Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana

dc.contributor.advisorJames Lloyd, Jonathanspa
dc.contributor.advisorMoreno Hurtado, Flavio Humbertospa
dc.contributor.advisorPeñuela Mora, María Cristinaspa
dc.contributor.authorJiménez-Rojas, Eliana Maríaspa
dc.date.accessioned2020-03-03T21:04:50Zspa
dc.date.available2020-03-03T21:04:50Zspa
dc.date.issued2007-08-01spa
dc.description.abstractSe ha propuesto que en un gradiente de aumento de recursos en el suelo, se da una disminución en la asignación de carbono a la parte subterránea (raíces finas). Para evaluar esta hipótesis, se estimó la masa y producción de raíces finas (< 2 mm) a través de dos métodos: 1) cilindros de crecimiento, 2) cilindros secuenciales, durante 2,2 años en dos bosques de tierra firme sobre suelos diferentes en la Amazonia colombiana. Las diferencias de recursos en el suelo estuvieron determinadas por el tipo y las propiedades físico-químicas del suelo: un bosque sobre suelos arcillosos (Ultisol) en el Parque Natural Nacional Amacayacu (AMA) y, otro sobre suelos arenosos (Spodosol) en la Estación Biológica El Zafire (ZAB), ubicada en la Reserva Forestal del Río Calderón. Se encontró que a lo largo del periodo monitoreado y en los dos bosques, la masa y producción de raíces finas presentaron diferencias significativas entre profundidades del suelo (0–10 y 10–20 cm) y, también entre bosques. ZAB asignó más carbono a las raíces finas que AMA; la producción en ZAB fue el doble (2,98 y 3,33 Mg C ha-1 año-1, método 1 y 2, respectivamente) que la de AMA (1,51 y 1,36–1,03 Mg C ha-1 año-1, método 1 y 2, respectivamente), así mismo, la masa promedia de raíces finas fue más alta en ZAB (10,94 Mg C ha-1) que en AMA (3,04–3,64 Mg C ha-1). Adicionalmente, la masa de las raíces finas mostró una variación temporal que se relacionó con la precipitación y, se observó que en el período seco del año del 2005 la producción de raíces finas disminuyó marcadamente. Por otro lado, las constantes de descomposición encontradas fueron de las más altas reportadas para otros bosques en el mundo (k=-4,19 y -4,50 años-1, para AMA y ZAB, respectivamente). Se sugiere que los recursos en el suelo juegan un papel importante en la asignación de carbono en estos bosques y, que la asignación de carbono a las partes aérea y subterránea en estos bosques es diferencial, pero que probablemente no existan diferencias en la productividad primaria neta total entre los dos bosques.spa
dc.description.abstractIt has been hypothesized that in a gradient of increase of soil resources a decrease occurs in the carbon allocated to belowground production (fine roots). To evaluate this hypothesis, I measured the mass and production of fine roots (<2 mm), by two methods: 1) ingrowth cores and, 2) sequential cores, during 2,2 years in two lowland forests with different soils in the Colombian Amazon. The differences of soil resources were determined by the type and the physico-chemical properties of the soil: a forest on loamy soil (Ultisol) at the Amacayacu National Natural Park (AMA) and, the other on white sands (Spodosol) at the Biological Station El Zafire (ZAB), located in the Forest Reservation of the Calderón River. I found that along the monitoring period and in the two forests, the mass and production of fine roots was significantly different between soil depths (0–10 and 10–20 cm) and, also between forests. ZAB allocated more carbon to fine roots than AMA, the production in ZAB was twice (2,98 and 3,33 Mg C ha-1 year-1, method 1 and 2, respectively) than in AMA (1,51 and 1,36-1,03 Mg C ha-1 year-1, method 1 and 2, respectively); similarly, the average of fine root mass was higher in ZAB (10,94 Mg C ha-1) that in AMA (3,04–3,64 Mg C ha-1). Additionally, the mass of fine roots showed a temporal variation that was related with rainfall and, it was observed that in the dry period of the year 2005 the production of fine roots decreased substantially. On the other hand, the decomposition constants were among the highest reported for other forests in the world (k=-4,19 and -4,50 year-1, for AMA and ZAB, respectively). My results suggest that soil resources play an important role in the carbon allocation in these forests and, that the carbon allocated to the above and belowground organs in these forests is differential, but probably there are not differences in the total net primary productivity between these two forests.spa
dc.description.degreelevelMaestríaspa
dc.format.extent99spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75813
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Amazonasspa
dc.relation.referencesAber , J. D., Melillo, J. M., Nadelhoffer, K. J. McClaugherty, C. A. & J. Pastor. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66, 317–321.spa
dc.relation.referencesAlbaugh, T. J., Allen, H. L., Dougherty, P. M., Kress, L. W. & J. S. King. 1998. Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science, 44, 317–328.spa
dc.relation.referencesBlock, R.M.A., Van Rees, K.C.J. & J.D. Knight. 2006. A review of fine root dynamics in Populus plantations. Agroforestry Systems 67: 73–84.spa
dc.relation.referencesBloomfield, J., Vogt, K. A. & D. J. Vogt. 1993. Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant and Soil 150, 233–245.spa
dc.relation.referencesBrown, S. 2002. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116, 363–372.spa
dc.relation.referencesCárdenas, D., Giraldo-Cañas, D. & C. Arias. 1997. Vegetación. p. 185–196. En: IGAC. Zonificación ambiental para el plan modelo colombo-brasilero eje Apaporis-Tabatinga (PAT). Edit. L. Bolívar. 410 pp. Bogotá.spa
dc.relation.referencesCavelier, J. 1992. Fine-root biomass and soil properties in a semideciduous and a lower montane rain-forest in Panama. Plant and Soil 142, 187–201.spa
dc.relation.referencesCavelier, J. & J. Estevez. 1996. Fine-root biomass in three successional stages of an Andean Cloud Forest in Colombia. Biotropica 28, 728–736spa
dc.relation.referencesClark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J. & E. A. Holland. 2001a. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications 11, 371–384.spa
dc.relation.referencesClark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R. & J. Ni. 2001b. Measuring net primary production in forests: Concepts and field methods. Ecological Applications 11, 356–370.spa
dc.relation.referencesCuevas, E. & E. Medina. 1986. Nutrient dynamics within Amazonian forest ecosystems. I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68, 466–472.spa
dc.relation.referencesCuevas, E. & E. Medina. 1988. Nutrient dynamics within Amazonian forests. II. Fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76, 222–235spa
dc.relation.referencesDixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C. & J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185–190.spa
dc.relation.referencesDuivenvoorden, J. F & J. M. Lips. 1995. A land-ecological study of soils, vegetation, and plant diversity in Colombian Amazonia. The Tropenbos Foundation, Wageningen (Tropenbos Series 12).spa
dc.relation.referencesDytham, C. 2003. Choosing and using statistics. A biologist’s guide. 2da Edición. Blackwell Science.spa
dc.relation.referencesFine, P. V. A., Daly, D. C., Muñoz, G. V., Mesones, I. & K. M. Cameron. 2005. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon. Evolution 59, 1464–1478spa
dc.relation.referencesFischer, D. G., Hart, S. C., Rehill, B. J., Lindroth, R. L., Keim, P. & T. G. Whitham. 2006. Do high-tannin leaves require more roots?. Oecologia 149, 668–675spa
dc.relation.referencesGoward, S. N., Dye, D. G., Turner, S. & J. Yang. 1993. Objective assessment of the NOAA global vegetation index data product. International Journal of Remote Sensing 14, 3365–3394.spa
dc.relation.referencesGower, S. T. 1987. Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests: a hypothesis. Biotropica 19, 171–175.spa
dc.relation.referencesGower, S. T., Vogt, K. A. & C. C. Grier. 1992. Carbon dynamics of rocky-mountain Douglas-fir - influence of water and nutrient availability. Ecological Monographs 62, 43–65.spa
dc.relation.referencesGrier, C. C., Vogt, K. A., Keyes, M. R. & R. L. Edmonds. 1981. Biomass distribution and above- and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research 11, 155–167.spa
dc.relation.referencesGuisande, C., Barreiro, A., Maneiro, I., Riveiro, I., Vergara, A. R. & A. V. Liste. 2006. Tratamiento de datos. Universidad de Vigo. Ediciones Díaz de Santos, España.spa
dc.relation.referencesHaynes, B. E. & S. T. Gower. 1995. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology 15: 317–325.spa
dc.relation.referencesHendricks, J. J., Hendrick, R. L., Wilson, C. A., Mitchell, R. J., Pecot, S. D. & D. L. Guo. 2006. Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. Journal Of Ecology 94, 40–57.spa
dc.relation.referencesHendricks, J. J., Nadelhoffer, K. J. & J. D. Aber. 1993. Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology and Evolution 8, 174–178.spa
dc.relation.referencesHerrera, J. 1997. Geología. p. 137–163. En: IGAC. Zonificación ambiental para el plan modelo colombo-brasilero eje Apaporis-Tabatinga (PAT). Edit. L. Bolivar, Bogotá.spa
dc.relation.referencesJackson, R. B., Mooney, H. A. & E. D. Schulze. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Ecology 94, 7362–7366.spa
dc.relation.referencesJordan, C. F. & G. Escalante. 1980. Root productivity in an Amazonian rain forest. Ecology 61, 14–18.spa
dc.relation.referencesJordan, C. F. 1983. Productivity of tropical rain forest ecosystems and the implications for their use as future wood and energy sources. p 117–136. En: Golley, F. B. (ed.) Tropical rain forest ecosystems. Nueva York.spa
dc.relation.referencesKavanagh, T.& M. Kellman. 1992. Seasonal pattern of fine root proliferation in a tropical dry forest. Biotropica 24, 157–165.spa
dc.relation.referencesKeyes, M. R. & C. C. Grier. 1981. Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Canadian Journal of Forest Research 11, 599–605.spa
dc.relation.referencesKlinge, H. & R. Herrera. 1978. Biomass studies in Amazon Caatinga forest in southern Venezuela. I. Standing crop of composite root mass in selected stands. Tropical Ecology 19, 93–110.spa
dc.relation.referencesKlinge, H. 1973. Root mass estimation in lowland tropical rain forests of Central Amazon, Brazil. I. Fine root masses of a pale yellow latosol and a giant humus podzol. Tropical Ecology 14, 29–38.spa
dc.relation.referencesKlinge, H. 1975. Root mass estimation in lowland tropical rain forests of central Amazonia, Brazil: III Nutrients in fine roots from giant humus podzols. Tropical Ecology 16, 28–38.spa
dc.relation.referencesKozlowski, T. T., Kramer, P. J. & S.G. Pallardi. 1991. The physiological ecology of woody plants. Academic Press, San Diego, California.spa
dc.relation.referencesKrebs, Ch. 2001. Ecology. The experimental analysis of distribution and abundance. 5ta edición. Benjamin Cummings.spa
dc.relation.referencesLandsberg, J. J. & S. T. Gower. 1997. Applications of physiological ecology to forest management. En: Mooney, H. A. (ed). Physiological Ecology. Academic Press, San Diego.spa
dc.relation.referencesLarcher,W. 2003. Physiological Plant Ecology. Ecophysiology and stress physiology of functional groups. Springer-Verlag, Berlin Heidelberg, Nueva York.spa
dc.relation.referencesLauenroth, W. K., Hunt, H. W., Swift, D. M. & J. S. Sing. 1986. Reply to Vogt et al. Ecology 67, 580–582.spa
dc.relation.referencesLi, Y. Q., Xu, M. & X. M. Zou. 2006. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest. Global Change Biology 12, 284–293.spa
dc.relation.referencesLips, J. M. & J. F. Duivenvoorden. 1996. Regional patterns of well drained upland soil differentiation in the middle Caquetá basin of Colombian Amazonia. Geoderma 72, 219–257.spa
dc.relation.referencesLondoño-Vega, A. C. & E. M. Jiménez-Rojas. 1999. Efecto del tiempo entre los censos sobre la estimación de las tasas anuales de mortalidad y de reclutamiento de árboles (períodos de 1, 4 y 5 años). En: Crónica Forestal y del Medio Ambiente 14, 41–57.spa
dc.relation.referencesMajdi, H., Pregitzer, K., Moren, A. S., Nylund, J. E. & G. I. Agren. 2005. Measuring fine root turnover in forest ecosystems. Plant and Soil 276, 1–8.spa
dc.relation.referencesMakkonen, K. & H. S. Helmisaari. 1999. Assessing fine-root biomass and production in a Scots pine stand-comparison of soil core and root ingrowth core methods. Plant and Soil 210, 43–50.spa
dc.relation.referencesMalhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., Arroyo, L., Chave, J., Czimczik, C., Di Fiore, A., Higuchi, N., Killeen, T., Laurance, S. G., Laurance, W. F., Lewis, S. L., Mercado, L. M., Monteagudo, A., Neill, D. A., Pitman, N. C. A., Quesada, C. A., Silva, J. N. M., Vásquez Martínez, R., Terborgh, J., Vinceti, B. & Lloyd, J. 2004. The above-ground wood productivity and net primary productivity of 100 Neotropical forests. Global Change Biology 10, 563–591.spa
dc.relation.referencesMalhi, Y., Phillips, O. L., Lloyd, J., Baker, T. R., Wright, J., Almeida, S., Arroyo, L., Frederiksen, T., Grace, J., Higuchi, N., Killeen, T., Laurance, W. F., Leaño, C., Lewis, S., Meir, P., Monteagudo, A., Neill, D., Núñez Vargas, P., Panfil, S., Patiño, S., Pitman, N., Quesada, C. A., Rudas-Ll. A., Salomão, R., Saleska, S., Silva, N., Silveira, M., Sombroek, W.G., Valencia, R., Vásquez Martínez, R., Vieira, I. C. G. & Vinceti, B. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science 13, 439–450.spa
dc.relation.referencesManlay, R. J., Masse, D., Chevallier, T., Russell-Smith, A., Friot, D. & C. Feller. 2004. Post-fallow decomposition of woody roots in the West African savanna. Plant and Soil 260, 123–136.spa
dc.relation.referencesMetcalfe, D., Aragao, L. & Malhi, Y. 2006. Fine root production in Caxiuana, Brazil. Documento de trabajo Workshop Panamazonia, Santa Cruz, Boliviaspa
dc.relation.referencesMiller, J. M., Williams R. J. & G. D. Farquhar. 2001. Carbon isotope discrimination by a sequence of Eucaliptus species along a subcontinental rainfall gradient in Australia. Functional Ecology 15, 222–232.spa
dc.relation.referencesMoreno-Hurtado, F. H. 2004. Soil carbon dynamics in primary and secondary tropical forests in Colombia. Tesis Ph.D. Universidad Internacional de Florida. Miami Florida.spa
dc.relation.referencesNadelhoffer, K. J. & J. W. Raich. 1992. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73, 1139–1147.spa
dc.relation.referencesNadelhoffer, K. J., Aber, J. D. & J. M. Melillo. 1985. Fine roots, net primary production, and soil-nitrogen availability-a new hypothesis. Ecology 66, 1377–1390.spa
dc.relation.referencesNavarrete, D. A. 2006. Variación de la caída de la hojarasca fina a través de diferentes tipos de suelos y regiones en la Amazonia. Tesis Maestría en Estudios Amazónicos. Universidad Nacional de Colombia, Sede Amazonia, Leticia, Colombia.spa
dc.relation.referencesNorby, R. J. & R. B. Jackson. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytologist 147,–12.spa
dc.relation.referencesPAN-AMAZONIA (Proyecto para el avance de las redes cientificas en la Amazonia). 2006. Visitada en junio 2006 en: //www.eci.ox.ac.uk/research/ecodynamics/panamazonia/spa
dc.relation.referencesPatiño, S., Lloyd, J. & E. Álvarez. 2004. Estimación de la asignación de carbono aéreo y subterráneo en bosques de la amazonia occidental con fertilidad contrastante de suelo: una aproximación para explicar las diferencias en las tasas de crecimiento del tallo (producción primaria neta) a través de la cuenca amazónica. Propuesta de investigación Instituto de Investigaciones de Recursos Biólogicos Alexander von Humboldt & Universidad de Leeds (Inglaterra).spa
dc.relation.referencesPavlis, J.& J. Jenik. 2000. Roots of pioneer trees in the Amazonian rain forest. Trees-Structure and Function 14, 442–455.spa
dc.relation.referencesPeñuela, M. C. & E. Álvarez. 2006. Establecimiento de un programa de monitoreo del carbono en bosques de la amazonia colombiana. Grupo de Investigación en Ecosistemas Terrestres Tropicales (GETT). Memorias del Congreso Latinoamericano de Botánica, Republica Dominicana, Santo Domingo.spa
dc.relation.referencesPowers, J., Montgomery, R., DeWalt, S., Chave, J., Deinert, E., Ganzhorn, J., Gonzalez, J. A., Grau, R., Harms, K., Hiremath, A., Iriarte, S., Muller-Landau, H., de Oliveira, A., Poorter, L., Salk, C., Varela, A. & G. Weiblen. 2006. The joint influences of climate, litter quality and soil fauna in regulating above- and belowground decomposition processes: a pan-tropical study. Visitado junio 2006 en: http://life.bio.sunysb.edu/ee/powers/Decomposition%20in%20Tropical%20Forests.htmspa
dc.relation.referencesPriess, J., Then, C. & H. Folster. 1999. Litter and fine-root production in three types of tropical premontane rain forest in SE Venezuela. Plant Ecology 143, 171–187.spa
dc.relation.referencesRaich, J. W. & R. J. Nadelhoffer. 1989. Below-ground carbon allocations in forest ecosystems: Global trends. Ecology 70, 1346–1354.spa
dc.relation.referencesRAINFOR (Red Amazónica de Inventarios Forestales). 2006. Visitada en junio2006 en: http://www.geog.leeds.ac.uk/projects/rainfor/spa
dc.relation.referencesRudas-Ll., A. & A. Prieto-C. 2005. Flórula del Parque Nacional Natural AMACAYACU, Amazonas, Colombia. Monographs in Systematic Botany from the Missouri Botanical Garden, 99. Missouri Botanical Garden, Saint Louis, Missouri.spa
dc.relation.referencesRudas-Ll., A. 1996. Estudio florístico y de la vegetación del P: N. N. Amacayacu (Amazonas, Colombia). Tesis de Maestría en Biología. Universidad Nacional de Colombia. Bogotáspa
dc.relation.referencesSánchez-Gallén, I. & J. Álvarez-Sánchez. 1996. Root productivity in a lowland tropical rain forest in Mexico. Vegetatio 123, 109–115.spa
dc.relation.referencesSayer, E. J., Tanner, E. V. J. & A. W. Cheesman. 2006. Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil 281, 5–13.spa
dc.relation.referencesShaver, G. R. & J. D. Aber. 1996. Carbon and nutrient allocation in terrestrial ecosystems. p 183–198. En: Melillo, J. & A. Breymeyer (eds). Global change: effects on coniferous forests and grasslands. John Wiley, Nueva York.spa
dc.relation.referencesSierra, C. A., Del Valle, J. I. & S. A. Orrego. 2003a. Accounting for fine root mass sample losses in the washing process: a case study from a tropical montane forest of Colombia. Journal of Tropical Ecology 19, 599–601.spa
dc.relation.referencesSierra, C. A., Del Valle, J. I. & S. A. Orrego. 2003b. Ecuaciones de biomasa de raíces en bosques primarios intervenidos y secundarios. p. 169–188. En: Orrego, S. A., Del Valle A., J. I. & F. Moreno-Hurtado. (eds). Medición de la captura de carbono en ecosistemas forestales tropicales de Colombia. Contribuciones para la mitigación del Cambio Climático. Universidad Nacional de Colombia, Dpto. de Ciencias Forestales, Centro Andino para la Economía en el Medio Ambiente. Bogotá, Colombia.spa
dc.relation.referencesSilver, W. L., & R. Miya. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129, 407–419.spa
dc.relation.referencesSilver, W. L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M. & R. Cosme. 2000. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3, 193–209.spa
dc.relation.referencesSilver, W. L., Thompson, A. W., Mcgroddy, M. E., Varner, R. K., Dias, J. D., Silva, H., Crill, P. M. & M. Keller. 2005. Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biology 11, 290–306.spa
dc.relation.referencesSoil Survey Staff. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, USDA, Natural Resources Conservation Service, 2da edición, 870 pp.spa
dc.relation.referencesSombroek, W. G. 2000. Amazon land forms and soils in relation to biological diversity. Acta Amazonica 30, 81–100.spa
dc.relation.referencesTrumbore, S., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T. & W. Silver. 2006. Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology 12, 217–229.spa
dc.relation.referencesUsme-Mejía, P. A. 2003. Demografía de raíces finas en bosques primarios y secundarios tropicales, Colombia. Trabajo de Grado, Universidad Nacional de Colombia, Sede Medellín.spa
dc.relation.referencesVitousek, P. M. & R. L. Jr. Sanford. 1986. Nutrient cycling in moist tropical forests. Annual Review Ecological Systems 17, 137–167.spa
dc.relation.referencesVogt, K. A., Grier, C. C. & D. J. Vogt. 1986. Production, turnover, and nutrient dynamics in above-and belowground detritus of world forests. Advances in Ecological Research 15, 303–377.spa
dc.relation.referencesVogt, K. A., Grier, C. C., Meier, C. E. & M. R. Keyes, 1983. Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in western Washington, as affected by fine-root input. Ecological Monographs 53, 139–157.spa
dc.relation.referencesVogt, K. A., Vogt, D. J. & J. Bloomfield. 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil 200, 71–89.spa
dc.relation.referencesVogt, K. A., Vogt, D. J., Moore, E. E. & D. G. Sprugel. 1989. Methodological considerations in measuring biomass, production, respiration and nutrient resorption for tree roots in natural ecosystems. p 217–232. En: Torrey, J. G. & L. J. Winship (eds). Applications of continuous and steady-state methods to root biology. Kluwer Academic Publishers, Dordrecht, The Netherlands.spa
dc.relation.referencesVogt, K. A., Vogt, D. J., Moore, E. E., Littke, W., Grier, C. C. & L. Leney. 1985. Estimating Douglas-fir fine root biomass and production from living bark and starch. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 15, 177–179.spa
dc.relation.referencesVogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., O’Hara, J. & H. Asbjornsen. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219.spa
dc.relation.referencesWoodwar, F. I. & C. P. Osborne. 2000. Research Review: the representation of root processes in models addressing the responses of vegetation to global change. New Phytologist 147, 223–232.spa
dc.relation.referencesYavitt, J. B. & S. J. Wright. 2001. Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama. Biotropica 33, 421–434.spa
dc.relation.referencesZobel, R. 2003. Fine roots-discarding flawed assumptions. New Phytologist 160, 273–280.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcEconomía::Producciónspa
dc.subject.ddcBiologíaspa
dc.subject.ddcEconomía::Economía de la tierra y de la energíaspa
dc.subject.ddcCiencias de la tierra::Geología, hidrología, meteorologíaspa
dc.subject.ddcAgricultura y tecnologías relacionadasspa
dc.subject.ddcQuímica y ciencias afinesspa
dc.subject.ddcRaíces finasspa
dc.subject.ddcProducción primaria netaspa
dc.subject.ddcProducción subterráneaspa
dc.subject.ddcPlantasspa
dc.subject.ddcBosque húmedo tropicalspa
dc.subject.ddcAmazonia Colombianaspa
dc.subject.proposalRaíces finasspa
dc.subject.proposalProducción primaria netaspa
dc.subject.proposalProducción Subterráneaspa
dc.subject.proposalAmazonasspa
dc.subject.proposalTropical rain foresteng
dc.subject.proposalBosque húmedo tropicalspa
dc.subject.proposalSoil chemistryeng
dc.titleProducción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombianaspa
dc.title.alternativePRODUCTION OF FINE ROOTS IN TWO FIRST LAND FORESTS ON DIFFERENT SOILS IN THE COLOMBIAN AMAZONspa
dc.title.alternativePRODUÇÃO DE BOAS RAÍZES EM DUAS PRIMEIRAS FLORESTAS TERRESTRE EM DIFERENTES SOLOS NA AMAZÔNIA COLOMBIANAspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Produccion de raices finas en la amazonia colombiana_Eliana Jimenez_Tesis de MSc.pdf
Tamaño:
799.32 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: