Child’s Nervous System [Internet]. 2016;32(10):1789–97. Available from: https://doi.org/10.1007/s00381-016-3163-6 | spa |
| dc.relation.references | Lim-Fat MJ, Cotter JA, Touat M, Vogelzang J, Sousa C, Pisano W, et al. A comparative analysis of IDH-mutant glioma in pediatric, young adult, and older adult patients. Neuro Oncol [Internet]. 2024 Jul 31;noae142. Available from: https://doi.org/10.1093/neuonc/noae142 | spa |
| dc.relation.references | Nobre L, Bouffet E. BRAF inhibitors in BRAFV600E-mutated pediatric high-grade gliomas: Upfront or at recurrence? Neuro Oncol [Internet]. 2022 Nov 1;24(11):1976–7. Available from: https://doi.org/10.1093/neuonc/noac160 | spa |
| dc.relation.references | Behling F, Barrantes-Freer A, Skardelly M, Nieser M, Christians A, Stockhammer F, et al. Frequency of BRAF V600E mutations in 969 central nervous system neoplasms. Diagn Pathol [Internet]. 2016;11(1):55. Available from: https://doi.org/10.1186/s13000-016-0506-2 | spa |
| dc.relation.references | Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, et al. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol [Internet]. 2023;13. Available from: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1154246 | spa |
| dc.relation.references | Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R, et al. Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. Journal of Clinical Oncology [Internet]. 2017 Jul 20;35(25):2934–41. Available from: https://doi.org/10.1200/JCO.2016.71.8726 | spa |
| dc.relation.references | van den Bent MJ, Afra D, de Witte O, Hassel M Ben, Schraub S, Hoang-Xuan K, et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. The Lancet [Internet]. 2005 Sep 17;366(9490):985–90. Available from: https://doi.org/10.1016/S0140-6736(05)67070-5 | spa |
| dc.relation.references | Tabouret E, Fina F, Vincentelli F, Nanni I, Figarella-Branger D. New <em>IDH1</em> I113T mutation associated with <em>BRAF</em> V600E mutation: New driver of gliomagenesis? J Neurol Sci [Internet]. 2014 Jul 15;342(1):204–6. Available from: https://doi.org/10.1016/j.jns.2014.05.010 | spa |
| dc.relation.references | Patel K, Zhao G, Huang SM, Karakousi T, Nicolaides T, Papagiannakopoulos T. LGG-07. Novel CRISPR/Cas9 induced KIAA1549:BRAF fusion model for preclinical studies of pediatric gliomas. Neuro Oncol [Internet]. 2022 Jun 1;24(Supplement_1):i88–i88. Available from: https://doi.org/10.1093/neuonc/noac079.323 | spa |
| dc.relation.references | Taha H, Yehia M, Mahmoud M, El-Beltagy M, Ghabriel M, El-Naggar S. Incidence of kiaa1549-braf fusion gene in Egyptian pediatric low grade glioma. Clin Transl Med [Internet]. 2015 Dec 1;4(1):e10. Available from: https://doi.org/10.1186/s40169-015-0052-7 | spa |
| dc.relation.references | Hennani S, Dehbi H, Nadifi S, Karkouri M. Detection of KIAA1549/BRAF fusion in Moroccan patients with Pediatric Low-Grade Gliomas. Gene Rep [Internet]. 2020;19:100634. Available from: https://www.sciencedirect.com/science/article/pii/S2452014420300480 | spa |
| dc.relation.references | Wemmert S, Romeike BF, Ketter R, Steudel W, Zang KD, Urbschat S. Intratumoral genetic heterogeneity in pilocytic astrocytomas revealed by CGH-analysis of microdissected tumor cells and FISH on tumor tissue sections. 2006;353–60. | spa |
| dc.relation.references | Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M, et al. BRAF-KIAA1549 Fusion Predicts Better Clinical Outcome in Pediatric Low-Grade Astrocytoma. Clinical Cancer Research [Internet]. 2011 Jul 17;17(14):4790–8. Available from: https://doi.org/10.1158/1078-0432.CCR-11-0034 | spa |
| dc.relation.references | Ali RH, Almanabri M, Ali NY, Alsaber AR, Khalifa NM, Hussein R, et al. Clinicopathological analysis of BRAF and non-BRAF MAPK pathway-altered gliomas in paediatric and adult patients: a single-institution study of 40 patients. J Clin Pathol. 2024 | spa |
| dc.relation.references | Tian Y, Rich BE, Vena N, Craig JM, MacConaill LE, Rajaram V, et al. Detection of <em>KIAA1549-BRAF</em> Fusion Transcripts in Formalin-Fixed Paraffin-Embedded Pediatric Low-Grade Gliomas. The Journal of Molecular Diagnostics [Internet]. 2011 Nov 1;13(6):669–77. Available from: https://doi.org/10.1016/j.jmoldx.2011.07.002 | spa |
| dc.relation.references | Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, et al. BRAF Mutation and CDKN2A Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma. Journal of Clinical Oncology [Internet]. 2015 Feb 9;33(9):1015–22. Available from: https://doi.org/10.1200/JCO.2014.58.3922 | spa |
| dc.relation.references | Zheng X, Li X, Wang M, Shen J, Sisti G, He Z, et al. Second primary malignancies among cancer patients. Ann Transl Med [Internet]. 2020 May;8(10):638–638. Available from: http://atm.amegroups.com/article/view/43260/html | spa |
| dc.relation.references | Zhuang D, Han T, Guo D, Kong R, Chen S, Dong Y, et al. Prevalence and characteristics analysis of CDKN2A/B deletion in glioma. Journal of Clinical Oncology [Internet]. 2023 May 31;41(16_suppl):e14026–e14026. Available from: https://doi.org/10.1200/JCO.2023.41.16_suppl.e14026 | spa |
| dc.relation.references | Masui K, Onizuka H, Muragaki Y, Kawamata T, Kurata A, Komori T. Intratumoral heterogeneity of CDKN2A deletions in IDH-mutant astrocytoma. Brain Tumor Pathol [Internet]. 2024;41(2):92–5. Available from: https://doi.org/10.1007/s10014-024-00484-x | spa |
| dc.relation.references | Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF. Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol [Internet]. 2012 Jun 1;14(6):777–89. Available from: https://doi.org/10.1093/neuonc/nos077 | spa |
| dc.relation.references | Reinhardt A, Stichel D, Schrimpf D, Sahm F, Korshunov A, Reuss DE, et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol [Internet]. 2018;136(2):273–91. Available from: https://doi.org/10.1007/s00401-018-1837-8 | spa |
| dc.relation.references | Vij M, Cho BB, Yokoda RT, Rashidipour O, Umphlett M, Richardson TE, et al. P16 immunohistochemistry is a sensitive and specific surrogate marker for CDKN2A homozygous deletion in gliomas. Acta Neuropathol Commun [Internet]. 2023;11(1):73. Available from: https://doi.org/10.1186/s40478-023-01573-2 | spa |
| dc.relation.references | Antonelli M, Badiali M, Moi L, Buttarelli FR, Baldi C, Massimino M, et al. KIAA1549:BRAF fusion gene in pediatric brain tumors of various histogenesis. Pediatr Blood Cancer [Internet]. 2015 Apr 1;62(4):724–7. Available from: https://doi.org/10.1002/pbc.25272 | spa |
| dc.relation.references | Chen CH, Lin YJ, Lin YY, Lin CH, Feng LY, Chang IYF, et al. Glioblastoma Primary Cells Retain the Most Copy Number Alterations That Predict Poor Survival in Glioma Patients. Front Oncol [Internet]. 2021;11. Available from: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.621432 | spa |
| dc.relation.references | Villani V, Casini B, Tanzilli A, Lecce M, Rasile F, Telera S, et al. The Glioma-IRE project − Molecular profiling in patients with glioma: steps toward an individualized diagnostic and therapeutic approach. J Transl Med [Internet]. 2023;21(1):215. Available from: https://doi.org/10.1186/s12967-023-04057-y | spa |
| dc.relation.references | Giunti L, Pantaleo M, Sardi I, Provenzano A, Magi A, Cardellicchio S, et al. Genome-wide copy number analysis in pediatric glioblastoma multiforme. Am J Cancer Res. 2014 Jun 24;4:293–303. | spa |
| dc.relation.references | Badiali M, Gleize V, Paris S, Moi L, Elhouadani S, Arcella A, et al. KIAA1549-BRAF Fusions and IDH Mutations Can Coexist in Diffuse Gliomas of Adults. Brain Pathology [Internet]. 2012 Nov 1;22(6):841–7. Available from: https://doi.org/10.1111/j.1750-3639.2012.00603.x | spa |
| dc.relation.references | Messiaen J, Claeys A, Shetty A, Spans L, Derweduwe M, Uyttebroeck A, et al. Generation of patient-derived models from a metastatic pediatric diffuse leptomeningeal glioneuronal tumor with KIAA1549::BRAF fusion. Acta Neuropathol [Internet]. 2022;144(4):793–7. Available from: https://doi.org/10.1007/s00401-022-02473-w | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Reconocimiento 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
| dc.subject.ddc | 610 - Medicina y salud | spa |
| dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
| dc.subject.decs | Glioma | spa |
| dc.subject.decs | Inmunohistoquímica | spa |
| dc.subject.decs | Immunohistochemistry | eng |
| dc.subject.decs | Análisis Citogenético | spa |
| dc.subject.decs | Cytogenetic Analysis | eng |
| dc.subject.decs | Supresión Genética | spa |
| dc.subject.decs | Suppression, Genetic | eng |
| dc.subject.proposal | Gliomas pediátricos | spa |
| dc.subject.proposal | Diagnóstico molecular | spa |
| dc.subject.proposal | Biomarcadores | spa |
| dc.subject.proposal | Citogenética molecular | spa |
| dc.subject.proposal | Pediatric gliomas | eng |
| dc.subject.proposal | Molecular diagnosis | eng |
| dc.subject.proposal | Biomarkers | eng |
| dc.subject.proposal | Molecular cytogenetics | eng |
| dc.title | Detección de alteraciones genéticas en gliomas pediátricos y asociación con factores clínicos: Análisis retrospectivo de una muestra poblacional en el Hospital Fundación la Misericordia de la ciudad de Bogotá, Colombia | spa |
| dc.title.translated | Detection of genetic alterations in pediatric gliomas and association with clinical factors: A retrospective analysis of a population sample at Hospital Fundación la Misericordia in Bogotá, Colombia. | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 1014278697.2025.pdf
- Tamaño:
- 10.27 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Genética Humana
Cargando...
- Nombre:
- Anexo1.xlsx
- Tamaño:
- 22.94 KB
- Formato:
- Microsoft Excel XML
- Descripción:
- Anexo 1.
Cargando...
- Nombre:
- Anexo2.pdf
- Tamaño:
- 1.91 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Anexo 2.
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

