Modelo de asignación de rutas en sistemas de transporte urbano considerando el comportamiento de los usuarios desde la perspectiva de toma de decisiones

dc.contributor.advisorJaramillo Alvarez, Gloria Patricia
dc.contributor.advisorSarmiento Ordosgoitia, Ivan Reinaldo
dc.contributor.authorÁlvarez Valle, William Albeiro
dc.contributor.cvlacÁlvarez Valle, William Albeiro {https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001458142]spa
dc.contributor.googlescholarÁlvarez Valle, William Albeiro [https://scholar.google.com/citations?user=PH8T5P4AAAAJ&hl=es&oi=ao]spa
dc.contributor.orcidÁlvarez-Valle, William [0000-0001-9618-3902]spa
dc.contributor.orcidJaramillo Álvarez, Gloria Patricia [0000-0001-9007-4326]spa
dc.contributor.orcidSarmiento Ordosgoitia, Ivan Reinaldo [0000-0001-7287-4573]spa
dc.contributor.researchgroupCiencias de la Decisionspa
dc.date.accessioned2023-01-30T18:37:17Z
dc.date.available2023-01-30T18:37:17Z
dc.date.issued2021-12-16
dc.descriptionilustraciones, diagramas
dc.description.abstractEn cualquier ciudad del mundo, los recorridos de los taxis constituyen una gran fuente de datos para los estudios urbanos, dada su capacidad para captar una gran proporción de viajes entre diferentes orígenes y destinos. Esta tesis propone una metodología de recolección de datos de comportamiento en tiempo real in situ de los conductores de servicio público (Taxis). Se diseñó un cuestionario con dos componentes: i) Encuesta de preferencias reveladas y aspectos de la personalidad a través de la observación directa de los conductores y ii) información de la ruta a través de dispositivos GPS que miden la distancia y el tiempo durante el viaje. La recolección de datos se centró en la reacción a la información sobre el viaje y durante el mismo, la disposición de los conductores a recibir información sobre la red, su comportamiento al conducir y su influencia en la elección de una ruta. Adicionalmente se proponen y estiman; un modelo híbrido de elección discreta que integra la variable latente en relación a la forma de conducir; modelos prospectivos y modelos de arrepentimiento de elección de ruta que capturan el comportamiento de elección de los conductores en condiciones de tráfico real. Los modelos de elección de ruta utilizados son el MNL, C-Logit, PSL y PSCL. La estimación de los modelos se realiza con la muestra de datos de comportamiento en tiempo real in situ de los conductores de servicio público (Taxis) de la ciudad de Medellín, Colombia, donde se comparan sus desempeños en términos de calidad de resultados, de predicción y análisis conceptual. (Texto tomado de la fuente)spa
dc.description.abstractIn any city of the world, the taxi paths provide a big reasonable data source for urban studies given their ability to capture a large proportion of trips between different origins and destinations. This thesis proposes a methodology for collecting real-time behavioral data in situ from public service (Taxi) drivers. A questionnaire was designed with two components: i) survey of revealed preferences and personality aspects through direct observation of the drivers and ii) route information through GPS devices measuring distance and time during the trip. Data collection focused on the reaction to information about and during the trip, drivers' willingness to receive information about the network, their driving behavior and its influence on the choice of a route. Additionally, we propose and estimate; a hybrid discrete choice model that integrates the latent variable in relation to driving style; prospective models and route choice regret models that capture drivers' choice behavior under real traffic conditions. The route choice models used are the MNL, C-Logit, PSL and PSCL. The estimation of the models is performed with the sample of real-time in situ behavioral data of public service drivers (Taxis) in the city of Medellin, Colombia, where their performances are compared in terms of quality of results, prediction and conceptual analysis.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaCiencias de la decisión – Teorías de comportamientospa
dc.format.extentx,181 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83188
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAgresti, A. (2002). Categorical Data Analysis, 2nd ed. In Wiley (Vol. 13).spa
dc.relation.referencesAMVA. (2017). Encuesta origen destino 2017. Área Metropolitana Del Valle de Aburrá. https://www.metropol.gov.co/observatorio/Paginas/encuestaorigendestino.aspxspa
dc.relation.referencesAndri te mult al. Signorelli. (2021). DescTools: Tools for Descriptive Statistics. R Package Version 0.99.40.spa
dc.relation.referencesAugier, M., & Kreiner, K. (2000). Rationality, Imagination and Intelligence: Some Boundaries in Human Decision-making. Industrial and Corporate Change, 9(4), 659–681.spa
dc.relation.referencesAvineri, E. (2006). The Effect of Reference Point on Stochastic Network Equilibrium. Transportation Science, 40(4), 409–420. https://doi.org/10.1287/trsc.l060.0158spa
dc.relation.referencesAvineri, E., & Prashker, J. (2004). Violations of Expected Utility Theory in Route-Choice Stated Preferences: Certainty Effect and Inflation of Small Probabilities. Transportation Research Record: Journal of the Transportation Research Board, 1894, 222–229. https://doi.org/10.3141/1894-23spa
dc.relation.referencesAvineri, E., & Prashker, J. N. (2005). Sensitivity to travel time variability: Travelers learning perspective. Transportation Research Part C: Emerging Technologies, 13, 157–183. https://doi.org/10.1016/j.trc.2005.04.006spa
dc.relation.referencesAvineri, E., & Prashker, J. N. (2006). The impact of travel time information on travelers ’ learning under uncertainty. Transportation, 33, 393–408. https://doi.org/10.1007/s11116-005-5710-yspa
dc.relation.referencesAxhausen, K. W., & Schüssler, N. (2009). Accounting for route overlap in urban and suburban route choice decisions derived from GPS observations. Proc. 12th International Conference on Travel Behavior Research, 984–994. https://doi.org/10.3929/ethz-a-010782581spa
dc.relation.referencesBatley, R., & Daly, A. (2006). On the equivalence between elimination-by-aspects and generalised extreme value models of choice behaviour. Journal of Mathematical Psychology, 50(5), 456–467. https://doi.org/10.1016/j.jmp.2006.05.003spa
dc.relation.referencesBell, D. E. (1982). Regret in Decision Making under Uncertainty. In Operations Research (Vol. 30, Issue 5, pp. 961–981). https://doi.org/10.1287/opre.30.5.961spa
dc.relation.referencesBen-Akiva, M., & Bierlaire, M. (1999). Discrete choice methods and their applications to short term travel decisions. In Handbook of transportation science (pp. 5–33). Springer.spa
dc.relation.referencesBen-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., Bolduc, D., Boersch-Supan, A., Brownstone, D., Bunch, D. S., Daly, A., de Palma, A., Gopinath, D., Karlstrom, A., & Munizaga, M. a. (2002). Hybrid Choice Models : Progress and Challenges Massachusetts Institute of Technology. Marketing Letters, 13(3), 163–175. https://doi.org/10.1023/A:1020254301302spa
dc.relation.referencesBen-Elia, E., Di Pace, R., Bifulco, G. N., & Shiftan, Y. (2013). The impact of travel information ’ s accuracy on route-choice. TRANSPORTATION RESEARCH PART C, 26, 146–159. https://doi.org/10.1016/j.trc.2012.07.001spa
dc.relation.referencesBen-Elia, E., Erev, I., & Shiftan, Y. (2008). The combined effect of information and experience on drivers’ route-choice behavior. Transportation, 35(2), 165–177. https://doi.org/10.1007/s11116-007-9143-7spa
dc.relation.referencesBierlaire, M. (2020). A short introduction to PandasBiogeme. Technical Report TRANSP-OR 200605. Transport and Mobility Laboratory, ENAC, EPFL. https://biogeme.epfl.ch/spa
dc.relation.referencesBierlaire, M., Chen, J., & Newman, J. P. (2010). Modeling Route Choice Behavior From Smartphone GPS data. Transport, TRANSP-OR 101016, 1–12. http://transp-or.epfl.ch/documents/technicalReports/BierChenNewm10.pdfspa
dc.relation.referencesBliemer, M. C. J., & Bovy, P. H. L. (2008). Impact of route choice set on route choice probabilities. Transportation Research Record, 2076, 10–19. https://doi.org/10.3141/2076-02spa
dc.relation.referencesBonsall, P. (2004). Traveller behavior: Decision-making in an unpredictable world. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 8(1), 45–60. https://doi.org/10.1080/15472450490437744spa
dc.relation.referencesBovy, P. H. L., Bekhor, S., & Prato, C. G. (2008). The factor of revisited path size: Alternative derivation. Transportation Research Record, 2076, 132–140. https://doi.org/10.3141/2076-15spa
dc.relation.referencesBrowne, M. W., & Cudeck, R. (1992). Alternative Ways of Assessing Model Fit. In Sociological Methods & Research (Vol. 21, Issue 2, pp. 230–258). https://doi.org/10.1177/0049124192021002005spa
dc.relation.referencesCantillo, V., & Ortúzar, J. de D. (2005). A semi-compensatory discrete choice model with explicit attribute thresholds of perception. Transportation Research Part B: Methodological, 39(7), 641–657. https://doi.org/10.1016/j.trb.2004.08.002spa
dc.relation.referencesCascetta, E. (2013). Transportation systems engineering: theory and methods. Springer Science \& Business Media.spa
dc.relation.referencesCascetta, E., Nuzzolo, A., Russo, F., & Vitetta, A. (1996). A modified logit route choice model overcoming path overlapping problems: Specification and some calibration results for interurban networks. In Transportation and Traffic Theory.: Vol. PROCEEDING (pp. 697–711). http://www.alkox.informatik.hu-berlin.de/lehre/lvws0809/verkehr/logit.pdfspa
dc.relation.referencesCastro, P. S., Zhang, D., Chen, C., Li, S., & Pan, G. (2013). From taxi GPS traces to social and community dynamics: A survey. ACM Computing Surveys, 46(2). https://doi.org/10.1145/2543581.2543584spa
dc.relation.referencesCastro, P. S., Zhang, D., & Li, S. (2012). Urban traffic modelling and prediction using large scale taxi GPS traces. International Conference on Pervasive Computing, 57–72.spa
dc.relation.referencesChen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M. (2016). The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies, 68, 285–299. https://doi.org/10.1016/j.trc.2016.04.005spa
dc.relation.referencesCheng, A. S. K., Liu, K. P. Y., & Tulliani, N. (2015). Relationship between driving-violation behaviours and risk perception in motorcycle accidents. Hong Kong Journal of Occupational Therapy, 25, 32–38. https://doi.org/10.1016/j.hkjot.2015.06.001spa
dc.relation.referencesChorus, C. (2012a). Random Regret Minimization: An Overview of Model Properties and Empirical Evidence. Transport Reviews, 32(1), 75–92. https://doi.org/10.1080/01441647.2011.609947spa
dc.relation.referencesChorus, C. (2012b). What about behaviour in travel demand modelling? An overview of recent progress. Transportation Letters, 4(2), 93–104. https://doi.org/10.3328/TL.2012.04.02.93-104spa
dc.relation.referencesChorus, C., Arentze, T., & Timmermans, H. (2008). A comparison of regret-minimization and utility maximization in the context of tavel mode-choices. 87th Annual Meeting of the Transportation Research Board, Washington, DC, USA.spa
dc.relation.referencesChorus, C. G. (2010). A New Model of Random Regret Minimization. European Journal of Transport and Infrastructure Research, 10(2), 181–196.spa
dc.relation.referencesChorus, C. G. (2012). Regret theory-based route choices and traffic equilibria. Transportmetrica, 8(July 2015), 291–305. https://doi.org/10.1080/18128602.2010.498391spa
dc.relation.referencesChorus, C. G. (2014). A generalized random regret minimization model. Transportation Research Part B: Methodological, 68, 224–238. https://doi.org/10.1016/j.trb.2014.06.009spa
dc.relation.referencesChorus, C. G., Arentze, T. A., & Timmermans, H. J. P. (2008). A Random Regret-Minimization model of travel choice. Transportation Research Part B, 42, 1–18. https://doi.org/10.1016/j.trb.2007.05.004spa
dc.relation.referencesChorus, C., van Cranenburgh, S., & Dekker, T. (2014). Random regret minimization for consumer choice modeling: Assessment of empirical evidence. Journal of Business Research, 67(11), 2428–2436. https://doi.org/10.1016/j.jbusres.2014.02.010spa
dc.relation.referencesCiscal-Terry, W., Dell’Amico, M., Hadjidimitriou, N. S., & Iori, M. (2016). An analysis of drivers route choice behaviour using GPS data and optimal alternatives. Journal of Transport Geography, 51, 119–129. https://doi.org/10.1016/j.jtrangeo.2015.12.003spa
dc.relation.referencesConnors, R. D., & Sumalee, A. (2009). A network equilibrium model with travellers’ perception of stochastic travel times. Transportation Research Part B: Methodological, 43(6), 614–624. https://doi.org/10.1016/j.trb.2008.12.002spa
dc.relation.referencesCórdoba, J. E., & Jaramillo, P. (2012). Inclusion of the Latent Personality Variable in Multinomial Logit Models Using the 16pf Psychometric Test. Procedia - Social and Behavioral Sciences, 54, 169–178. https://doi.org/10.1016/j.sbspro.2012.09.736spa
dc.relation.referencesCórdoba Maquilón, J. (2010). Modelo de Eleccion Discreta Integrando Variables Latentes y Racionalidad Limitada. Universidad Nacional de Colombia.spa
dc.relation.referencesDaganzo, C. F. (1979). Multinomial Probit: The Theory and its Applications to Demand Forecasting (A. Press (ed.)).spa
dc.relation.referencesde Moraes Ramos, G., Daamen, W., & Hoogendoorn, S. (2011). Expected utility theory, prospect theory, and regret theory compared for prediction of route choice behavior. Transportation Research Record: Journal of the Transportation Research Board, 2230, 19–28.spa
dc.relation.referencesde Palma, A., Lindsey, R., & Picard, N. (2012). Risk Aversion, the Value of Information, and Traffic Equilibrium. In Transportation Science (Vol. 46, Issue 1, pp. 1–26).spa
dc.relation.referencesde Palma, André., Lindsey, R., & Picard, N. (2007). Congestion, risk aversion and the value of information. In Paper provided by THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise in its (Vol. 20). https://doi.org/10.1080/00220480009596456spa
dc.relation.referencesde Palma, André, & Picard, N. (2005). Route choice decision under travel time uncertainty. Transportation Research Part A: Policy and Practice, 39, 295–324. https://doi.org/10.1016/j.tra.2004.10.001spa
dc.relation.referencesDeffenbacher, J. L., Oetting, E. R., & Lynch, R. S. (1994). Development of a driving anger scale. Psychological Reports, 74(1), 83–91. https://doi.org/10.2466/pr0.1994.74.1.83spa
dc.relation.referencesDhakar, N. S. (2012). Route Choice Modeling Using Gps Data. University of Florida.spa
dc.relation.referencesDhakar, N. S., & Srinivasan, S. (2014). Route Choice Modelling using GPS based travel Surveys. Transportation Research Record: Journal of the Transportation Research Board, 2413, 65–73. https://doi.org/10.3141/2413-07spa
dc.relation.referencesDíaz Monroy, L. G., & Morales Rivera, M. A. (2009). Análisis estadístico de datos categóricos (Editorial). Universidad Nacional de Colombia, Facultad de Ciencias.spa
dc.relation.referencesDomencich, T. A., & McFadden, D. (1975). Urban travel demand-a behavioral analysis. North-Holland Publishing Co. https://eml.berkeley.edu/~mcfadden/travel.htmlspa
dc.relation.referencesDuncan, L. C., Watling, D. P., Connors, R. D., Rasmussen, T. K., & Nielsen, O. A. (2020). Path Size Logit route choice models: Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale network with GPS data. Transportation Research Part B: Methodological, 135, 1–40. https://doi.org/10.1016/j.trb.2020.02.006spa
dc.relation.referencesEstrada, F. (2008). Economía y racionalidad de las organizaciones. Los aportes de Herbert A. Simon. Revista de Estudios Sociales, 31, 84–103.spa
dc.relation.referencesFaraway, J. J. (2005). Extending the Linear Model with R. Extending the Linear Model with R. https://doi.org/10.1201/b15416spa
dc.relation.referencesFrejinger, E., & Bierlaire, M. (2007). Capturing correlation with subnetworks in route choice models. Transportation Research Part B: Methodological, 41(3), 363–378. https://doi.org/10.1016/j.trb.2006.06.003spa
dc.relation.referencesFrejinger, E., Bierlaire, M., & Ben-Akiva, M. (2009). Sampling of alternatives for route choice modeling. Transportation Research Part B: Methodological, 43(10), 984–994. https://doi.org/10.1016/j.trb.2009.03.001spa
dc.relation.referencesFujii, S., & Kitamura, R. (2000). Anticipated travel time, information acquisition, and actual experience. Transportation Research Record, 1725(00), 79–85.spa
dc.relation.referencesGao, S., Frejinger, E., & Ben-akiva, M. (2011). Cognitive cost in route choice with real-time information : An exploratory analysis. Transportation Research Part A, 45(9), 916–926. https://doi.org/10.1016/j.tra.2011.04.008spa
dc.relation.referencesGao, S., Frejinger, E., & Ben-Akiva, M. (2010). Adaptive route choices in risky traffic networks: A prospect theory approach. Transportation Research Part C: Emerging Technologies, 18(5), 727–740. https://doi.org/10.1016/j.trc.2009.08.001spa
dc.relation.referencesGaz.wiki. (2016). Google Ads -Sitio oficial Mapas de Google. https://gaz.wiki/wiki/es/Google_Mapsspa
dc.relation.referencesGigante, V. (2017). Racionalidad y Razonabilidad Una actualización de la toma de decisiones desde la economía del comportamiento , las neurociencias y la teoría evolutiva. http://bibliotecadigital.econ.uba.ar/econ/collection/tesis/document/1501-1276_GiganteVLspa
dc.relation.referencesGlendon, A. I., Dorn, L., Matihews, G., Gulian, E., Davies, D. R., & Debney, L. M. (1993). Reliability of the driving behaviour inventory. Ergonomics, 36(6), 719–726. https://doi.org/10.1080/00140139308967932spa
dc.relation.referencesHair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. (2006). Multivariate Data Analysis: Pearson Education. (N. J. Hoboken. (ed.)).spa
dc.relation.referencesHemmert, G. A. J., Schons, L. M., Wieseke, J., & Schimmelpfennig, H. (2018). Log-likelihood-based Pseudo-R2 in Logistic Regression: Deriving Sample-sensitive Benchmarks. Sociological Methods and Research, 47(3), 507–531. https://doi.org/10.1177/0049124116638107spa
dc.relation.referencesHennessy, D. (2011). Social, personality, and affective constructs in driving. In Handbook of Traffic Psychology. Elsevier. https://doi.org/10.1016/B978-0-12-381984-0.10012-8spa
dc.relation.referencesHennessy, D., Hemingway, J., & Howard, S. R. (2007). The effects of media portrayals of dangerous driving on young driver’s performance. In Filip N. Gustavsson (Ed.), New Transportation Research Progress (pp. 143–156).spa
dc.relation.referencesHensher, D. A., Greene, W. H., & Chorus, C. G. (2011). Random regret minimization or random utility maximization: an exploratory analysis in the context of automobile fuel choice. Journal of Advanced Transportation. https://doi.org/10.1002/atr.188spa
dc.relation.referencesHensher, D. A., Greene, W. H., & Li, Z. (2011). Embedding risk attitude and decision weights in non-linear logit to accommodate time variability in the value of expected travel time savings. Transportation Research Part B: Methodological. https://doi.org/10.1016/j.trb.2011.05.023spa
dc.relation.referencesHensher, D., Louviere, J., & Swait, J. (2000). Satted choice methods:analysis and application. Journal of Econometrics, 89(1–2), 197–221.spa
dc.relation.referencesHerrera, J. C., Work, D. B., Herring, R., Ban, X. (Jeff), Jacobson, Q., & Bayen, A. M. (2010). Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment. Transportation Research Part C: Emerging Technologies, 18(4), 568–583. https://doi.org/10.1016/j.trc.2009.10.006spa
dc.relation.referencesHerring, R., Hofleitner, A., Abbeel, P., & Bayen, A. (2010). Estimating arterial traffic conditions using sparse probe data. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, September, 929–936. https://doi.org/10.1109/ITSC.2010.5624994spa
dc.relation.referencesHess, S., & Palma, D. (2019). Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application. Journal of Choice Modelling, 32, 100 170.spa
dc.relation.referencesHu, G., Sivakumar, A., & Polak, J. W. (2012). Modelling travellers’ risky choice in a revealed preference context: A comparison of EUT and non-EUT approaches. Transportation, 39(4), 825–841. https://doi.org/10.1007/s11116-012-9408-7spa
dc.relation.referencesJakimavi, M., & Burinskien, M. (2010). Route planning methodology of an advanced traveller information system in Vilnius city. Transport, 25(2), 171–177. https://doi.org/10.3846/transport.2010.21spa
dc.relation.referencesJan, O., & Horowitz, A. J. (2000). Using GPS Data to Understand Variations in Path Choice. Transportation Research Record: Journal of the Transportation Research Board, 1725, 37–44.spa
dc.relation.referencesJaramillo Álvarez, P., & Lotero Vélez, L. (2010). Modelos de Optimización de la Operación del Transporte Público Colectivo (E. Unal (ed.)).spa
dc.relation.referencesJay, M. (2019). generalhoslem: Goodness of Fit Tests for Logistic Regression Models (R package version 1.3.4). https://cran.r-project.org/package=generalhoslemspa
dc.relation.referencesJiang, X., Ji, Y., Du, M., & Deng, W. (2014). A Study of Driver ’ s Route Choice Behavior Based on Evolutionary Game Theory. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2014/124716spa
dc.relation.referencesJou, R. C., & Chen, K. H. (2013). An application of cumulative prospect theory to freeway drivers’ route choice behaviours. Transportation Research Part A: Policy and Practice, 49(1), 123–131. https://doi.org/10.1016/j.tra.2013.01.011spa
dc.relation.referencesKahneman, D. (2011). Thinking fast, thinking slow. In Interpretation, Tavistock, London.spa
dc.relation.referencesKahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–292.spa
dc.relation.referencesKahneman, D., & Tversky, A. (1991). Loss aversion in riskless choice: a reference-dependent model. The Quarterly Journal of Economics, 106.spa
dc.relation.referencesKatsikopoulos, K. V, Duse-anthony, Y., Fisher, D. L., & Susan, A. (2002). Risk Attitude Reversals in Drivers ’ Route Choice when Range of Travel Time Information is Provided. Human Factors, 44(3).spa
dc.relation.referencesKlauer, S., Dingus, T., Neale, T., Sudweeks, J., & Ramsey, D. (2006). The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic Driving Study Data.spa
dc.relation.referencesKong, X., Yang, J., & Yang, Z. (2015). Measuring Traffic Congestion with Taxi GPS Data and Travel Time Index. In CICTP 2015 (pp. 3751--3762). http://ascelibrary.org/doi/abs/10.1061/9780784479292.fmspa
dc.relation.referencesLaha, A. K., & Putatunda, S. (2018). Real time location prediction with taxi-GPS data streams. Transportation Research Part C: Emerging Technologies, 92(May), 298–322. https://doi.org/10.1016/j.trc.2018.05.005spa
dc.relation.referencesLedesma, R. D., Poó, F. M., & Montes, S. A. (2011). Psiencia revista latinoamericana de ciencia psicológica. Psiencia Revista Latinoamericana de Ciencia Psicológica, 3(2), 98–104.spa
dc.relation.referencesLi, D., Miwa, T., & Morikawa, T. (2013). Dynamic Route Choice Behavior Analysis Considering En-route Learning and Choices. Transportation Research Record, 5(6024), 1–19. https://doi.org/10.3141/2383-01spa
dc.relation.referencesLi, H., Guensler, R., & Ogle, J. (2005). Analysis of Morning Commute Route Choice Patterns Using Global Positioning System-Based Vehicle Activity Data. Transportation Research Record, 1926(1), 162–170. https://doi.org/10.3141/1926-19spa
dc.relation.referencesLi, Z., & Hensher, D. (2011). Prospect Theoretic Contributions in Understanding Traveller Behaviour: A Review and Some Comments. Transport Reviews, 31(1), 97–115. https://doi.org/10.1080/01441647.2010.498589spa
dc.relation.referencesLiang, Z., & Wakahara, Y. (2014). Real-time urban traffic amount prediction models for dynamic route guidance systems. EURASIP Journal on Wireless Communications and Networking, 85, 1–13.spa
dc.relation.referencesLiu, S., & Qu, Q. (2016). Dynamic collective routing using crowdsourcing data. Transportation Research Part B: Methodological, 93, 450–469. https://doi.org/10.1016/j.trb.2016.08.005spa
dc.relation.referencesLiu, X., Gong, L., Gong, Y., & Liu, Y. (2015). Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 43, 78–90. https://doi.org/10.1016/j.jtrangeo.2015.01.016spa
dc.relation.referencesLoomes, G., & Sugden, R. (1982). Regret Theory: An Alternative Theory of Rational Choice under Uncertainty. Economic Journal, 92(368), 805–824. http://teaching.ust.hk/~bee/papers/misc/Regret Theory An Alternative Theory of Rational Choice Under Uncertainty.pdfspa
dc.relation.referencesLoomes, G., & Sugden, R. (1987). Some implications of a more general form of regret theory. Journal of Economic Theory, 41(2), 270–287.spa
dc.relation.referencesMa, J., & Fukuda, D. (2013). Hyperpath or Shortest Path : An Evaluation Method and a Case Study with GPS Probe Data. Proceedings of the Eastern Asia Society for Transportation Studies, 9.spa
dc.relation.referencesMachina, M. J. (1987). Decision-Making in the Presence of Risk. Science, New Series, 236(4801), 537–543.spa
dc.relation.referencesMarković, N., Sekuła, P., Laan, Z. Vander, Andrienko, G., & Andrienko, N. (2017). Applications of Trajectory Data in Transportation: Literature Review and Maryland Case Study. http://arxiv.org/abs/1708.07193spa
dc.relation.referencesMcFadden, D. (1974). Conditional logit analysis of qualitative choice behavior.spa
dc.relation.referencesResolución Número 2210 de 2016, Gazeta oficial Concejo de Medellín 534 (2016). https://www.medellin.gov.co/normograma/docs/astrea/docs/r_smmed_2210_2016.htmspa
dc.relation.referencesMendieta, J. C., & Perdomo, J. A. (2008). Fundamentos de Economía del Transporte: Teoría, Metodología y Análisis de Política (C. E. Uniandes (ed.); Primera Ed).spa
dc.relation.referencesDecreto número 172 de 2001: "Por el cual se reglamenta el Servicio Público de Transporte Terrestre Automotor Individual de Pasajeros en Vehículos Taxi ”, 1 (2001). www.mintransporte.gov.co/descargar.php?idFile=125+&cd=1&hl=es&ct=clnk&gl=cospa
dc.relation.referencesMovilidad, S. de. (2019). Sistema inteligente de movilidad. Secretaría de Movilidad de Medellín. https://www.medellin.gov.co/movilidad/spa
dc.relation.referencesMullen, N., Charlton, J., Devlin, A., & Bedard, M. (2011). Simulator validity: Behaviours observed on the simulator and on the road. In D. L. Fisher, M. Rizzo, J. K. Caird, & J. D. Lee (Eds.),. In Handbook of Driving Simulation for Engineering, Medicine and Psychology (1st ed, pp. 1–18). CRC Press.spa
dc.relation.referencesNoland, R. B., Small, K. a., Koskenoja, P. M., & Chu, X. (1998). Simulating travel reliability. Regional Science and Urban Economics, 28(5), 535–564. https://doi.org/10.1016/S0166-0462(98)00009-Xspa
dc.relation.referencesNoland, R., & Small, K. (1995). Travel Time Uncertainty, Departure Time Choice, and the Cost of the Morning Commute. Transportation Research Record, 1493.spa
dc.relation.referencesOrro Arcay, A., & García Benítez, F. (2005). Modelos de elección discreta en transportes con coeficientes aleatorios. Universidad de A CORUÑA.spa
dc.relation.referencesOrtúzar, J. D. D., & Willumsen, L. G. (1990). Modelling Transport (Wiley (ed.)).spa
dc.relation.referencesPatire, A. D., Wright, M., Prodhomme, B., & Bayen, A. M. (2015). How much GPS data do we need? Transportation Research Part C: Emerging Technologies, 58, 325–342. https://doi.org/10.1016/j.trc.2015.02.011spa
dc.relation.referencesPrato, C. G. (2009). Route choice modeling: Past, present and future research directions. Journal of Choice Modelling, 2(1), 65–100. https://doi.org/10.1016/S1755-5345(13)70005-8spa
dc.relation.referencesPrato, C. G. (2014). Expanding the applicability of random regret minimization for route choice analysis. Transportation, 41(2), 351–375. https://doi.org/10.1007/s11116-013-9489-yspa
dc.relation.referencesPrato, C. G., & Bekhor, S. (2007). Modeling route choice behavior: How relevant is the composition of choice set? Transportation Research Record, 2003, 64–73. https://doi.org/10.3141/2003-09spa
dc.relation.referencesPrato, C. G., Bekhor, S., & Pronello, C. (2012). Latent variables and route choice behavior. Transportation, 39(2), 299–319. https://doi.org/10.1007/s11116-011-9344-yspa
dc.relation.referencesQin, G., Li, T., Yu, B., Wang, Y., Huang, Z., & Sun, J. (2017). Mining factors affecting taxi drivers’ incomes using GPS trajectories. Transportation Research Part C: Emerging Technologies, 79, 103–118. https://doi.org/10.1016/j.trc.2017.03.013spa
dc.relation.referencesR Core Team. (2020). R: A language and Enviroment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesRamaekers, K., Reumers, S., Wets, G., & Cools, M. (2013). Modelling Route Choice Decisions of Car Travellers Using Combined GPS and Diary Data. Networks and Spatial Economics, 13(3), 351–372. https://doi.org/10.1007/s11067-013-9184-8spa
dc.relation.referencesRamos, G. D. M., Daamen, W., & Hoogendoorn, S. (2011). Expected utility theory, prospect theory, and regret theory compared for prediction of route choice behavior. Transportation Research Record, 2230, 19–28. https://doi.org/10.3141/2230-03spa
dc.relation.referencesRamos, G. D. M., Daamen, W., & Hoogendoorn, S. (2014). A State-of-the-Art Review : Developments in Utility Theory , Prospect Theory and Regret Theory to Investigate Travellers ’ Behaviour in Situations Involving Travel Time Uncertainty. Transport Reviews: A Transnational Transdisciplinary Journal, 34, 46–67. https://doi.org/10.1080/01441647.2013.856356spa
dc.relation.referencesRasouli, S., & Timmermans, H. (2014). Applications of theories and models of choice and decision-making under conditions of uncertainty in travel behavior research. Travel Behaviour and Society, 1(3), 79–90. https://doi.org/10.1016/j.tbs.2013.12.001spa
dc.relation.referencesReason, J., Manstead, A., Stephen, S., Baxter, J., & Campbell, K. (1990). Errors and violations on the roads: A real distinction? Ergonomics, 33(10–11), 1315–1332. https://doi.org/10.1080/00140139008925335spa
dc.relation.referencesRichman, H. B., Staszewski, J. J., & Simon, H. a. (1995). Simulation of expert memory using EPAM IV. Psychological Review, 102(2), 305–330. https://doi.org/10.1037/0033-295X.102.2.305spa
dc.relation.referencesSbicca, A. (2014). Heurísticas no Estudo das Decisões Econômicas : contribuições de Herbert Simon, Daniel Kahneman e Amos Tversky. Estudos Econômicos (São Paulo), 44(3), 579–603.spa
dc.relation.referencesSchafer, A., & Victor, D. G. (2000). The future mobility of the world population. Transportation Research Part A: Policy and Practice, 34, 171–205. https://doi.org/10.1016/S0965-8564(98)00071-8spa
dc.relation.referencesSchwanen, T., & Ettema, D. (2009). Coping with unreliable transportation when collecting children: Examining parents’ behavior with cumulative prospect theory. Transportation Research Part A: Policy and Practice. https://doi.org/10.1016/j.tra.2009.01.002spa
dc.relation.referencesSebora, T., & Cornwall, J. R. (1995). Expected Utility Theory Vs . Prospect Theory : For Strategic Decision Makers Implications. Journal of Managerial Issues, 7(1), 41–61. http://www.jstor.org/stable/40604049spa
dc.relation.referencesSenbil, M., & Kitamura, R. (2004). Reference Points in Commuter Departure Time Choice: A Prospect Theoretic Test of Alternative Decision Frames. Journal of Intelligent Transportation Systems: Technology, Planning and Operations, 8(1), 19–31. https://doi.org/10.1080/15472450490437726spa
dc.relation.referencesSikka, N. (2012). Understanding travelers ’ route choice behavior under uncertainty. In Thesis. University of Iowa.spa
dc.relation.referencesSimon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of Economics, 69(1), 99–118.spa
dc.relation.referencesStern, E., & Richardson, H. W. (2005). Behavioural modelling of road users: current research and future needs. Transport Reviews, 25(2), 159–180. https://doi.org/10.1080/0144164042000313638spa
dc.relation.referencesTawfik, A. M., Rakha, H. a., & Miller, S. D. (2010a). Driver route choice behavior: Experiences, perceptions, and choices. IEEE Intelligent Vehicles Symposium, Proceedings, 1195–1200. https://doi.org/10.1109/IVS.2010.5547968spa
dc.relation.referencesTawfik, A. M., Rakha, H. A., & Miller, S. D. (2010b). An Experimental Exploration of Route Choice: Identifying Drivers Choices and Choice Patterns, and Capturing Network Evolution. 2010 13th International IEEE Annual Conference on Intelligent Transportation System, Madeira Island, Portugal, September 19-22, 2010, 1005–1012.spa
dc.relation.referencesThiene, M., Boeri, M., & Chorus, C. G. (2012). Random Regret Minimization: Exploration of a New Choice Model for Environmental and Resource Economics. Environmental and Resource Economics, 51(3), 413–429. https://doi.org/10.1007/s10640-011-9505-7spa
dc.relation.referencesThomas W. Yee. (2021). VGAM: Vector Generalized Linear and Additive Models. (R package version 1.1-5.). https://cran.r-project.org/package=VGAM%0Aspa
dc.relation.referencesTian, L. J., Huang, H. J., & Gao, Z. Y. (2012). A Cumulative Perceived Value-Based Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on Arrival Time. Networks and Spatial Economics. https://doi.org/10.1007/s11067-011-9168-5spa
dc.relation.referencesTomas Lucas, J., & Sirvent Boix, R. (1992). Una Versión de la Teoría del Arrepentimiento: Aplicación a la Demanda de Seguro. Investigaciones Económicas, XVI(1), 43'62.spa
dc.relation.referencesTRB. (2016). The Highway Capacity Manual: A Guide for Multimodal Mobility Analysis (6th ed.).spa
dc.relation.referencesTseng, Y. Y., & Verhoef, E. T. (2008). Value of time by time of day: A stated-preference study. Transportation Research Part B: Methodological, 42(7–8), 607–618. https://doi.org/10.1016/j.trb.2007.12.001spa
dc.relation.referencesTversky, A. (1972a). Choice by elimination. Journal of Mathematical Psychology, 9(4), 341–367. https://doi.org/10.1016/0022-2496(72)90011-9spa
dc.relation.referencesTversky, A. (1972b). Elimination by aspects: A theory of choice. Psychological Review, 79(4).spa
dc.relation.referencesTversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science New Series, 185(4157), 1124–1131.spa
dc.relation.referencesTversky, A., & Kahneman, D. (1992). Advances in Prospect Theory : Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 323, 297–323.spa
dc.relation.referencesVacca, A., & Meloni, I. (2015). Understanding route switch behavior : an analysis using GPS based data. Transportation Research Procedia, 5, 56–65. https://doi.org/10.1016/j.trpro.2015.01.018spa
dc.relation.referencesvan de Kaa, E. J. (2010a). Prospect Theory and Choice Behaviour Strategies: Review and Synthesis of Concepts from Social and Transport sciences. EJTIR, 10(10), 299–329.spa
dc.relation.referencesvan de Kaa, E. J. (2010b). Applicability of an Extended Prospect Theory to Travel Behaviour Research: A Meta‐Analysis. Transport Reviews, 30(6), 771–804. https://doi.org/10.1080/01441647.2010.486907spa
dc.relation.referencesVan de Kaa, E. J. (2008). Extended Prospect Theory. Findings on Choice Behaviour from Economics and the Behavioural Sciences and their Relevance for Travel Behaviour. Delf University of Tecnology.spa
dc.relation.referencesVenables, W. ., & Ripley, B. . (2002). Modern Applied Statistics with S. Springer. https://www.stats.ox.ac.uk/pub/MASS4/spa
dc.relation.referencesVon Neumann, J., & Morgenstern, O. (1947). Theory of Games and Economic Behavior. Princeton University Press.spa
dc.relation.referencesWalker, J. L. (2001). Extended Discrete Choice Models : Integrated Framework , Flexible Error Structures , and Latent Variables. Massachusetts Institute of Technology.spa
dc.relation.referencesWalker, J. L., & Ben-Akiva, M. (2002). Generalized random utility model. Mathematical Social Sciences, 43(3), 303–343. https://doi.org/10.1016/S0165-4896(02)00023-9spa
dc.relation.referencesWardrop, J. G. (1952). Some Theoretical Aspects of Road Traffic Research. Engineering Divisions, 1(3).spa
dc.relation.referencesWeber, M., & Camerer, C. (1987). Recent developments in modelling preferences under risk. Operations-Research-Spektrum, 9(3), 129–151.spa
dc.relation.referencesWee, B. Van. (2010). Prospect Theory and Travel Behaviour: a Personal Reflection Based on a Seminar. EJTIR, 10(10(4)), 385–394.spa
dc.relation.referencesWu, G., & Gonzalez, R. (1996). Curvature of the Probability Weighting Function. Source: Management Science, 42(12), 1676–1690. http://www.jstor.org/stable/2634546spa
dc.relation.referencesXu, H., Lou, Y., Yin, Y., & Zhou, J. (2011). A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing. Transportation Research Part B: Methodological, 45(2), 311–328. https://doi.org/10.1016/j.trb.2010.09.003spa
dc.relation.referencesXu, H., Zhou, J., & Xu, W. (2011). A decision-making rule for modeling travelers’ route choice behavior based on cumulative prospect theory. Transportation Research Part C: Emerging Technologies. https://doi.org/10.1016/j.trc.2010.05.009spa
dc.relation.referencesYang, J., & Jiang, G. (2014). Development of an enhanced route choice model based on cumulative prospect theory. Transportation Research Part C: Emerging Technologies, 47(P2), 168–178. https://doi.org/10.1016/j.trc.2014.06.009spa
dc.relation.referencesYu, Y., & Zhou, X.-Z. (2016). Route Choice Behavior Analysis with Unexpected Delay Information. Procedia Engineering, 137, 252–258. https://doi.org/http://dx.doi.org/10.1016/j.proeng.2016.01.257spa
dc.relation.referencesZadeh, L. A. (1975). The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Sciences, 8, 199–249. https://doi.org/10.1016/0020-0255(75)90036-5spa
dc.relation.referencesZhan, X., Hasan, S., Ukkusuri, S. V., & Kamga, C. (2013). Urban link travel time estimation using large-scale taxi data with partial information. Transportation Research Part C: Emerging Technologies. https://doi.org/10.1016/j.trc.2013.04.001spa
dc.relation.referencesZhang, W., & He, R. (2014). Dynamic Route Choice Based on Prospect Theory. Procedia - Social and Behavioral Sciences, 138(0), 159–167. https://doi.org/10.1016/j.sbspro.2014.07.191spa
dc.relation.referencesZheng, L., Xia, D., Zhao, X., Tan, L., Li, H., Chen, L., & Liu, W. (2018). Spatial–temporal travel pattern mining using massive taxi trajectory data. Physica A: Statistical Mechanics and Its Applications, 501, 24–41. https://doi.org/10.1016/j.physa.2018.02.064spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc380 - Comercio , comunicaciones, transporte::388 - Transportespa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembTransporte urbanospa
dc.subject.lembUrban transportationeng
dc.subject.proposalComportamiento del conductorspa
dc.subject.proposalModelo de elección discretaspa
dc.subject.proposalFactores humanosspa
dc.subject.proposalModelo híbridospa
dc.subject.proposalElección de rutaspa
dc.subject.proposalRecolección de datos de taxispa
dc.subject.proposalDriver behavioreng
dc.subject.proposalDiscrete choice modeleng
dc.subject.proposalHuman factorseng
dc.subject.proposalHybrid modeleng
dc.subject.proposalRoute choiceeng
dc.subject.proposalTaxi data collectioneng
dc.titleModelo de asignación de rutas en sistemas de transporte urbano considerando el comportamiento de los usuarios desde la perspectiva de toma de decisionesspa
dc.title.translatedRoute assignment model in urban transportation systems considering user behavior from a decision making perspectiveeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleModelo para la toma de decisiones en asignación de rutas de sistemas de transporte urbano integrando programación matemática y economia comportamentalspa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71780399.2021.pdf
Tamaño:
3.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: