Comparative analysis of the energy efficiency of container terminals in Colombia

dc.contributor.advisorWilmsmeier, Gordonspa
dc.contributor.advisorJiménez Poveda, Pedro Luisspa
dc.contributor.authorSpaggiari Castro, Luisa Fernandaspa
dc.coverage.countryColombiaspa
dc.date.accessioned2022-07-05T19:22:19Z
dc.date.available2022-07-05T19:22:19Z
dc.date.issued2022-06-22
dc.description.abstractColombian ports and container terminals, as well as their regulators, have been approaching sustainability in terms of greenhouse gas emissions and energy efficiency. This study is part of this effort, as it analyzes the relationship between energy consumption, throughput, and overall costs in container terminals. This is the first research that considers results for all container terminals in the same country for four years. The data analyzed in this study comes from a joint effort between Colombia's Ministry of Transport and the Universidad de Los Andes. These institutions designed and applied a survey to all of the terminals in Colombia, offering an overview of the activities of the port sector from 2010 to 2020. The present study focuses on a specific subset of the collected data: container terminals from 2017 to 2020. Moreover, it uses this data to compare the state of said terminals in Colombia to those in Chile. The results of the analysis showed that energy consumption reduced gradually during the 2017-2020 period. This study also found some promising changes in energy sources and a reduction in energy consumption in different terminals. Compared to previous research, the amount of energy that was either undefined or unaccounted for has also been reduced.eng
dc.description.abstractLos puertos y terminales de contenedores colombianos, así como sus reguladores, han venido abordando la sostenibilidad en términos de emisiones de gases de efecto invernadero y eficiencia energética. Este estudio es parte de este esfuerzo, ya que analiza la relación entre el consumo de energía, el rendimiento y los costos generales en las terminales de contenedores. Esta es la primera investigación que considera resultados para todas las terminales de contenedores en un mismo país durante cuatro años. Los datos analizados en este estudio provienen de un esfuerzo conjunto entre el Ministerio de Transporte de Colombia y la Universidad de Los Andes. Estas instituciones diseñaron y aplicaron una encuesta a todas las terminales portuarias en Colombia, ofreciendo una visión general de las actividades del sector portuario de 2010 a 2020. El presente estudio se enfoca en un subconjunto específico de los datos recopilados: las terminales de contenedores de 2017 a 2020. Además, utiliza estos datos para comparar el estado de dichos terminales en Colombia con los de Chile. Los resultados del análisis mostraron que el consumo de energía se redujo gradualmente durante el período 2017-2020. Este estudio también encontró algunos cambios prometedores en las fuentes de energía y una reducción en el consumo de energía en diferentes terminales. En comparación con investigaciones anteriores, la cantidad de energía que no estaba definida o no se contabilizaba también se ha reducido en cierta medida. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Transportespa
dc.description.researchareaMovilidad y desarrollo tecnológicospa
dc.format.extentxvi, 67 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81681
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Transportespa
dc.relation.referencesAcciaro, M., & Wilmsmeier, G. (2015). Energy efficiency in maritime logistics chains. Research in Transportation Business & Management, 17, 1-7.spa
dc.relation.referencesAcciaro, M., Ghiara, H., & Cusano, M. Í. (2016). Energy management in seaports: A new role for port authorities. Energy Policy, 71, 4-12.spa
dc.relation.referencesAlamoush, A., Ballini, F., & Ölçer, A. (2020). Ports' technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review. Marine Pollution Bulletin, 160(111508).spa
dc.relation.referencesAlamoush, A., Ölcer, A., & Ballini, F. (2021). Port greenhouse gas emission reduction: Port and public authorities’ implementation schemes. Research in Transportation Business & Management(41).spa
dc.relation.referencesArena, F., Malara, G., Musolino, G., Rindone, C., Romolo, A., & Vitetta, A. (2018). From green-energy to green-logistics: a pilot study in an Italian Port Area. Transport Research Procedia, 30, 111-118.spa
dc.relation.referencesAtulya, M., Karthik, P., Senthil Kumar, G., Elayaperumal , A., & Velraj , R. (2017). GHG emission accounting and mitigation strategies to reduce the carbon footprint in conventional port activities - a case of the port of Chennai. Carbon management, 8(1), 45-56.spa
dc.relation.referencesAzarkamand, S., Ferré, G., & Darbra, R. M. (2020). Calculating the Carbon Footprint in ports by using a standardized tool. Science of the Total Environmen, 734.spa
dc.relation.referencesBrinkmann, B. (2011). Operations Systems of Container Terminals A Compendious Overvie. En Handbook of Terminal Planning (págs. 25-39). Springer.spa
dc.relation.referencesBudiyanto, M. A., Nasruddin, & Zhafari, F. (2018). Simulation study using building-design energy analysis to estimate energy consumption of refrigerated container. Nagoya, Japan.spa
dc.relation.referencesECLAC. (2014). Consumo y eficiencia energética en los principales terminales portuarios de Chile. Santiago, Chile: Economic Commission for Latin America and the Caribbean.spa
dc.relation.referencesECLAC. (2015). Maritime and Logistics Newsletter - Towards benchmarking energy consumption in container terminals.spa
dc.relation.referencesFitzgerald, W. B., Howitt, O., Smith, I., & Hume, A. (2011). Energy use of integral refrigerated containers in maritime transportation. Energy Policy, 39, 1885-1896.spa
dc.relation.referencesGeerlings, H., & Van Duin, R. (2011). A new method for assessing CO2 emissions from container terminals: a promising approach applied in Rotterdam. Journal of Cleaaner Production, 19, 657-666.spa
dc.relation.referencesGerring, J. (2004). What Is a Case Study and What Is It Good for? American Political Science Review, 98(2), 341-354.spa
dc.relation.referencesGlobal Sustainability Standard Board. (2016). GRI 302: Energy 2016.spa
dc.relation.referencesHe, J. (2016). Berth allocation and quay crane assignment in a container terminal for the trade-off between time-saving and energy-saving. Advanced Engineering Informatics, 36, 390-405.spa
dc.relation.referencesHe, J., Huang, Y., & Yan, W. (2015). Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption. Advanced Engineering Informatics, 29, 56-75.spa
dc.relation.referencesHe, J., Youfang, H., Wei, Y., & Shuaian, W. (2015). Integrated internal truck, yard crane and quay crane scheduling in a Integrated internal truck, yard crane and quay crane scheduling in a. Expert Systems with Applications, 42, 2464-2487.spa
dc.relation.referencesHentschela, M., Ketterb, W., & Collins, J. (2018). Renewable energy cooperatives: Facilitating the energy transition at the Port of Rotterdam. Energy Policy, 121, 61-69.spa
dc.relation.referencesInternational Transport Forum. (2015). ITF Transport Outlook. OECD .spa
dc.relation.referencesIris, Ç., & Lam, J. S. (2019). A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renewable and Sustainable Energy Reviews, 112, 170-182.spa
dc.relation.referencesLin, B., Collins, J., & Su, R. K. (2001). Supply Chain Costing: an activity-based perspective. International Journal of Physical Distribution and Logistics, 31.spa
dc.relation.referencesMamatok, Y., & Jin, C. (2016). An integrated framework for carbon footprinting at container seaports: the case study of a Chinese port. Maritime Policy & Management.spa
dc.relation.referencesMartínez-Moya, J., Vazquez-Paja, B., & Gimenez Maldonado, J. A. (2019). Energy efficiency and CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia. Energy Policy, 131, 312-319.spa
dc.relation.referencesMinisterio de Transporte. (2020). Transporte en Cifras 2019. Bogotá.spa
dc.relation.referencesMinistry of the Environment and Sustainable Development. (2017). Plan de gestión de cambio climático para los puertos marítimos de Colombia. Bogotá.spa
dc.relation.referencesMonios, J., & Wilmsmeier, G. (2014). The Impact of Container Type Diversification on Regional British Port Development Strategies. Transport reviews, 34(5), 583-606.spa
dc.relation.referencesNa, J.-H., Choi, A.-Y., Ji, J., & Zhang, D. (2017). Environmental efficiency analysis of Chinese container ports with CO2 emissions: An inseparable input-output SBM mode. Journal of Transport Geography, 65, 13-24.spa
dc.relation.referencesNational Infrastructure Agency. (2021). www.ani.gov.co. Recuperado el 25 de January de 2022, de https://www.ani.gov.co/en-los-ultimos-tres-anos-se-han-invertido-146-millones-de-dolares-en-las-63-terminales-portuariasspa
dc.relation.referencesNational Planning Department. (2019). Demand and port capacity study. Bogotá: National Planing Department.spa
dc.relation.referencesNational Planning Department . (1995). CONPES 2782 - Plan de acción para el sector portuario.spa
dc.relation.referencesPuig, M., Raptis, S., Wooldridge, C., & Darbra, R. (2020). Performance trends of environmental management in European ports. Marine Pollution Bulletin, 160(111686spa
dc.relation.referencesQuintano, C., Mazzocchi, P., & Rocca, A. (2020). Examining eco-efficiency in the port sector via non-radial data envelopment analysis and the response based procedure for detecting unit segments. Journal of Cleaner Production, 259.spa
dc.relation.referencesRhee, Y. (2004). The EPO chain in relationships management a case study of a government organization.spa
dc.relation.referencesSdoukopoulos, E., Boile, M., Tromaras, A., & Anastasiadis, N. (2019). Energy efficiency in euoepan ports: State of practice and Insights of the way forward. Sustainability, 11, 2-25.spa
dc.relation.referencesSha, M., Zhang, T., Lan, Y., Zhou, X., Qin, T., Yu, D., & Chen, K. (2016). Scheduling Optimization of Yard Cranes with Minimal Energy Consumption at Container Terminals. Computers & Industrial Engineering.spa
dc.relation.referencesSifakis, N., & Tsoutsos, T. (2021). Planning zero-emissions ports through the nearly zero energy port concept. Journal of cleanner production, 286.spa
dc.relation.referencesSpengler, T., & Wilmsmeier, G. (2019). Sustainable Performance and Benchmarking in Container Terminals - The Energy Dimesion. En Green Ports (págs. 125-154). Elsevier.spa
dc.relation.referencesSuperintendencia de transporte. (2020). Statistical Bulletin Port Traffic in Colombia. Bogotá: Superintendencia de transporte.spa
dc.relation.referencesTao, X., & Wu, Q. (2021). Energy consumption and CO2 emissions in hinterland container transport. Journal of Cleaner Production, 279(123394).spa
dc.relation.referencesUNCTAD. (2021). Review of Maritime Transport. Geneva: United Nations.spa
dc.relation.referencesVaioa, A. D., Varriale, L., & Alvino, F. (2018). Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy. Energy Policy, 122, 229-240.spa
dc.relation.referencesVan Duin, J., & Geerlings, H. (2011). Estimating CO2 footprint of container terminal port-operations. International Journal of Sustainable Development and Planning , 6(4), 459-473.spa
dc.relation.referencesVillalba, G., & Gemechu, D. E. (2011). Estimating GHG emissions of marine ports—the case of Barcelona. Energy Policy, 39, 1363-1368.spa
dc.relation.referencesWang, L., Zhou, Z., Yang, Y., & Wu, J. (2020). Green efficiency evaluation and improvement of Chinese ports: A cross-efficiency model. Transportation Research Part D, 88.spa
dc.relation.referencesWilmsmeier, G. (2012). Infrastructure charges: Creating inventives to improve enviromental performance FAL309.spa
dc.relation.referencesWilmsmeier, G. (2020). Climate change adpation and mitigation in ports Advances in Colombia. En Maritime Transport and Regional Sustainability (págs. 133- 150). Elsevier Inc. doi:https://doi.org/10.1016/B978-0-12-819134-7.00008-3spa
dc.relation.referencesWilmsmeier, G., & Spengler, T. (2016). Energy consumption and container terminal efficiency. Natural Resources and Infrastructure Division, UNECLAC.spa
dc.relation.referencesWilmsmeier, G., Zotz, A.-K., Froese, J., & Meyer, A. (2014). Energy Consumption and Efficiency: Emerging Challenges from Reefer Trade in South American Container Terminals. En FAL 329. ECLAC.spa
dc.relation.referencesYang, Y.-C., & Chang, W.-M. (2013). Impacts of electric rubber-tired gantries on green port performance. Research in Transportation Business & Management, 8, 67-76.spa
dc.relation.referencesYang, Y.-C., & Chang, W.-M. (2013). Impacts of electric rubber-tired gantries on green port performance. Research in Transportation Business & Management, 8, 67-76.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembEnergy consumptioneng
dc.subject.lembConsumo de energíaspa
dc.subject.lembMarine terminalseng
dc.subject.lembTerminales marítimosspa
dc.subject.lembSustainable developmenteng
dc.subject.lembDesarrollo sosteniblespa
dc.subject.proposalEficiencia energéticaspa
dc.subject.proposalCambio climáticospa
dc.subject.proposalPuertosspa
dc.subject.proposalColombiaspa
dc.subject.proposalConsumo de energíaspa
dc.subject.proposalDesempeño sustentablespa
dc.subject.proposalProductividad portuariaspa
dc.subject.proposalEnergy efficiencyeng
dc.subject.proposalClimate changespa
dc.subject.proposalPortseng
dc.subject.proposalColombiaspa
dc.subject.proposalEnergy consumptioneng
dc.subject.proposalSustainable performanceeng
dc.subject.proposalPort productivityeng
dc.titleComparative analysis of the energy efficiency of container terminals in Colombiaeng
dc.title.translatedAnálisis comparativo de la eficiencia energética de las terminales de contenedores en Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053782041.2022.pdf
Tamaño:
1.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Transporte

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: