Caracterización molecular de virus en cultivos de uchuva (Physalis peruviana) y gulupa (Passiflora edulis f. edulis) en el suroeste de Antioquia

dc.contributor.advisorMarín Montoya, Mauricio Alejandro
dc.contributor.advisorGutiérrez Sánchez, Pablo Andrés
dc.contributor.authorBacca David, Michelle
dc.contributor.orcidBacca, Michelle [0000-0002-8277-9593]spa
dc.contributor.researcherHiguita Valencia, Monica
dc.contributor.researcherGallo Garcia, Yuliana
dc.contributor.researcherRestrepo Escobar, Andrea
dc.contributor.researcherPosada Rua,Jaime
dc.contributor.researcherGiraldo Ramirez, Susana
dc.contributor.researcherMartinez Mira, Anny
dc.contributor.researcherBacca David, Michelle
dc.contributor.researcherRestrepo, Andrea
dc.contributor.researcherMarín, Mauricio
dc.contributor.researcherGutiérrez, Pablo
dc.contributor.researchgroupBiotecnología vegetalspa
dc.date.accessioned2023-02-10T18:33:49Z
dc.date.available2023-02-10T18:33:49Z
dc.date.issued2022
dc.description.abstractEn los últimos años en Colombia, los cultivos de gulupa (Passiflora edulis f. edulis Sims) y uchuva (Physalis peruviana L.) han tomado gran relevancia en el sector agrícola de la región andina. Esto se debe a que sus frutos presentan características organolépticas y nutricionales muy apetecidas en el mercado internacional y nacional. El aumento del área sembrada de estos frutales ha estado acompañado del incremento de diversos problemas fitosanitarios, entre los que se destacan aquellos de origen viral. Sin embargo, el conocimiento de los agentes causales, vectores y efectos sobre los rendimientos es aún incipiente para estas enfermedades. Esta información es fundamental para proponer programas de manejo integrado que resulten en aumentos en la productividad y longevidad de los cultivos, así como en la calidad de los frutos. Con el fin de contribuir al aumento del conocimiento sobre el viroma de estos cultivos, en este proyecto de investigación se planteó la utilización de metodologías moleculares de última generación para determinar los virus más prevalentes en cultivos y material de siembra de gulupa y uchuva del Suroeste de Antioquia; adicionalmente, se realizó una evaluación inicial de posibles vectores y reservorios biológicos (arvenses) para dichos virus. Los resultados obtenidos indicaron que PMTV fue el virus más prevalente en los cultivos de uchuva, ya que se detectó en el 100% de muestras sintomáticas, 80% de muestras asintomáticas y en el 60% de las muestras de semillas. Los análisis HTS revelaron la presencia de una nueva especie de virus estrechamente relacionada con el género Trichovirus, denominada tentativamente como Physalis chlorosis virus (PhyCV). También se obtuvo la secuencia del genoma de nuevos aislamientos de TaLMV, PhyVNV y PVY que afectan a P. peruviana. Por otra parte, mediante PCR y confirmación morfológica, fue posible identificar en el cultivo de uchuva ocho especies de plantas arvenses: Commelina diffusa, Ageratum conyzoides, Erigeron sumatrensis, Galinsoga quadriradiata, Bidens pilosa, Sonchus oleraceus, Persicaria nepalensis y Plantago australis; así como dos especies de insectos posiblemente vectores de virus: Trialeurodes vaporariorum y Frankliniella occidentalis. Utilizando la prueba de RT-qPCR con cebadores específicos, se detectó la ocurrencia de los virus PVS, PVX, TaLMV y PMTV en algunas arvenses asociadas al cultivo de uchuva. En el culltivo de gulupa, se detectaron los virus CMV, PFYMV, PpLDV y GBVA tanto en muestras de campo como en material de siembra; los virus CABMV y SMV no fueron encontrados en ninguna de las muestras analizadas. Para el caso de arvenses, en los cultivos de gulupa del Suroeste se identificaron nueve especies: Persicaria nepalensis, Commelina diffusa, Cardamine flexuosa, Galinsoga quadriradiata, Bidens pilosa, Ageratum conyzoides, Erigeron sumatrensis, Sonchus oleraceus e Ipomoea purpurea, así como seis posibles insectos vectores de virus: Lachnopus sp., Aphis fabae, Tetranychus sp., Pseudococcus sp., Brachycaudus helichrysi y Neohydatothrips burungae. También se detectó al PFYMV y GBVA en algunas de las arvenses y el CMV en el insecto A. fabae. Finalmente, se realizó una prueba inicial de la técnica aislamiento/cultivo de meristemos in vitro en uchuva para la eliminación viral, obteniéndo vitroplántulas libres de los virus PVY, PVS, PVX y CGIV-1. En gulupa se empleó quimioterapia ex vitro en plántulas bajo diferentes concentraciones de ribavirina (225, 250 y 275 ppm) en un tiempo de inmersión radicular de 2 h y 30 min; sin embargo, con este tratamiento no se logró obtener plántulas libres de PFYMV, pero sí con menor titulo viral, determinado en términos de valores de Ct en pruebas de RT-qPCR. Estos resultados señalan la importancia de implementar conjuntamente métodos de secuenciación masiva y técnicas moleculares como herramientas eficientes para el diagnóstico de infecciones virales que apoyen los programas de manejo integrado de enfermedades virales, vigilancia curentenaria y obtención de material certificado en estos frutales andinos. (Texto tomado de la fuente)spa
dc.description.abstractIn recent years, purple passion fruit (Passiflora edulis f. edulis Sims) and cape gooseberry (Physalis peruviana L.) have become some of the most important crops in the Andean region of Colombia. Due to their unique organoleptic characteristics, both fruits have an increasingly high demand in local and international markets. However, the rapid expansion of these crops has resulted in a significant increase of several phytopathological problems, particularly viral diseases. Unfortunately, little is known about the viruses, their associated vectors and/or their effect on yields in both crops. This type of information is key for the implementation of integrated disease management programs aimed at improving the productivity and longevity of crops, as well as the quality of fruits. To increase our current knowledge on the virology of these crops, this work intended to determine which viruses are the most prevalent in commercial fields and planting material of purple passion fruit and cape gooseberry in southwestern Antioquia using state of the art molecular techniques. In addition, a preliminary investigation on potential vectors and plant weed reservoirs to these viruses was also performed. In cape gooseberry, results indicate that PMTV is the most prevalent virus as it was detected in 100% of symptomatic plants, 80% of asymptomatic plants, and 60% of seed samples. High-throughput sequencing revealed a new viral species related to the genus Trichovirus tentatively named Physalis chlorosis virus (PhyCV). Genome information on TaLMV, PhyVNV and PVY circulating in the region was also obtained. With respect to potential alternate hosts and vectors, a combination of standard PCR with morphological analyses revealed eight weeds associated with P. peruviana: Commelina diffusa, Ageratum conyzoides, Erigeron sumatrensis, Galinsoga quadriradiata, Bidens pilosa, Sonchus oleraceus, Persicaria nepalensis and Plantago australis; and two potential insect vectors: Trialeurodes vaporariorum and Frankliniella occidentalis. On the other hand, RT-qPCR analysis detected PVS, PVX, TaLMV and PMTV is some of the associated weeds. With respect to purple passion fruit, the viruses CMV, PFYMV, PpLDV and GBVA were detected in field samples and planting material; however, no evidence from the presence of CABMV nor SMV was found in any of the tested samples. Nine weed plants associated to purple passion fruit crops were identified in southwestern Antioquia: Persicaria nepalensis, Commelina diffusa, Cardamine flexuosa, Galinsoga quadriradiata, Bidens pilosa, Ageratum conyzoides, Erigeron sumatrensis, Sonchus oleraceus and Ipomoea purpurea. Six potential insect vectors were also identified in this crop: Lachnopus sp., Aphis fabae, Tetranychus sp., Pseudococcus sp., Brachycaudus helichrysi and Neohydatothrips burungae. RT-qPCR detected PFYMV and GBVA in some weeds, and CMV in the insect A. fabae. Finally, a preliminary test of virus clean-up methods using in vitro meristem culture in cape gooseberry resulted in the generation of vitroplants negative for PVY, PVS, PVX and CGIV-1. In purple passion fruit, evaluation of ribavirin chemotherapy (225, 250 y 275 ppm) of ex vitro plantlets at one immersion time (2 h and 30 min) failed to eliminate the virus PFYMV; however, results suggest that this method does reduce the viral load for this virus as evidenced by RT-qPCR. Together, these results highlight the importance of using HTS in combination with molecular techniques for reliable testing of viruses and to support disease management programs, quarantine vigilance and the generation of certified planting material of these important fruit crops.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaVirología vegetalspa
dc.description.sponsorshipUniversidad Nacional de Colombia sede Medellín, Universidad CES y Caribbean Exotics.spa
dc.format.extentxii, 222 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83420
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesInternational Committee on Taxonomy of Viruses [ICTV]. (2022). Bromoviridae- Positive Sense RNA Viruses. https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/bromoviridaespa
dc.relation.referencesInternational Committee on Taxonomy of Viruses [ICTV]. (2022). Potexvirus - Alphaflexiviridae - Positive-sense RNA Viruses.https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/alphaflexiviridae/1330/genus-potexvirusspa
dc.relation.referencesInternational Committee on Taxonomy of Viruses [ICTV]. (2022). Potyvirus - Potyviridae - Positive-sense RNA Viruses. https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/potyviridae/572/genus-potyvirusspa
dc.relation.referencesRhoads, A. y Au, K. F. (2015). PacBio Sequencing and Its Applications. Genomics, Proteomics & Bioinformatics, 13(5), 278–289. https://doi:10.1016/j.gpb.2015.08.002spa
dc.relation.referencesRiascos, D. (2011). Caracterización etiológica de la Roña de la gulupa (Passiflora edulis Sims.) en la región del Sumapaz (Cundinamarca). [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/9360spa
dc.relation.referencesRodríguez, M., Niño, N., Cutler, J., Langer, J., Casierra-Posada, F., Miranda, D., Bandte, M. y Büttner, C. (2016). Certificación de material vegetal sano en Colombia: un análisis crítico de oportunidades y retos para controlar enfermedades ocasionadas por virus. Revista Colombiana De Ciencias Hortícolas, 10(1), 164-175. https://doi.org/10.17584/rcch.2016v10i1.4921spa
dc.relation.referencesRoingeard, P., Raynal, P. I., Eymieux, S. y Blanchard, E. (2019). Virus detection by transmission electron microscopy: Still useful for diagnosis and a plus for biosafety. Reviews in medical virology, 29(1). https://doi.org/10.1002/rmv.2019spa
dc.relation.referencesRyu, K. H. y Hong, J. S. (2008). Potexvirus. Encyclopedia of Virology, 310-313. https://doi:10.1016/b978-012374410-4.00738-xspa
dc.relation.referencesSanger, F., Nicklen, S. y Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463-5467. https://doi.org/10.1073/pnas.74.12.5463spa
dc.relation.referencesSantillan, F. W., Fribourg, C. E., Adams, I. P., Gibbs, A. J., Boonham, N., Kehoe, M. A., Maina, S. y Jones, R. A. C. (2018). The Biology and Phylogenetics of Potato virus S Isolates from the Andean Region of South America. Plant Disease, 102(5), 869–885. https://doi.org/10.1094/PDIS-09-17-1414-REspa
dc.relation.referencesSerrato, A., Flores, L., Aportela, J. y Sierra, E. (2014). PCR: reacción en cadena de la polimerasa. En: Herramientas moleculares aplicadas en ecología (pp. 53-73). http://www2.inecc.gob.mx/publicaciones2/libros/710/pcr.pdfspa
dc.relation.referencesShaffer, L. (2019). Inner Workings: Portable DNA sequencer helps farmers stymie devastating viruses. Proceedings of the National Academy of Sciences, 116(9), 3351-3353. https://doi.org/10.1073/pnas.1901806116spa
dc.relation.referencesSpadotti, D., Bello, V., Favara, G., Stangarlin, O., Krause-Sakate, R. y Rezende, J. (2019). Passiflora edulis: new natural host of Melochia yellow mosaic virus in Brazil. Australasian Plant Disease Notes, 14. https://doi.org/10.1007/s13314-019-0354-5spa
dc.relation.referencesTaïwe, G. S. y Kuete, V. (2017). Passiflora edulis. Medicinal Spices and Vegetables from Africa, 513–526. http://doi:10.1016/b978-0-12-809286-6.00024-8spa
dc.relation.referencesTamayo, A. R. L., Betancur, C. E. y García, V. E. L. (2014). Manual técnico del cultivo de uchuva bajo buenas prácticas agrícolas.spa
dc.relation.referencesTorrance, L. (1998). Developments in serological methods to detect and identify plant viruses. Plant Cell, Tissue and Organ Culture, 52, 27-32. https://doi.org/10.1023/A:1005943823182spa
dc.relation.referencesTorre, C. (2019). Detección y caracterización de virus epidemiológicamente relevantes en cultivos de tomate y cucurbitáceas [Tesis de doctorado, Universidad de Murcia]. http://hdl.handle.net/10201/74370spa
dc.relation.referencesTrenado, H.P., Fortes, I.M. y Louro, D. (2007). Physalis ixocarpa and P. peruviana, new natural hosts of Tomato chlorosis virus. European Journal of Plant Pathology, 118, 193-196. https://doi.org/10.1007/s10658-007-9129-5spa
dc.relation.referencesVallejo, D. C., Gutiérrez, P. y Marín, M. (2016). Genome characterization of a Potato virus S (PVS) variant from tuber sprouts of Solanum phureja. Agronomía Colombiana, 34(1), 51-60. https://doi.org/10.15446/agron.colomb.v34n1.53161.spa
dc.relation.referencesVidal, A.H., Sanches M.M., Alves-Freitas, D.M.T., Abreu, E.F.M., Lacorte, C., Pinheiro-Lima, B., Rosa, R.C.C., Jesus, O.N., Campos, M.A., Varsani, A. y Ribeiro S.G (2018). First World Report of Cucurbit aphid-borne yellows virus infecting Passionfruit. Plant Disease, 102(12): 2665. https://doi: 10.1094/PDIS-04-18-0694-PDNspa
dc.relation.referencesVillamor, D. E. V., Ho, T., Al Rwahnih, M., Martin, R. R. y Tzanetakis, I. (2019). High Throughput Sequencing in Plant Virus Detection and Discovery. Phytopathology. https://doi:10.1094/phyto-07-18-0257-rvwspa
dc.relation.referencesVunsh, R., Rosner, A. y Stein, A. (1990). The use of the polymerase chain reaction (PCR) for the detection of bean yellow mosaic virus in gladiolus. Annals of Applied Biology, 117. https://doi.org/10.1111/j.1744-7348.1990.tb04822.xspa
dc.relation.referencesWang, Q., Liu, Y., Xie, Y. y You, M. (2006). Cryotherapy of Potato Shoot Tips for Efficient Elimination of Potato Leafroll Virus (PLRV) and Potato Virus Y (PVY). Potato Research, 49(2), 119-129. https://doi:10.1007/s11540-006-9011-4spa
dc.relation.referencesWang, Q., Cuellar, W., Rajamäki, M., Hirata, Y. y Valkonen, J. (2008).Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology, 9(2), 237-250. https://doi: 10.1111/j.1364-3703.2007.00456.xspa
dc.relation.referencesWang, Q., Panis, B., Engelmann, F., Lambardi, M. y Valkonen J. (2009).Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation.Trends Plant Science, 14(3), 351-363. https://doi: 10.1016/j.tplants.2008.11.010.spa
dc.relation.referencesWang, Y., Yang, Q. y Wang, Z. (2015). The evolution of nanopore sequencing. Frontiers in Genetics, 5, 449. https://doi.org/10.3389/fgene.2014.00449spa
dc.relation.referencesWang, M. R., Cui, Z. H., Li, J. W., Hao, X. Y., Zhao, L. y Wang, Q. C. (2018). In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 14(1), 87. https://doi.org/10.1186/s13007-018-0355-yspa
dc.relation.referencesWardrop, E. A., Gray, A. B., Singh, R. P. y Peterson, J. F. (1989). Aphid transmission of potato virus S. American Potato Journal, 66(8), 449-459. https://doi.org/10.1007/BF02855437spa
dc.relation.referencesWaswa, M., Kakuhenzire, R. y Ochwo-Ssemakula, M. (2017). Effect of thermotherapy duration, virus type and cultivar interactions on elimination of potato viruses X and S in infected seed stocks. African Journal of Plant Science, 11(3), 61-70. https://doi.org/10.5897/AJPS2016.1497spa
dc.relation.referencesWylie, S. J. y Jones, M. G. K. (2010). The complete genome sequence of a Passion fruit woodiness virus isolate from Australia determined using deep sequencing, and its relationship to other potyviruses. Archives of Virology, 156(3), 479-482. https://doi:10.1007/s00705-010-0845-3spa
dc.relation.referencesZapata, J., Londoño, M., Diaz, Cipriano, A. y Saldarriaga, A. (2002). Manejo del cultivo de la uchuva en Colombia. AGROSAVIA. https://repository.agrosavia.co/handle/20.500.12324/12833?locale-attribute=esspa
dc.relation.referencesZhang, S., Zhao, T., Liu, J., Zi, L., Li, X., Wang, Y., Zhang, Z., Li, D., Yu, J y Han, C. (2019). First Report of Cucurbit Aphid-Borne Yellows Virus in Passion fruit plants exhibiting mosaic and mottling in China. Plant Disease. https://doi:10.1094/pdis-07-19-1378-pdnspa
dc.relation.referencesZibadi, S. y Watson, R. R. (2004). Passion Fruit (Passiflora edulis). Evidence-Based Integrative Medicine, 1(3), 183-187. https://doi:10.2165/01197065-200401030-00005spa
dc.relation.referencesAl-Shahwan, I. M., Abdalla, O. A., Al-Saleh, M. A. y Amer, M. A. (2017). Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia. Saudi J. Biol. Sci. 24(6), 1336-1343. https://doi.org/ 10.1016/j.sjbs.2016.02.022.spa
dc.relation.referencesAnwar, I., Bukhari, H. A., Nahid, N., Rashid, K., Amin, I., Shaheen, S., Hussain, K. y Mansoor, S. (2020). Association of cotton leaf curl Multan betasatellite and Ageratum conyzoides symptomless alphasatellite with tomato leaf curl New Delhi virus in Luffa cylindrica in Pakistan. Australasian Plant Pathology, 49(1), 25–29. https://doi.org/10.1007/s13313-019-00668-6spa
dc.relation.referencesCámara de comercio de Bogotá. (2015). Manual Gulupa. http://hdl.handle.net/11520/14314spa
dc.relation.referencesChen, G., Pan, H., Xie, W., Wang, S., Wu, Q., Fang, Y., Shi, X. y Zhang, Y. (2013). Virus infection of a weed increases vector attraction to and vector fitness on the weed. Scientific Reports, 3(1), 2253. https://doi.org/10.1038/srep02253spa
dc.relation.referencesCheng, T., Xu, C., Lei, L., Li, C., Zhang, Y. y Zhou, S. (2016), Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources, 16, 138-149. https://doi.org/10.1111/1755-0998.12438spa
dc.relation.referencesCutler, J., Langer, J., Von, S., Acosta, O., Casierra, F., Castañeda, A., Betancourt, M., Cuellar, W., Arvydas, E., Altenbach, D. y Büttner, C. (2018). Preliminary evaluation of associated viruses in production systems of cape gooseberry, purple passion fruit, and rose. Revista Colombiana de Ciencias Hortícolas, 12(2), 390-396. https://doi:10.17584/rcch.2018vl2i2.7799spa
dc.relation.referencesCuspoca, J. (2007). Evaluación de virus de tomate de árbol (Solanum betaceum) en plantas indicadoras y su detección por PCR. Tesis en agronomia. Facultad de agronomia. Universidad Nacional de Colombia. Bogotá. 31 p.spa
dc.relation.referencesDANE. (2020). Exportaciones-Histórico. https://www.dane.gov.co/index.php/estadisticas-por-tema/comercio-internacional/exportaciones/exportaciones-historicosspa
dc.relation.referencesDoyle, J. (1991). DNA Protocols for Plants. Molecular Techniques in Taxonomy. Springer. https://doi:10.1007/978-3-642-83962-7_18spa
dc.relation.referencesDuque, M., Marín, M. y Gutiérrez, P.A. (2017). Genome comparison and primer design for detection of Tamarillo leaf malformation virus (TaLMV). Archives of Phytopathology and Plant Protection, 50, 713-726. https://doi.org/10.1080/03235408.2017.1370934spa
dc.relation.referencesEPPO. (2021). Galinsoga quadriradiata. https://gd.eppo.int/taxon/GASCI/pestsspa
dc.relation.referencesFeng, J.L., Chen, S.N., Tang, X.S., Ding, X.F., Du, Z.Y. y Chen, J.S. (2006). Quantitative determination of cucumber mosaic virus genome RNAs in virions by Real-Time Reverse Transcription-Polymerase Chain Reaction. Acta Biochimica et Biophysica Sinica, 38(10): 669-676. https://doi.org/10.1111/j.1745-7270.2006.00216.xspa
dc.relation.referencesGao, L. X., Ding, K., Li, W., Liao, Y., Zhong, R., Ren, Z., Liu, K., Adhimoolam, K. y H. Zhi. (2015). Characterization of Soybean mosaic virus resistance derived from inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars. Theoretical and Applied Genetics 128, 1489-1505. https://doi.org/10.1007/s00122-015-2522-0spa
dc.relation.referencesHebert, P. D., Cywinska, A., Ball, S. L. y deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218spa
dc.relation.referencesHebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. y Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, 101(41), 14812–14817. doi:10.1073/pnas.0406166101spa
dc.relation.referencesHobbs, H. A., Eastburn, D. M., D’Arcy, C. J., Kindhart, J. D., Masiunas, J. B., Voegtlin, D. J., Weinzierl, R. A. y McCoppin, N. K. (2000). Solanaceous Weeds as Possible Sources of Cucumber mosaic virus in Southern Illinois for Aphid Transmission to Pepper. Plant Disease, 84(11), 1221–1224. https://doi.org/10.1094/PDIS.2000.84.11.1221spa
dc.relation.referencesHuang, C. J., Liu, Y., Yu, H. Q., Liu, B. Z., y Qing, L. (2016). Bidens pilosa is a Natural Host of Tomato spotted wilt virus in Yunnan Province, China. Plant Disease, 100(9), 1957. https://doi.org/10.1094/PDIS-03-16-0344-PDNspa
dc.relation.referencesHull, R. (2013). Plant Virology. Fifth Edition. Academic Press.spa
dc.relation.referencesJaramillo, H., Marín, M. y Gutiérrez, P. A. (2018). Molecular characterization of Soybean mosaic virus (SMV) infecting Purple passion fruit (Passiflora edulis f. edulis) in Antioquia, Colombia. Archives of Phytopathology and Plant Protection, 1–20. https://doi:10.1080/03235408.2018.1505411spa
dc.relation.referencesJaramillo, H., Marín, M. y Gutiérrez, P. A. (2019). Complete genome sequence of a Passion fruit yellow mosaic virus (PFYMV) isolate infecting purple passion fruit (Passiflora edulis f. edulis). Revista Facultad Nacional de Agronomia Medellín, 72(1), 8643-8654. https://doi.org/10.15446/rfnam.v72n1.69438spa
dc.relation.referencesJunco, M.C., Silva, C.D.C., do Carmo, C.M., Kotsubo, R.Y., de Novaes, T.G. y Molina, R.D.O. (2020). Identification of potential hosts plants of Cowpea aphid-borne mosaic virus. Journal of Phytopathology. 169, 45– 51. https://doi.org/10.1111/jph.12957spa
dc.relation.referencesKamaal, N., Akram, M., Gupta, S. y Agnihotri, A. (2014). Ageratum conyzoides Harbours Mungbean yellow mosaic India virus. Plant Pathology Journal, 13. https://doi.org/10.3923/ppj.2014.59.64spa
dc.relation.referencesKaliciak, A. y Syller, J. (2009). New hosts of Potato virus Y (PVY) among common wild plants in Europe. European Journal of Plant Pathology124, 707–713 https://doi.org/10.1007/s10658-009-9452-0spa
dc.relation.referencesKashina, B., MABAGALA, B. y Mpunami, A. (2003). First Report of Ageratum conyzoides L. and Sida acuta Burm F. as New Weed Hosts of Tomato Yellow Leaf Curl. Plant Protection Science, 39. https://doi.org/10.17221/3822-PPSspa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C. y Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096spa
dc.relation.referencesMarín, M. y Gutiérrez, P.A. (2016). Principios de virología molecular de plantas tropicales. Agrosavia. http://editorial.agrosavia.co/index.php/publicaciones/catalog/book/69spa
dc.relation.referencesMiranda, D., G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra-Posada, W. Piedrahíta y Flórez, L. (2009). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. Sociedad Colombiana de Ciencias Hortícolas, Bogotá.http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_118_cultivo_poscosechavp.pdfspa
dc.relation.referencesMiranda, D., Carranza Gutiérrez, C. E., Fischer Gebauer, G., Jerez, C., Ramírez Godoy, A., Forero de la Rotta, M. C., Quevedo, K., Lanchero, O., Obregón Corredor, D., Chaves Córdoba, B., Pedraza Flautero, M., Plaza Trujillo, G. A., Martínez Maldonado, F. E. y Torres Arango, C. (2016). Problemas de campo asociados al cultivo de uchuva (Physalis peruviana L.) (Primera edición). Universidad Nacional de Colombia. Facultad de Ciencias Agrarias. http://ezproxy.unal.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000836877&lang=es&site=eds-livespa
dc.relation.referencesPlaza, G. A. y Pedraza, M. (2007). Reconocimiento y caracterización ecológica de la flora arvense asociada al cultivo de uchuva. Agronomía Colombiana, 25, 306–313.spa
dc.relation.referencesPandey, N., Tiwari, A., Rao, G. y Shukla, K. (2011). Detection and identification of Ageratum enation virus infecting Ageratum conyzoides in India. Acta Phytopathologica et Entomologica Hungarica, 46(2), 203–211. https://doi.org/10.1556/aphyt.46.2011.2.4spa
dc.relation.referencesRojas, J. (2020). Bidens pilosa (blackjack). Invasive Species Compendium. CABI. https://doi:10.1079/ISC.9148.20203483381spa
dc.relation.referencesRoossinck, M.J., Saha, P., Wiley, G.B., Quan, J., White, J.D., Lai, H. et al. (2010) Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Molecular Ecology, 19, 81–88. https://doi.org/10.1111/j.1365-294X.2009.04470.xspa
dc.relation.referencesSalazar, L. F., Muller, G., Querci, M., Zapata, J. L. y Owens, R. A. (2000). Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorum. Annals of Applied Biology, 137(1), 7–19. https://doi.org/https://doi.org/10.1111/j.1744-7348.2000.tb00052.xspa
dc.relation.referencesSavenkov, E.I., Sandgren, M.Y. y Valkonen, J.P.T. (1999). Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology, 80, 2779-2784. https://10.1099/0022-1317-80-10-2779spa
dc.relation.referencesSchena, L., Nigro, F., Ippolito, A. y Gallitelli, D. (2004). Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 110(9), 893-908. https://doi.org/10.1007/s10658-004-4842-9spa
dc.relation.referencesShibuya, Y., Sakata, J., Sukamto, N., Kon, T., Sharma, P. y Ikegami, M. (2007). First Report of Pepper yellow leaf curl Indonesia virus in Ageratum conyzoides in Indonesia. Plant Disease, 91(9), 1198. https://doi.org/10.1094/PDIS-91-9-1198Bspa
dc.relation.referencesSingh, M., Singh, R.P., Fageria, M.S., Nie, X., Coffin, R. y Hawkins, G. (2013). Optimization of a Real-Time RT-PCR Assay and its Comparison with ELISA, Conventional RT-PCR and the Grow-out Test for Large Scale Diagnosis of Potato virus Y in Dormant Potato Tubers. American Journal of Potato Research, 90, 43–50. https://doi.org/10.1007/s12230-012-9274-zspa
dc.relation.referencesSingh, G., Singh, N. P. y Singh, R. (2014). Food plants of a major agricultural pest Aphis gossypii Glover (Homoptera: Aphididae) from India: An updated checklist. International Journal of Research Studies in Biosciences, 3, 1-26.spa
dc.relation.referencesTan, H. N. P. y Wong, S. M. (1993). Some Properties of Singapore Ageratum Yellow Vein Virus (SAYVV). Journal of Phytopathology, 139(2), 165–176. https://doi.org/https://doi.org/10.1111/j.1439-0434.1993.tb01412.xspa
dc.relation.referencesWamonje, F. O., Tungadi, T. D., Murphy, A. M., Pate, A. E., Woodcock, C., Caulfield, J. C., Mutuku, J. M., Cunniffe, N. J., Bruce, T. J. A., Gilligan, C. A., Pickett, J. A. y Carr, J. P. (2020). Three Aphid-Transmitted Viruses Encourage Vector Migration From Infected Common Bean (Phaseolus vulgaris) Plants Through a Combination of Volatile and Surface Cues. Frontiers in Plant Science, 11. https://www.frontiersin.org/article/10.3389/fpls.2020.613772spa
dc.relation.referencesXanthis, C.K., Maliogka, V.I., Lecoq, H., Dezbiez, C., Tsvetkov, I. y Katis, N.I. (2015). First report of cucumber mosaic virus infecting watermelon in Greece and Bulgaria, Journal of Plant Pathology, 97(2), 391-403. http://dx.doi.org/10.4454/JPP.V97I2.007spa
dc.relation.referencesYazdkhasti, E., Hopkins, R. y Kvarnheden, A. (2021). Reservoirs of Plant Virus Disease: Occurrence of Wheat Dwarf Virus and Barley/Cereal Yellow Dwarf Viruses in Sweden. Plant Pathol. 70, 1552–1561. https://doi.org/10.1111/ppa.13414spa
dc.relation.referencesYu, J., Xue, J.-H. y Zhou, S.-L. (2011). New universal matK primers for DNA barcoding angiosperms. Journal of Systematics and Evolution, 49, 176-181. https://doi.org/10.1111/j.1759-6831.2011.00134.xspa
dc.relation.referencesZapata, J., Londoño, M., Diaz, Cipriano, A. y Saldarriaga, A. (2002). Manejo del cultivo de la uchuva en Colombia. AGROSAVIA. https://repository.agrosavia.co/handle/20.500.12324/12833?locale-attribute=esspa
dc.relation.referencesAGUILERA P., TACHIQUIN M., ROCHA M.G., PINEDA B. 2014. PCR en tiempo real. Herramientas moleculares aplicadas en ecología: aspectos teóricos y prácticos. 175–201.spa
dc.relation.referencesGARCÍA N., GUTIÉRREZ P.A, MARÍN M.M. 2013. Detección y cuantificación del Potato mop-top virus (PMTV) en Colombia mediante qRT-PCR. Acta Agronómica.62(2):120-128.spa
dc.relation.referencesNIE X & SINGH R.P. 2001. A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves and tubers. Journal of Virological Methods.91:37–49. https://10.1016/s0166-0934(00)00242-1.spa
dc.relation.referencesPÁSSARO, C. (Ed). 2014. Physalis peruviana L: fruta andina para el mundo. http://www.cyted.org/es/noticias/libro-physalis-peruviana-l-fruta-andina-para-el-mundospa
dc.relation.referencesSAMBROOK J., & RUSSELL, D. 2001. Molecular Cloning: A Laboratory Manual (3.a ed.). Spring Harbor Laboratory Press.spa
dc.relation.referencesSCHENA L., NIGRO F., IPPOLITO A., GALLITELLI D. 2004. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology.110(9):893-908. https://doi.org/10.1007/s10658-004-4842-9spa
dc.relation.referencesSHIRIMA R. R., MAEDA D. G., KANJU E., CEASAR G., TIBAZARWA F. I., LEGG J. P. 2017. Absolute quantification of cassava brown streak virus mRNA by real-time qPCR. Journal of Virological Methods.245:5-13. https://doi:10.1016/j.jviromet.2017.03.003spa
dc.relation.referencesWONG M. L. Y MEDRANO J. F. 2005. Real-time PCR for mRNA quantitation. BioTechniques.39(1):75-85. https://doi:10.2144/05391rv01spa
dc.relation.referencesAndrade, S., Fosneca, L., Silva, M., Faleiro, F. y Junqueira, N. (2010). Estudos Preliminares para o Uso de Termoterapia ex vitro em Maracujazeiro-Azedo visando à Eliminação de Vírus-do- endurecimento-dos-frutos. Boletim de Pesquisa e Desenvolvimento, 267spa
dc.relation.referencesBalamuralikrishnan, M., Doraisamy, S., Ganapathy, T. y Viswanathan, R. (2002). Combined effect of chemotherapy and meristem culture on sugarcane mosaic virus elimination in sugarcane. Sugar Tech, 4(1-2), 19–25. https://doi:10.1007/bf02956875spa
dc.relation.referencesCutler, J., Langer, J., Von, S., Acosta, O., Casierra, F., Castañeda, A., Betancourt, M., Cuellar, W., Arvydas, E., Altenbach, D. y Büttner, C. (2018). Preliminary evaluation of associated viruses in production systems of cape gooseberry, purple passion fruit, and rose. Revista Colombiana de Ciencias Hortícolas, 12(2), 390-396. https://doi:10.17584/rcch.2018vl2i2.7799spa
dc.relation.referencesDuque, M., Marín, M. y Gutiérrez, P.A. (2017). Genome comparison and primer design for detection of Tamarillo leaf malformation virus (TaLMV). Archives of Phytopathology and Plant Protection, 50, 713-726. https://doi.org/10.1080/03235408.2017.1370934spa
dc.relation.referencesFaccioli G. (2001). Control de virus de la papa mediante cultivos de meristemo y corte de tallo, termoterapia y quimioterapia. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0842-6_28spa
dc.relation.referencesGil, J. F., Adams, I., Boonham, N., Nielsen, S. L. y Nicolaisen, M. (2016). Molecular and biological characterization of Potato mop-top virus (PMTV, Pomovirus) isolates from the potato-growing regions of Colombia. Plant Pathology, 65(7), 1210–1220. https://doi.org/10.1111/ppa.12491spa
dc.relation.referencesGómez, J.E., F. Morales, J. Arroyave. (1997). Mosaic disease of Physalis peruviana in Colombia. ASCOLFI Informa. 23:52.spa
dc.relation.referencesGong, H., Igiraneza, C. y Dusengemungu, L. (2019). Major In Vitro Techniques for Potato Virus Elimination and Post Eradication Detection Methods. A Review. American Journal of Potato Research. 96, 379-389. https://doi.org/10.1007/s12230-019-09720-zspa
dc.relation.referencesGrout, B. W. W. (1999). Meristem-Tip Culture for Propagation and Virus Elimination. Plant Cell Culture Protocols, 115-126. https://doi.org/10.1385/1-59259-583-9:115spa
dc.relation.referencesHansen, A. J. y Lane, W. D. (1985). Elimination of apple chlorotic leafspot virus from apple shoot cultures by ribavirin. Plant Disease, 69(2), 134-135.spa
dc.relation.referencesHeredia, S. C. (2016). Erradicación de Onion Yellow Dwarf Virus (OYDV) en cebolla Shallot (Allium cepa var. Aggregatum), mediante el cultivo de meristemas, quimioterapia y termoterapia para la producción de bulbos libres de virus [Tesis de pregrado, Universidad San Francisco de Quito]. Repositorio Digital USFQ. http://repositorio.usfq.edu.ec/handle/23000/5198spa
dc.relation.referencesMellor, F. C. y Stace, R. (1987). Virus-Free Potatoes Through Meristem Culture. Potato, 30-39. https://doi:10.1007/978-3-642-72773-3_3spa
dc.relation.referencesMontiel , O., Pastelín, M., Ventura, E., Castañeda, O., Gonzalez, M. y Guevara, M. (2011). Tropical and subtropical agroecosystem, 13(3), 537-542.spa
dc.relation.referencesNasir, I., y Husnain, T. (2010). Strategies to control Potato Virus Y under in vitro conditions. Pakistan Journal Phytopathology, 22, 63–70.spa
dc.relation.referencesPennazio, S. y Appiano, A. (1975). Potato virus X aggregates in ultrathin sections of Datura meristematic dome. Phytopathologia Mediterranea, 14(1), 12-15. http://www.jstor.org/stable/42684242spa
dc.relation.referencesSavenkov, E.I., Sandgren, M.Y. y Valkonen, J.P.T. (1999). Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology, 80, 2779-2784. https://10.1099/0022-1317-80-10-2779spa
dc.relation.referencesSimpkins, I., Walkey, D. G. A. y Neely, H. A. (1981). Chemical suppression of virus in cultured plant tissues. Annals of Applied Biology, 99(2), 161-169. https://doi.org/10.1111/j.1744-7348.1981.tb05143.xspa
dc.relation.referencesVallejo, D., Gutiérrez, P. y M, Marín. (2016). Genome characterization of a Potato virus S (PVS) variant from tuber sprouts of Solanum phureja Juz. et Buk. Agronomía Colombiana 34, 51–60. https://doi.org/10.15446/agron.colomb.v34n1.53161.spa
dc.relation.referencesSingh, B. (2015). Effect of antiviral chemicals on in vitro regeneration response and production of PLRV-free plants of potato. Journal of Crop Science and Biotechnology, 18(5), 341-348. https://doi.org/10.1007/s12892-015-0069-xspa
dc.relation.referencesWang, Q., Panis B, Engelmann, F., Lambardi, M. y Valkonen, J. (2009). Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation.Trends Plant Science, 14(3), 351-363. https://doi.org/10.1111/j.1744-7348.2008.00308.xspa
dc.relation.referencesWang, M. R., Cui, Z. H., Li, J. W., Hao, X. Y., Zhao, L. y Wang, Q. C. (2018). In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 14(1), 87. https://doi.org/10.1186/s13007-018-0355-yspa
dc.relation.referencesZhang, Z., Wang, Q.C., Spetz, C. y Blystad, D.R. (2019). In vitro therapies for virus elimination of potato-valuable germplasm in Norway. Scientia Horticulturae, 249, 7-14. https://doi.org/10.1016/j.scienta.2019.01.027spa
dc.relation.referencesFuchs, M., C. Schmitt-Keichinger, H. Sanfaçon. 2017. A renaissance in Nepovirus research provides new insights into their molecular interface with hosts and vectors. Advances in Virus Research 97(61-105). https://doi.org/10.1016/bs.aivir.2016.08.009spa
dc.relation.referencesFischer, Gerhard., Almanza-Merchán., Pedro José. y Miranda, Diego. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 01-15. https://dx.doi.org/10.1590/0100-2945-441/13spa
dc.relation.referencesGong, H., Igiraneza, C. y Dusengemungu, L. (2019). Major In Vitro Techniques for Potato Virus Elimination and Post Eradication Detection Methods. A Review. American Journal of Potato Research. 96, 379-389. https://doi.org/10.1007/s12230-019-09720-zspa
dc.relation.referencesHobbs, H. A., Eastburn, D. M., D’Arcy, C. J., Kindhart, J. D., Masiunas, J. B., Voegtlin, D. J., Weinzierl, R. A. y McCoppin, N. K. (2000). Solanaceous Weeds as Possible Sources of Cucumber mosaic virus in Southern Illinois for Aphid Transmission to Pepper. Plant Disease, 84(11), 1221–1224. https://doi.org/10.1094/PDIS.2000.84.11.1221spa
dc.relation.referencesJohansen, E., M.C. Edwards, R.O. Hampton. 1994. Seed transmission of viruses: Currentspa
dc.relation.referencesKing AMQ (2012). Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press. San Diego.spa
dc.relation.referencesPallas, V., F. Aparicio, M.C. Herranz, K. Amari, M.A. Sanchez-Pina, A. Myrta, J.A. Sanchez-Navarro. 2012. Ilarviruses of Prunus spp.: a continued concern for fruit trees. Phytopathology 102(12), 1108-20. https://10.1094/PHYTO-02-12-0023-RVWspa
dc.relation.referencesPlaza, G. A. y Pedraza, M. (2007). Reconocimiento y caracterización ecológica de la flora arvense asociada al cultivo de uchuva. Agronomía Colombiana, 25, 306–313.spa
dc.relation.referencesMellor, F. C. y Stace, R. (1987). Virus-Free Potatoes Through Meristem Culture. Potato, 30-39. https://doi:10.1007/978-3-642-72773-3_3spa
dc.relation.referencesWamonje, F. O., Tungadi, T. D., Murphy, A. M., Pate, A. E., Woodcock, C., Caulfield, J. C., Mutuku, J. M., Cunniffe, N. J., Bruce, T. J. A., Gilligan, C. A., Pickett, J. A. y Carr, J. P. (2020). Three Aphid-Transmitted Viruses Encourage Vector Migration From Infected Common Bean (Phaseolus vulgaris) Plants Through a Combination of Volatile and Surface Cues. Frontiers in Plant Science, 11. https://www.frontiersin.org/article/10.3389/fpls.2020.613772spa
dc.relation.referencesAgindotan, B. O., Shiel, P. J., y Berger, P. H. (2007). Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. Journal of Virological Methods, 142(1-2), 1-9. http://doi:10.1016/j.jviromet.2006.12.012spa
dc.relation.referencesAgronet. (2018). Reporte: Área, Producción y Rendimiento Nacional por Cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dc.relation.referencesAlmanza, P.J. (2000). Propagación. En, Flórez, V.J., Fischer, G. y Sora, A.D (Eds.). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.) (pp. 27–40). Universidad Nacional de Colombia, Bogotá. https://repository.agrosavia.co/handle/20.500.12324/30703spa
dc.relation.referencesAlMaarri, K., Massa, R. y AlBiski, F. (2012). Evaluation of some therapies and meristem culture to eliminate Potato Y potyvirus from infected potato plants. Plant Biotechnology, 29(3), 237-243. http://doi:10.5511/plantbiotechnology.12.0215aspa
dc.relation.referencesÁlvarez, N., Jaramillo, H., Gallo, Y., Gutiérrez, P. y Marín, M. (2018). Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agronomía Colombiana, 36(1), 13-23. https://dx.doi.org/10.15446/agron.colomb.v36n1.65051spa
dc.relation.referencesAnaldex. (2020). Exportación de Gulupa en 2020. https://www.analdex.org/2021/02/25/exportacion-de-gulupa-en-2020/spa
dc.relation.referencesAnaldex. (2021). Informe exportaciones de uchuva. https://www.analdex.org/2021/10/20/informe-exportaciones-de-uchuva/spa
dc.relation.referencesAnaldex. (s.f.). ¡Uchuva / Goldenberry nuestra Embajadora de frutas Colombianas para el mundo!. https://www.analdex.org/2020/06/30/uchuva-goldenberry-nuestra-embajadora-de-frutas-colombianas-para-el-mundo/spa
dc.relation.referencesAndrade, S., Fosneca, L., Silva, M., Faleiro, F. y Junqueira, N. (2010). Estudos Preliminares para o Uso de Termoterapia ex vitro em Maracujazeiro-Azedo visando à Eliminação de Vírus-do- endurecimento-dos-frutos. Boletim de Pesquisa e Desenvolvimento, 267.spa
dc.relation.referencesAteş, S.Y., İnan, S., Ayyaz, M., Dündar, I. y Yabangülü, D. (2019). Effect of thermotherapy in combination with meristem culture for eliminating potato virus Y (PVY) and potato virus S (PVS) from infected seed stocks. The Journal of Animal & Plant Sciences, 29(2), 549-555. http://www.thejaps.org.pk/docs/V-29-02/26.pdfspa
dc.relation.referencesBang, B., Lee, J., Kim, S., Park, J., Nguyen, T. T. y Seo, Y. S. (2014). A Rapid and Efficient Method for Construction of an Infectious Clone of Tomato yellow leaf curl virus. The Plant Pathology Journal, 30(3), 310-315. https://doi.org/10.5423/PPJ.NT.03.2014.0025spa
dc.relation.referencesBartholomaus, A., A. de la Rosa, J.O. Santos, L.E. Acero y W, Moosbrugger. (1990). Physalis peruviana. El manto de la tierra - Flora de los Andes. Guía de 150 especies de la flora andina. (pp. 163-164). Lerner, Bogotá.spa
dc.relation.referencesBenscher, D., Pappu, S.S., Niblett, C.L., Varón de Agudelo, F., Morales, F., Hodson, E., Álvarez, E., Acosta, O. y Lee, R.F. (1996). A strain of Soybean mosaic virus infecting Passiflora spp. In Colombia. Plant Disease. 80, 258-262. http://doi: 10.1094/PD-80-0258.spa
dc.relation.referencesBhat, A.I. y Rao, G.P. (2020). Rolling Circle Amplification (RCA). En, Characterization of Plant Viruses (pp. 377-381). Springer Protocols Handbooks.https://doi.org/10.1007/978-1-0716-0334-5_2spa
dc.relation.referencesBlanco, J. (2000). Manejo de enfermedades. En, V. J., Flóres, G., Fischer, Á. D., Sora, (Eds). Cultivos de uchuva. Producción, pos-cosecha y exportación de la uchuva (Physalis peruviana L.) (pp. 57-65). Universidad Nacional de Colombia.spa
dc.relation.referencesBlawid, R., Silva, J. M. F. y Nagata, T. (2017). Discovering and sequencing new plant viral genomes by next-generation sequencing: description of a practical pipeline. Annals of Applied Biology, 170(3), 301–314. http://doi:10.1111/aab.12345spa
dc.relation.referencesBolger, A. M., Lohse, M. y Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBoonham, N., Laurenson, L., Weekes, R. y Mumford, R. (2008). Direct Detection of Plant Viruses in Potato Tubers using Real-time PCR. Methods in Molecular Biology, 249-258. http://doi:10.1007/978-1-59745-062-1_19spa
dc.relation.referencesBoonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J. y Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20-31. http://doi:10.1016/j.virusres.2013.12.007spa
dc.relation.referencesBoratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. y Madden, T. L. (2019). Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics, 20(1). http:// doi:10.1186/s12859-019-2996-xspa
dc.relation.referencesCamelo, V.M. (2010). Detección e identificación de los virus patógenos de cultivos de gulupa (Passiflora edulis Sims.) en la región de Sumapaz (Cundinamarca). [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/6860spa
dc.relation.referencesCámara de comercio de Bogotá. Manual Gulupa. (2015). https://bibliotecadigital.ccb.org.co/bitstream/handle/11520/14314/Gulupa.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesChen, S., Yu, N., Yang, S. Zhong, B.y Lan, H. (2018). Identification of Telosma mosaic virus infection in Passiflora edulis and its impact on phytochemical contents Virology Jurnal 15, 168. https://doi.org/10.1186/s12985-018-1084-6spa
dc.relation.referencesChiemsombat, P., Prammanee, S. y Pipattanawong, N. (2014). Occurrence of Telosma mosaic virus causing passion fruit severe mosaic disease in Thailand and immunostrip test for rapid virus detection. Crop Protection, 63, 41–47. https://doi.org/https://doi.org/10.1016/j.cropro.2014.04.023spa
dc.relation.referencesChong, YH., Cheng, YH., Cheng, HW. (2018). The virus causing passionfruit woodiness disease in Taiwan is reclassified as East Asian passiflora virus. Journal of General Plant Pathology 84, 208-220. https://doi.org/10.1007/s10327-018-0777-4spa
dc.relation.referencesClark, M.F. y A.N. Adams. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34(3), 475-483. https://doi.org/10.1099/0022-1317-34-3-475spa
dc.relation.referencesCorrales-Cabra, E., Higuita, M., Hoyos, R., Gallo, Y., Marín, M. y Gutiérrez, P. (2021). Prevalence of RNA viruses in seeds, plantlets, and adult plants of cape gooseberry (Physalis peruviana) in Antioquia (Colombia). Physiological and Molecular Plant Pathology 116, 101715. https://doi.org/10.1016/j.pmpp.2021.101715.spa
dc.relation.referencesCorrales-Cabra, E. (2022). Caracterización genómica de los virus que infectan los cultivos de uchuva (Physalis peruviana) en Antioquia para el apoyo de los programas de certificación de semilla [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/82181spa
dc.relation.referencesCrestani, O.A., Kitajima, E.W., Lin, M.T. y Marinho V.L. (1986). Passion Fruit Yellow Mosaic Virus, a New Tymovirus Found in Brazil. The American Phytopathological Society 76(9), 951-955. https://doi:10.1094 / Phyto-76-951spa
dc.relation.referencesCutler, J., Langer, J., Von, S., Acosta, O., Casierra, F., Castañeda, A., Betancourt, M., Cuellar, W., Arvydas, E., Altenbach, D. y Büttner, C. (2018). Preliminary evaluation of associated viruses in production systems of cape gooseberry, purple passion fruit, and rose. Revista Colombiana de Ciencias Hortícolas, 12(2), 390-396. https://doi:10.17584/rcch.2018vl2i2.7799spa
dc.relation.referencesDANE. (2020). Exportaciones-Histórico. https://www.dane.gov.co/index.php/estadisticas-por-tema/comercio-internacional/exportaciones/exportaciones-historicosspa
dc.relation.referencesD'Arcy, W. (1991). The Solanaceae since 1976, with a review of its biogeography. En: Hawkes, J., Lester, R.L., Nee, M. y Estrada N (Eds.), Solanaceae: Taxonomy, chemistry, evolution, 75-137.spa
dc.relation.referencesDavis, J. A., Radcliffe, E. B. y Ragsdale, D. W. (2005). Soybean aphid, Aphis glycines Matsumura, a new vector of Potato virus Y in potato. American Journal of Potato Research, 82(3), 197-201. https://doi:10.1007/bf02853585.spa
dc.relation.referencesDaza, P.A. y Rodríguez, P.A. (2006). Enfermedades de origen viral en plantas de uchuva (Physalis peruviana L.) en el Departamento de Cundinamarca. [Tesis de pregrado, Pontificia Universidad Javeriana] Bogotá.spa
dc.relation.referencesDíaz, A., Quiñones, M., Arana, F., Soto, M. y Hernández, Annia. (2010). Potyvirus: características generales, situación de su diagnóstico y determinación de su presencia en el cultivo del pimiento en Cuba. Revista de Protección Vegetal, 25(2), 69-79. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522010000200001&lng=es&tlng=.spa
dc.relation.referencesDomier, L. L., Hobbs, H. A., McCoppin, N. K., Bowen, C. R., Steinlage, T. A., Chang, S., Wang, Y. y Hartman, G. L. (2011). Multiple loci condition seed transmission of soybean mosaic virus (SMV) and SMV-induced seed coat mottling in soybean. Phytopathology, 101(6), 750–756. https://doi.org/10.1094/PHYTO-09-10-0239.spa
dc.relation.referencesEiras, M., Costa, I.F.D., Chaves, A.L.R., Colariccio, A., Harakava, R., Tanaka, F.A.O., Garcêz, R.M. y Silva, L.A. (2012). First report of a tospovirus in a commercial crop of Cape gooseberry in Brazil. New Disease Reports 25, 25. http://dx.doi.org/10.5197/j.2044-0588.2012.025.025spa
dc.relation.referencesEsquivel, A. F., Rezende, J. A. M., Lima, E. F. B., Kitajima, E. W. y Diniz, F. O. (2018). First Report of Groundnut ring spot virus on Physalis peruviana in Brazil. Plant Disease, 102(7), 1468–1468. http://doi:10.1094/pdis-10-17-1684-pdnspa
dc.relation.referencesFariña, A.E., Gorayeb, E.S. y Camelo-García., V.M. (2019). Caracterización molecular y biológica de un nuevo sobemovirus putativo que infecta a Physalis peruviana. Archives Virology 164, 2805–2810.https://doi.org/10.1007/s00705-019-04374-yspa
dc.relation.referencesFereres, A., Perez, P., Gemeno, C. y Ponz, F. (1993). Transmission of Spanish Pepper- and Potato-PVY Isolates by Aphid (Homoptera: Aphididae) Vectors: Epidemiological Implications. Environmental Entomology, 22(6), 1260-1265. https://doi.org/10.1093/ee/22.6.1260spa
dc.relation.referencesFisher, G., Miranda, D., Romero, J. y Piedrahita, W. (Eds). (2005). Avances en cultivo poscosecha y exportación de la uchuva (Physalis peruviana) en Colombia. Universidad Nacional de Colombia.http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_23_Avances%20cultivo%20uchuva.pdfspa
dc.relation.referencesFischer, I.H. y Rezende, J.A.M. (2008). Diseases of Passion Flower (Passiflora spp.). Pest Technology 2(1): 1-19. https://www.researchgate.net/publication/228483390_Diseases_of_Passion_flower_Passiflora_sppspa
dc.relation.referencesFischer, G. y Miranda, D. (Eds) (2012). Uchuva (Physalis peruviana L.). Manual para el cultivo de frutas tropicales en el trópico. Produmedios.spa
dc.relation.referencesFontenele, R. S., Lamas, N. S., Lacorte, C., Lacerda, A. L. M., Varsani, A. y Ribeiro, S. G. (2017). A novel geminivirus identified in tomato and cleome plants sampled in Brazil. Virus Research, 240, 175-179. https://doi:10.1016/j.virusres.2017.08.007spa
dc.relation.referencesFreedman, A. y Weeks, N. (2020). Best Practices for De Novo Transcriptome Assembly with Trinity. Hardvard FAS Informatics. https://informatics.fas.harvard.edu/best-practices-for-de-novo-transcriptome-assembly-with-trinity.htmlspa
dc.relation.referencesFribourg, C.E. (1979). Host plant reactions, some properties, and serology of Peru tomato virus. Phytopathology. 69(5), 441–445.spa
dc.relation.referencesFribourg, C. E. (1987). A New Tobamovirus from Passiflora edulis in Peru. Phytopathology, 77(3), 486. https://doi.org/10.1094/phyto-77-486spa
dc.relation.referencesFukumoto, T., Nakamura, M. y Rikitake, M. (2012). Molecular characterization and specific detection of two genetically distinguishable strains of East Asian Passiflora virus (EAPV) and their distribution in southern Japan. Virus Genes, 44, 141-148. https://doi.org/10.1007/s11262-011-0676-7spa
dc.relation.referencesGallo, Y. M, Jaramillo, H., Toro, L. F., Marín, M. y Gutiérrez, P. A. (2018). Characterization of the genome of a novel ilarvirus naturally infecting Cape gooseberry (Physalis peruviana). Archives of Virology, 163(6), 1713-1716. https://doi.org/10.1007/s00705-018-3796-8spa
dc.relation.referencesGallo, Y., Montoya, M. M. y Gutiérrez, P. A. (2020). Detection of RNA viruses in Cape gooseberry (Physalis peruviana L.) by RNAseq using total RNA and dsRNA inputs. Archives of Phytopathology and Plant Protection, 53(9-10), 395-413. https://doi.org/10.1080/03235408.2020.1748368spa
dc.relation.referencesGeering, A. D. W. (2021). Badnaviruses (Caulimoviridae) (D. H. Bamford & M. B. T.-E. of V. (Fourth E. Zuckerman (eds.); pp. 158–168). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-814515-9.00147-8spa
dc.relation.referencesGeniza, M. y Jaiswal, P. (2017). Tools for building de novo transcriptome assembly. Current Plant Biology, 11-12, 41-45. https://doi:10.1016/j.cpb.2017.12.004spa
dc.relation.referencesGergerich, R.C. y Dolja, V. V. (2006). Introducción a los virus vegetales, el enemigo invisible. The Plant Health Instructor. https://doi:10.1094/PHI-I-2008-0122-01spa
dc.relation.referencesGildow, F. E., Shah, D. A., Sackett, W. M., Butzler, T., Nault, B. A. y Fleischer, S. J. (2008). Transmission efficiency of Cucumber mosaic virus by aphids associated with virus epidemics in snap bean. Phytopathology, 98(11), 1233-1241. https://doi.org/10.1094/PHYTO-98-11-1233spa
dc.relation.referencesGoodwin, S., McPherson, J. D. y McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. https://doi:10.1038/nrg.2016.49spa
dc.relation.referencesGómez, P., Sempere, R. y Aranda, M. A. (2012). Pepino Mosaic Virus and Tomato Torrado Virus. Viruses and Virus Diseases of Vegetables in the Mediterranean Basin, 505–532. https://doi:10.1016/b978-0-12-394314-9.00014-2spa
dc.relation.referencesGonzález-Garza, R. (2017). Evolución de técnicas de diagnóstico de virus fitopatógenos. Revista Mexicana de fitopatología, 35(3), 591-610. https://doi.org/10.18781/r.mex.fit.1706-1spa
dc.relation.referencesGordillo, L.A. (2011). Incidencia del Soybean mosaic virus en cultivos de Gulupa (Passiflora edulis Sims) en Cundinamarca y estudio de su diversidad en Colombia. [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/9885spa
dc.relation.referencesGraça, J. V., Trench, T. N. y Martin, M. M. (1985). Tomato spotted wilt virus in commercial Cape gooseberry (Physalis peruviana) in Transkei. Plant Pathology, 34(3), 451–453. https://doi:10.1111/j.1365-3059.1985.tb01390.xspa
dc.relation.referencesGreen, K.J., Chikh-Ali, M., Hamasaki, R.T., Melzer, M.J. y Karasev, A.V.(2017). Potato virus Y (PVY) Isolates from Physalis peruviana are unable to systemically infect Potato or Pepper and form a distinct new lineage Within the PVYC Strain Group. Phytopathology, 107(11):1433-1439. https://doi:10.1094/PHYTO-04-17-0147-Rspa
dc.relation.referencesGupta, S.P. y Singh, B.R. (1996). Severe mosaic of Cape gooseberry due to Cucumber mosaic virus. Indian Journal Virology, 24(1), 27-156spa
dc.relation.referencesHajimorad, M. R., Domier, L. L., Tolin, S. A., Whitham, S. A. y Saghai, M. A. (2018). Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. Molecular Plant Pathology, 19(7), 1563-1579. http://doi:10.1111/mpp.12644.spa
dc.relation.referencesHancinsk, R., Mih, D., Mrkvov, M., Candresse, T. y Glasa, M. (2020). Plant viruses infecting Solanaceae family members in the cultivated and wild environments: A Review. Plants, 9, 667. https://doi:10.3390/plants9050667spa
dc.relation.referencesHeredia, S. C. (2016). Erradicación de Onion Yellow Dwarf Virus (OYDV) en cebolla Shallot (Allium cepa var. Aggregatum), mediante el cultivo de meristemas, quimioterapia y termoterapia para la producción de bulbos libres de virus [Tesis de pregrado, Universidad San Francisco de Quito]. Repositorio Digital USFQ. http://repositorio.usfq.edu.ec/handle/23000/5198spa
dc.relation.referencesHill, J. H. (2001). First Report of Transmission of Soybean mosaic virus and Alfalfa mosaic virus by Aphis glycines in the New World. Plant Disease, 85(5). https://doi.org/10.1094/PDIS.2001.85.5.561C.spa
dc.relation.referencesHorváth, J. (1970). Reaction of Physalis species to plant viruses. The Cape gooseberry as a symptomless carrier of Potato virus X and Y. Acta Phytopathologica, 5, 65-72-spa
dc.relation.referencesHorváth, J. (1996). Ornamental physalis species as perennial virus hosts. Acta Horticulturae, 432, 204-211. https://doi:10.17660/actahortic.1996.432.25spa
dc.relation.referencesJaramillo, H. (2017). Análisis del transcriptoma y viroma de Passiflora edulis f. edulis en cultivos de Antioquia utilizando métodos de secuenciación de nueva generación [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/62808spa
dc.relation.referencesJaramillo, H., Marín, M. y Gutiérrez, P. A. (2018). Molecular characterization of Soybean mosaic virus (SMV) infecting Purple passion fruit (Passiflora edulis f. edulis) in Antioquia, Colombia. Archives of Phytopathology and Plant Protection, 1–20. https://doi:10.1080/03235408.2018.1505411spa
dc.relation.referencesJaramillo, H., Marín, M. y Gutiérrez, P. A. (2019). Complete genome sequence of a Passion fruit yellow mosaic virus (PFYMV) isolate infecting purple passion fruit (Passiflora edulis f. edulis). Revista Facultad Nacional de Agronomia Medellín, 72(1), 8643-8654. https://doi.org/10.15446/rfnam.v72n1.69438spa
dc.relation.referencesJover-Gil, S., Beeri, A., Fresnillo, P., Samach, A. y Candela, H. (2018). Complete genome sequence of a novel virus, classifiable within the Potyviridae family, which infects passion fruit (Passiflora edulis). Archives of Virology. https://doi:10.1007/s00705-018-3983-7spa
dc.relation.referencesJoy, P. P. y Sherin, C.G., (2012). DISEASES OF PASSION FRUIT (Passiflora edulis): Pathogen, Symptoms, Infection, Spread & Management. https://www.researchgate.net/publication/306017818_DISEASES_OF_PASSION_FRUIT_Passiflora_edulis_Pathogen_Symptoms_Infection_Spread_Managementspa
dc.relation.referencesKreuze, J. Vaira, A. M. Mezel, W. Candresse, T. Zavriev, S. K. Hammond, J. y Ryu, H. (2020). ICTV virus taxonomy profile: Alphaflexiviridae. Journal of General Virology. https://doi.org/10.1099/jgv.0.001436spa
dc.relation.referencesLangmead, B. y Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi:10.1038/nmeth.1923spa
dc.relation.referencesLee, J. S., Cho, W.K., Choi, H.-S. y Kim, K.-H. (2011). RT-PCR Detection of Five Quarantine Plant RNA Viruses Belonging to Potyand Tospoviruses. The Plant Pathology Journal, 27(3), 291-296. https://doi.org/10.5423/PPJ.2011.27.3.291spa
dc.relation.referencesLegge, A. (1974). Notes on the history, cultivation and uses of Physalis peruviana L. Journal of the Royal Horticultural Society, 99 (7), 310−314.spa
dc.relation.referencesLi, R. y Hartung, J. S. (2007). Reverse transcription-polymerase chain reaction-based detection of plant viruses. Current protocols in microbiology. https://doi.org/10.1002/9780471729259.mc16c01s6spa
dc.relation.referencesLi, H. y Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England), 26(5), 589-595. https://doi.org/10.1093/bioinformatics/btp698spa
dc.relation.referencesLi, H., Zhou, P., Yang, Q., Shen, Y., Deng, J., Li, L. y Zhao, D. (2011). Comparative studies on anxiolytic activities and flavonoid compositions of Passiflora edulis “edulis” and Passiflora edulis “flavicarpa.” Journal of Ethnopharmacology, 133(3), 1085-1090. https://doi:10.1016/j.jep.2010.11.039spa
dc.relation.referencesLi, H., Liu, X., Michaud, J.P., Zhi, H., Li, K., Li, Z. y Li, X. (2018). Host Plant Infection by Soybean mosaic virus Reduces the Fitness of Its Vector, Aphis Glycines (Hemiptera: Aphididae). Journal of Economic Entomology, 111(5). https://doi.org/10.1093/JEE/TOY165.spa
dc.relation.referencesLiberato, J. y Murilo, Z. (s.f.) Diseases of Passionfruit (Passiflora spp.). https://www.apsnet.org/edcenter/resources/commonnames/Pages/Passionfruit.aspxspa
dc.relation.referencesMabele, A. S., Were, H. K., Owuor Ndong’a, M. F. y Mukoye, B. (2021). Occurrence and genetic diversity of groundnut rosette assistor virus in western Kenya. Crop Protection, 139, 105381. https://doi.org/https://doi.org/10.1016/j.cropro.2020.105381spa
dc.relation.referencesMaree, H. J., Fox, A., Al Rwahnih, M., Boonham, N. y Candresse, T. (2018). Application of HTS for Routine Plant Virus Diagnostics: State of the Art and Challenges. Frontiers in Plant Science, 9. https://doi:10.3389/fpls.2018.01082spa
dc.relation.referencesMarín, M. Gutiérrez, P.A. (2016). Principios de virología molecular de plantas tropicales. Agrosavia. http://editorial.agrosavia.co/index.php/publicaciones/catalog/book/69spa
dc.relation.referencesMartínez, M.L. (1998). Revisión de Physalis Sección Epeteiorhiza (Solanaceae). Universidad Nacional Autónoma de México, 69, 71-117. http://www.revistas.unam.mx/index.php/bot/article/view/1909spa
dc.relation.referencesMedford, J. (1992). Vegetative Apical Meristems. Plant Cell, 4, 1029-1039. https://doi.org/10.1105/tpc.4.9.1029spa
dc.relation.referencesMenzel, M. Y. (1951). The Cytotaxonomy and Genetics of Physalis. Proceedings of the American Philosophical Society, 95(2), 132–183. http://www.jstor.org/stable/31433310434.2002.00740.spa
dc.relation.referencesMinisterio de Agricultura y Desarollo Rural [Minagricultura]. (2020). Cadena de pasifloras. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2020-06-30%20Cifras%20Sectoriales.pdfspa
dc.relation.referencesMink, G. I. (1992). Ilarvirus Vectors BT - Advances in Disease Vector Research (K. F. Harris (ed.); pp. (261–281). Springer New York. https://doi.org/10.1007/978-1-4612-2910-0_8spa
dc.relation.referencesMiranda, D., G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra-Posada, W. Piedrahíta y Flórez, L. (2009). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. Sociedad Colombiana de Ciencias Hortícolas, Bogotá.http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_118_cultivo_poscosechavp.pdfspa
dc.relation.referencesMituti, T., Spadotti, D. M. A., Narita, N. y Rezende, J. A. M. (2018). First Report of Sida Mottle Alagoas Virus Infecting Passiflora edulis in Brazil. Plant Disease, 103(1), 169. https://doi.org/10.1094/PDIS-06-18-1068-PDNspa
dc.relation.referencesMorales, F.J., Lozano, I., Castaño, M., Arroyave, J., Velasco, A.C. y Varon, F. (2002). Partial characterization of a tymovirus infecting passion fruit in Colombia, South America. Journal of Phytopathology 150(4-5), 292-296. https://doi:10.1046/j.1439-Morton, J. (1987). Passionfruit. Fruits of warm climates,320–328spa
dc.relation.referencesMortimer, S. M., Jones, M. G. K., Jones, R. A. C., Thomson, G. y Dwyer, G. I. (2009). A single tube, quantitative real-time RT-PCR assay that detects four potato viruses simultaneously. Journal of Virological Methods, 161(2), 289-296. https://doi:10.1016/j.jviromet.2009.06.027spa
dc.relation.referencesNaidu, R.A. y Hughes, J.D.A. (2001). Methods for the detection of plant virus diseases [conferencia]. Proceedings of a conference on Plant Virology in Sub Saharan Africa, Ibadan, Nigeria, (pp. 233-253). https://hdl.handle.net/10568/96508spa
dc.relation.referencesNakasato, K., Fujioka, S., Sugawara, Y., Ono, T., Nishio, T. y Tsuda, S. (2020). First detection of two potyviruses, uraria mosaic virus and passiflora mosaic virus Y, from passionfruit in Japan. Journal of General Plant Pathology. https://doi:10.1007/s10327-020-00932-4spa
dc.relation.referencesNascimento, A., Santana, E. y Braz, A. (2006). Cowpea aphid-borne mosaic virus (CABMV) is widespread in passionfruit in Brazil and causes passionfruit woodiness disease. Archives of Virology 151, 1797–1809.https://doi.org/10.1007/s00705-006-0755-6spa
dc.relation.referencesNotomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. y Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic acids research, 28(12), E63. https://doi.org/10.1093/nar/28.12.e63spa
dc.relation.referencesOcampo, J. y Wyckhuys, K. (Eds.) (2012.). Tecnología para el cultivo de la gulupa (Passiflora edulis f. edulis Sims) en Colombia. Centro de Bio-Sistemas de la Universidad Jorge Tadeo Lozano, Centro Internacional de Agricultura Tropical - CIAT y Ministerio de Agricultura y Desarrollo Rural, República de Colombia. https://www.researchgate.net/publication/259946957_Tecnologia_para_el_cultivo_de_la_Gulupa_en_Colombia_Passiflora_edulis_f_edulis_Sims_Purple_Passion_Fruitspa
dc.relation.referencesOlivares-Tenorio, M.-L., Dekker, M., Verkerk, R. y Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science & Technology, 57, 83–92. https://doi:10.1016/j.tifs.2016.09.009spa
dc.relation.referencesPanno, S., Matić, S., Tiberini, A., Caruso, A. G., Bella, P., Torta, L., Stassi, R. y Davino, A. S. (2020). Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology. Plants (Basel, Switzerland), 9(4), 461. https://doi.org/10.3390/plants9040461spa
dc.relation.referencesParrella, G. y Sorrentino, D. (2009). Identification of a Cucumber mosaic virus Isolate from Passiflora edulis in Southern Italy and Validation of Subgroup Identification by In Silico Restriction Fragment Length Polymorphism. Journal of Phytopathology, 157(11–12), 762–767. https://doi.org/10.1111/j.1439-0434.2009.01604.xspa
dc.relation.referencesPássaro, C. (Ed). (2014). Physalis peruviana L: fruta andina para el mundo. http://www.cyted.org/es/noticias/libro-physalis-peruviana-l-fruta-andina-para-el-mundospa
dc.relation.referencesPavlovic, S., Klaassen, K., Stankovic, B., Stojiljkovic, M. y Zukic, B. (2020). Next-Generation Sequencing: The Enabler and the Way Ahead. Microbiomics, 175–200. https://doi:10.1016/b978-0-12-816664-2.00009-8spa
dc.relation.referencesPerea, M., Rodríguez, N.C., Fisher, G., Velázquez, M., y Mican, Y. (2010). Solanaceae, Biotecnología aplicada al mejoramiento de los cultivos de frutas tropicales. Universidad Nacional de Colombia, 466-490. https://www.uneditorial.com/biotecnologia-aplicada-al-mejoramiento-de-los-cultivos-de-frutas-tropicales-agropecuario.htmlspa
dc.relation.referencesPerry, K. L., Zhang, L. y Palukaitis, P. (1998). Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the Aphids Myzus persicae and Aphis gossypii. Virology, 242(1), 204–210. https://doi.org/10.1006/viro.1998.8991spa
dc.relation.referencesPrakash, O., Misra, A.K., Singh, S.J. y Srivastava, K.M. (1988). Isolation, purification and electron microscopy of mosaic virus of cape gooseberry. International Journal of Tropical Plant Diseases. 6(1), 85-87.spa
dc.relation.referencesPrammanee, S., Thumjamras, S., Chiemsombat, P. y Pipattanawong, N. (2011). Efficient shoot regeneration from direct apical meristem tissue to produce virus-free purple passion fruit plants. Crop Protection, 30(11), 1425-1429. https://doi:10.1016/j.cropro.2011.07.008spa
dc.relation.referencesPROCOLOMBIA. (s.f.). Uchuva (goldenberry). https://docs.procolombia.co/int-procolombia/es/exportaciones/ficha_uchuva_final.pdfspa
dc.relation.referencesPROCOLOMBIA. (2021). Aumentan los pedidos de frutas colombianas en Europa. https://procolombia.co/noticias/aumentan-los-pedidos-de-frutas-colombianas-en-europaspa
dc.relation.referencesPuente, L. A., Pinto-Muñoz, C. A., Castro, E. S. y Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. https://doi.org/https://doi.org/10.1016/j.foodres.2010.09.034spa
dc.relation.referencesReuter, J. A., Spacek, D. V. y Snyder, M. P. (2015). High-Throughput Sequencing Technologies. Molecular Cell, 58(4), 586-597. https://doi:10.1016/j.molcel.2015.05.004spa
dc.relation.referencesSalamon, P. y Palkovics, L. (2005). Occurrence of colombian datura virus in Brugmansia hybrids, Physalis peruviana L. and Solanum muricatum Ait. in Hungary. Acta Virologica. 49, 117-122spa
dc.relation.referencesSepúlveda, M., Cardona, D., Gallo, Y., Higuita, M., Gutiérrez, P. y Marín, M. (2022). Virome analysis for identification of viruses associated with asymptomatic infection of purple passion fruit (Passiflora edulis f. edulis) in Colombia, The Journal of Horticultural Science and Biotechnology, 1–14. https://doi: 10.1080/14620316.2021.1973583spa
dc.relation.referencesVaca-Vaca, J.C., Carrasco-Lozano, E.C. y López-López, K. (2017). Molecular identification of a new begomovirus infecting yellow passion fruit (Passiflora edulis) in Colombia. Archives of Virology 162, 573–576. https://doi.org/10.1007/s00705-016-3098-yspa
dc.relation.referencesAgindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi: 10.1016/j.jviromet.2006.12.012.spa
dc.relation.referencesAgronet, 2020. Red de información y comunicación del sector Agropecuario Colombiano. https://www.agronet.gov.co/estadistica/Paginas/home.aspx (accessed 20 september 2021).spa
dc.relation.referencesÁlvarez, N., H. Jaramillo, Y. Gallo, P. Gutiérrez, M. Marín. 2018. Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting Cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agronomía Colombiana 36(1): 13–23. https://dx.doi.org/10.15446/agron.colomb.v36n1.65051spa
dc.relation.referencesAyala, M., P. González, P. Gutiérrez, J. Cotes, M. Marín. 2010. Caracterización serológica y molecular de potyvirus asociados a la virosis del tomate de árbol en Antioquia (Colombia). Acta Biológica Colombiana 15: 143-162.spa
dc.relation.referencesBrewer, E., M. Cao, B. Gutierrez, M. Bateman, R. Li. 2020. Discovery and molecular characterization of a novel trichovirus infecting sweet cherry. Virus Genes 56: 380-385. https://doi.org/10.1007/s11262-020-01743-7spa
dc.relation.referencesBushmanova, E., D. Antipov, A. Lapidus, A.D. Prjibelski. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data, GigaScience 8(9): 1-13. https://doi.org/10.1093/gigascience/giz100spa
dc.relation.referencesDuarte, P.D.S.G., S.B.F. Galvino-Costa, S.R.R. de Paula Ribeiro, A.R. Figueira. 2012. Complete genome sequence of the first Andean strain of potato virus S from Brazil and evidence of recombination between PVS strains. Archives of Virology 157: 1357–1364. https://doi.org/10.1007/s00705-012-1289-8spa
dc.relation.referencesDuque, M., M. Marín, P.A. Gutiérrez. 2017. Genome comparison and primer design for detection of Tamarillo leaf malformation virus (TaLMV). Archives of Phytopathology and Plant Protection 50: 713-726. https://doi.org/10.1080/03235408.2017.1370934spa
dc.relation.referencesEdgar, R.C., R.M. Drive, M. Valley. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340.spa
dc.relation.referencesFischer, G., L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas 14(1): 76-89. https://doi.org/10.17584/rcch.2020v14i1.10893spa
dc.relation.referencesFuchs, M., C. Schmitt-Keichinger, H. Sanfaçon. 2017. A renaissance in Nepovirus research provides new insights into their molecular interface with hosts and vectors. Advances in Virus Research 97: 61-105. https://doi.org/10.1016/bs.aivir.2016.08.009spa
dc.relation.referencesGallo, Y. 2020. Caracterización molecular del viroma de plantas solanáceas de importancia económica en Antioquia. PhD. thesis Biotechnology. Universidad Nacional de Colombia sede Medellín.spa
dc.relation.referencesGarcía, N., P. Gutiérrez, M. Marín. 2013. Detección y cuantificación del Potato mop-top virus (PMTV) en Colombia mediante qRT-PCR. Acta Agronómica 62(2): 120-128.spa
dc.relation.referencesGil, J.F., J.M. Cotes, E.P. González, M. Marín. 2011. Caracterización genotípica de aislamientos colombianos del potato mop-top virus (PMTV, Pomovirus). Actualidades Biológicas 33(94): 69–84.spa
dc.relation.referencesGil, J.F., I. Adams, N. Boonham, S.L. Nielsen, M. Nicolaisen. 2016. Molecular and biological characterization of Potato mop-top virus (PMTV, Pomovirus) isolates from the potato-growing regions of Colombia. Plant Pathology 65: 1210–1220. https://doi.org/10.1111/ppa.12491.spa
dc.relation.referencesGish, W., D.J. States. 1993. Identification of protein coding regions by database similarity search. Nature Genetics 3: 266–272. https://doi.org/10.1038/ng0393-266spa
dc.relation.referencesGutiérrez, P.A., J.F. Alzate, M.M. Montoya. 2015a. Complete genome sequence of an isolate of Potato virus X (PVX) infecting cape gooseberry (Physalis peruviana) in Colombia. Virus Genes 50(3): 518-522. https://10.1007/s11262-015-1181-1spa
dc.relation.referencesGutiérrez, P.A., J.F. Alzate, M. Marín. 2015b. Genome sequence of a virus isolate from tamarillo (Solanum betaceum) in Colombia: evidence for a new potyvirus. Archives of Virology 160(2): 557-560. https://doi.org/10.1007/s00705-014-2296-8spa
dc.relation.referencesGutiérrez, P., A. Rivillas, D. Tejada, S. Giraldo, A. Restrepo, M. Ospina, S. Cadavid, Y. Gallo, M. Marín. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology 113: 101604. https://doi.org/10.1016/j.pmpp.2021.101604spa
dc.relation.referencesHull, R. 2013. Plant Virology. 5th Edition. Academic Press, London. 918 p.spa
dc.relation.referencesJohansen, E., M.C. Edwards, R.O. Hampton. 1994. Seed transmission of viruses: Current Perspectives. Annual Review of Phytopathology 32: 363-386.spa
dc.relation.referencesJones, D.T., W.R. Taylor, J.M. Thornton. 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8: 275-282. https://doi.org/10.1093/bioinformatics/8.3.275spa
dc.relation.referencesKim, S., M. Park, S.I. Yeom, Y.M. Kim, J.M. Lee, H.A. Lee, E. Seo, J. Choi, K. Cheong, K.T. Kim, K. Jung, G.W. Lee, S.K. Oh, C. Bae, S.B. Kim, H.Y. Lee, S.Y. Kim, M.S. Kim, B.C. Kang, Y.D. Jo, H.B. Yang, H.J. Jeong, W.H. Kang, J.K. Kwon, C. Shin, J.Y. Lim, J.H. Park, J.H. Huh, J.S. Kim, B.D. Kim, O. Cohen, I. Paran, M.C. Suh, S.B. Lee, Y.K. Kim, Y. Shin, S.J. Noh, J. Park, Y.S. Seo, S.Y. Kwon, H.A. Kim, J.M. Park, H.J. Kim, S.B. Choi, P.W. Bosland, G. Reeves, S.H. Jo, B.W. Lee, H.T. Cho, H.S. Choi, M.S. Lee, Y. Yu, Y. Do Choi, B.S. Park, A. van Deynze, H. Ashrafi, T. Hill, W.T. Kim, H.S. Pai, H.K. Ahn, I. Yeam, J.J. Giovannoni, J.K. Rose, I. Sørensen, S.J. Lee, R.W. Kim, I.Y. Choi, B.S. Choi, J.S. Lim, Y.H. Lee, D. Choi. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics 2014 46(3): 270-278. https://doi.org/10.1038/ng.2877spa
dc.relation.referencesKing, A.M.Q. 2012. Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press. San Diego.spa
dc.relation.referencesKitajima, E.W. 2020. An annotated list of plant viruses and viroids described in Brazil (1926-2018). Biota Neotropica 20(2): e20190932. https://doi.org/10.1590/1676-0611-BN-2019-0932.spa
dc.relation.referencesKumar, S., G. Stecher, M. Li, C. Knyaz, K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549. https://doi.org/10.1093/molbev/msy096.spa
dc.relation.referencesMartelli, G.P., T. Candresse, S. Namba. 1994. Trichovirus, a new genus of plant viruses. Archives of Virology 134(3-4): 451-455. https://doi.org/10.1007/BF01310583.spa
dc.relation.referencesMistry, J., S. Chuguransky, L. Williams, M. Qureshi, G.A. Salazar, E.L.L. Sonnhammer, S.C.E. Tosatto, L. Paladin, S. Raj, L.J. Richardson, R.D. Finn, A. Bateman. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1): D412-D419. https://doi.org/10.1093/nar/gkaa913spa
dc.relation.referencesPosada, D., K.A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818. https://doi.org/10.1093/bioinformatics/14.9.817spa
dc.relation.referencesProcolombia. 2020. Uchuva (Goldenberry). https://docs.procolombia.co/int-procolombia/es/exportaciones/ficha_uchuva_final.pdf (accessed 10 October 2021)spa
dc.relation.referencesSaitou, N., M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–425. https://10.1093/oxfordjournals.molbev.a040454spa
dc.relation.referencesSavenkov, E.I., M.Y. Sandgren, J.P.T. Valkonen. 1999. Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology 80: 2779-2784. https://10.1099/0022-1317-80-10-2779spa
dc.relation.referencesSingh, M., Singh, R.P., Fageria, M.S., Nie, X., Coffin, R., Hawkins, G. 2013. Optimization of a Real-Time RT-PCR Assay and its Comparison with ELISA, Conventional RT-PCR and the Grow-out Test for Large Scale Diagnosis of Potato virus Y in Dormant Potato Tubers. American Journal of Potato Research, 90: 43–50. https://doi.org/10.1007/s12230-012-9274-zspa
dc.relation.referencesTamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution 9(4): 678-687. https://10.1093/oxfordjournals.molbev.a040752spa
dc.relation.referencesVallejo, D., Gutiérrez, P., M. Marín. 2016. Genome characterization of a Potato virus S (PVS) variant from tuber sprouts of Solanum phureja Juz. et Buk. Agronomía Colombiana 34: 51–60. https://doi.org/10.15446/agron.colomb.v34n1.53161.spa
dc.relation.referencesAgronet (2021). Área, producción y rendimiento de Gulupa en Colombia. In: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; accessed: October 2020.spa
dc.relation.referencesBhat AI, Hohn T, Selvarajan R (2016). Badnaviruses: The current global scenario. Viruses 8(6): 177. doi: 10.3390/v8060177spa
dc.relation.referencesBushmanova E, Antipov D, Lapidus A, Prjibelski AD (2019) rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8(9): giz100. doi: 10.1093/gigascience/giz100spa
dc.relation.referencesCardona D, Higuita M, Posada J, Gallo Y, Marín M, Gutiérrez P (2022a). Viruses infecting purple passion fruit (Passiflora edulis f. edulis) in Southwestern Antioquia (Colombia). Archives of Phytopathology and Plant Protection. Archives of Phytopathology and Plant Protection, 55(12): 1394–1409. doi: 10.1080/03235408.2022.2098588spa
dc.relation.referencesCardona, D., Restrepo, A., Higuita, M., Gallo, Y., Marin, M., y Gutiérrez, P. (2022b). Natural infection of purple passion fruit (Passiflora edulis f. edulis) by a novel member of the family Tymoviridae in Colombia. Acta virologica, 66(3):254–262. doi:10.4149/av_2022_310spa
dc.relation.referencesCardona D, Gallo Y, Higuita M, Hoyos R, Gutiérrez P, Marín M (2022c). Detección molecular de virus en cultivos, plántulas y semillas de gulupa (Passiflora edulis f. edulis) en el oriente de Antioquia. Bioagro: 34(2).spa
dc.relation.referencesChabannes M, Gabriel M, Aksa A, Galzi S, Dufayard JF, Iskra-Caruana ML, Muller E (2020). Badnaviruses and banana genomes: a long association sheds light on Musa phylogeny and origin. Molecular Plant Pathology 22:216-230. doi: 10.1111/mpp.13019spa
dc.relation.referencesChomczynski P, Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162(1): 156-159. doi: 10.1006/abio.1987.9999spa
dc.relation.referencesCuspoca, J (2007). Evaluación de virus de tomate de árbol (Solanum betaceum) en plantas indicadoras y su detección por PCR. Thesis in Agronomy. Faculty of Agronomy. Universidad Nacional de Colombia. Bogotá. 31 p.spa
dc.relation.referencesDoyle JJ, Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.spa
dc.relation.referencesFeng JL, Chen SN, Tang XS, Ding XF, Du ZY, Chen JS (2006). Quantitative determination of cucumber mosaic virus genome RNAs in virions by Real-Time Reverse Transcription-Polymerase Chain Reaction. Acta Biochimica et Biophysica Sinica, 38(10): 669-676. doi: 10.1111/j.1745-7270.2006.00216.xspa
dc.relation.referencesGao L, Ding X, Li K, Liao W, Zhong Y, Ren R, Liu Z, Adhimoolam K, Zhi H (2015). Characterization of Soybean mosaic virus resistance derived from inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars. Theoretical and Applied Genetics, 128: 1489-1505. doi: 10.1007/s00122-015-2522-0spa
dc.relation.referencesGillaspie AG Jr, Pio-Ribeiro G, Andrade GP, Pappu HR (2001). RT-PCR Detection of seedborne Cowpea aphid-borne mosaic virus in peanut. Plant Disease, 85(11): 1181-1182. doi: 10.1094/PDIS.2001.85.11.1181spa
dc.relation.referencesGonçalves Z, de Jesus O, Cerqueira-Silva CB; Diniz RP, Soares TL, de Oliveira EJ (2017). Methodological approaches to assess passion fruit resistance (Passiflora spp.) to passionfruit woodiness disease. Bioscience Journal, 33(6): 1441-1451. doi: 10.14393/BJ-v33n6a2017-36619spa
dc.relation.referencesGordillo LA (2011). Incidencia del Soybean mosaic virus en cultivos de Gulupa (Passiflora edulis Sims) en Cundinamarca y estudio de su diversidad en Colombia. Master’s Thesis in Microbiology. Faculty of Sciences. Universidad Nacional de Colombia. Bogotá. 106 p. https://repositorio.unal.edu.co/handle/unal/9885spa
dc.relation.referencesHoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution 35(2): 518-522. doi: 10.1093/molbev/msx281. PMID: 29077904spa
dc.relation.referencesJaramillo H, Marín M and Gutiérrez P (2018). Molecular characterization of Soybean mosaic virus (SMV) infecting Purple passion fruit (Passiflora edulis f. edulis) in Antioquia, Colombia. Archives of Phytopathology and Plant Protection, 51(11-12): 617-636. doi: 10.1080/03235408.2018.1505411spa
dc.relation.referencesJaramillo H, Marín M and Gutiérrez P (2019). Complete genome sequence of a Passion fruit yellow mosaic virus (PFYMV) isolate infecting purple passion fruit (Passiflora edulis f. edulis). Revista Facultad Nacional de Agronomía Medellín, 72(1): 8643-8654. doi: 10.15446/rfnam.v72n1.69438spa
dc.relation.referencesKalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587-589. doi: 10.1038/nmeth.4285spa
dc.relation.referencesKatoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4): 772-780. doi: 10.1093/molbev/mst010spa
dc.relation.referencesKing AMQ (2012). Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press. San Diego.spa
dc.relation.referencesKing AMQ (2012). Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press. San Diego.spa
dc.relation.referencesMelgarejo, L, Fischer, G, Cuca Suárez, L, Hernández Gómez, M, Hoyos Carvajal, L, Magnitskiy, S, Brochero, H, Miranda Lasprilla, D, Álvarez-Flórez, F, Ávila Murillo, M, Delgado Ávila, W, Mendoza Forero, C, Lizarazo Hernández, K, Solarte Cruz, M, Hurtado Clopatosky, S, Plazas Rodríguez, E, García Morantes, J, Ramírez Soler, C, Márquez-Niño, F, Moreno Echeverry, D, Sandoval, J, Flechas Bejarano, N, Díaz Ardila, H, Cárdenas Pira, W, Torres Moya, E, Cruz Ospina, S, Toro Tobón, G, Paz Figueroa, V y Rodríguez Castillo, N. (2019). Gulupa (Passiflora edulis), curuba (Passiflora tripartita), aguacate (Persea americana) y tomate de árbol (Solanum betaceum) Innovaciones. Universidad Nacional de Colombia, Bogotá. https://repositorio.unal.edu.co/handle/unal/79864spa
dc.relation.referencesMunguti F, Maina S, Nyaboga EN, Kilalo D, Kimani E, Macharia M, Holton T (2019). Transcriptome sequencing reveals a complete genome sequence of cowpea aphid-borne mosaic virus from passion fruit in Kenya. Microbiology Resource Announcements, 8(2): e01607-18. doi: 10.1128/MRA.01607-18.spa
dc.relation.referencesNguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268-274. doi: 10.1093/molbev/msu300spa
dc.relation.referencesRobinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011). Integrative Genomics Viewer. Nature Biotechnology 29(1): 24-26. doi: 10.1038/nbt.1754spa
dc.relation.referencesXanthis CK, Maliogka VI, Lecoq H, Dezbiez C, Tsvetkov I, Katis NI (2015). First report of cucumber mosaic virus infecting watermelon in Greece and Bulgaria. Journal of Plant Pathology 97(2): 391-403. doi: 10.4454/JPP.V97I2.00spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocUchuva (Physalis peruviana) - Enfermedades y plagas
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lembVirus fitopatógenos
dc.subject.lembCultivo in vitro
dc.subject.proposalRT-qPCRspa
dc.subject.proposalSecuenciación masivaspa
dc.subject.proposalPassiflora edulis f. edulisspa
dc.subject.proposalPhysalis peruvianaspa
dc.subject.proposalvirus fitopatógenosspa
dc.subject.proposalHigh-throughput sequencingeng
dc.subject.proposalplant viruseseng
dc.subject.proposalCultivo in vitrospa
dc.subject.proposalIn vitro plant tissueeng
dc.subject.proposalUchuva (Physalis peruviana)spa
dc.subject.proposalGulupa (Passiflora edulis f. edulis)spa
dc.titleCaracterización molecular de virus en cultivos de uchuva (Physalis peruviana) y gulupa (Passiflora edulis f. edulis) en el suroeste de Antioquiaspa
dc.title.translatedMolecular characterization of viruses in crops of cape gooseberry (Physalis peruviana) and purple passion fruit (Passiflora edulis f. edulis) in southwestern Antioquiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle(Proyecto 1101-805-62786, Convenio No. 4600007658-779) " Detección, caracterización y limpieza de virus y otros fitopatógenos en material de siembra y cultivos de gulupa (Passiflora edulis f. edulis) y uchuva (Physalis peruviana) en Antioquia"spa
oaire.fundernameFondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías del Departamento de Antioquiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037654739.2022.pdf
Tamaño:
4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en Ciencias- Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: