Señales químicas entre el escarabajo-plaga Strategus aloeus (Coleoptera: Scarabaeidae: Dynastinae) y la palma de aceite (Elaeis guineensis Jacq.)

dc.contributor.advisorRomero Frías, Alicia Adela
dc.contributor.advisorSierra Ávila, César Augusto
dc.contributor.authorVidal Medina, Valentina
dc.date.accessioned2021-06-24T17:13:52Z
dc.date.available2021-06-24T17:13:52Z
dc.date.issued2021-02-15
dc.descriptionIlustraciones, tablas y fotografíasspa
dc.description.abstractEn Colombia, el cultivo de palma de aceite ha representado, desde 1960, uno de los cultivos agroindustriales de mayor importancia debido a su gran productividad. Actualmente, el país es el cuarto productor de aceite de palma a nivel mundial, y el primero en América, con más de 550 mil hectáreas de palma sembrada. Colombia cuenta con cuatro zonas palmeras, de las cuales la zona oriental representa el 41% del total de hectáreas sembradas. Tal como suele suceder en el campo agrícola, este cultivo, y principalmente el de la zona oriental, se ve afectado por enfermedades y plagas, entre las cuales se encuentra el Strategus aloeus, comúnmente conocido como escarabajo torito. Considerando las serias repercusiones económicas resultantes de la infestación de los cultivos por este insecto, en el 2015 el ICA declaró esta especie como plaga de control oficial. Una de las tácticas del Manejo Integrado de Plagas (MIP) consiste en el control etológico a través del uso de semioquímicos o compuestos orgánicos volátiles (VOCs) que actúan como modificadores del comportamiento de la plaga. Para el S. aloeus, la feromona reportada por Rochat et al. (2000) no ha sido efectiva en campo. Por lo tanto, persiste la necesidad de seguir estudiando los semioquímicos de esta especie. Este estudio se realizó con el objetivo de identificar los semioquímicos responsables de las interacciones en el sistema hospedero-huésped, constituido por la palma de aceite (Elaeis guineensis) y el insecto-plaga Strategus aloeus. Para tal fin, la investigación cubrió las siguientes etapas: extracción de los volátiles liberados por la planta hospedera y por los individuos machos de S. aloeus; separación, análisis e identificación de los VOCs mediante cromatografía de gases acoplada a espectrometría de masas; y, validación de algunos VOCs mediante la evaluación de la respuesta electrofisiológica y comportamental de los insectos frente a los compuestos identificados. Mediante las extracciones por Headspace Micro Extracción en Fase Sólida (HS-MEFS) y Headspace Dinámico (HSD) se identificaron 45 VOCs liberados por la palma de aceite (E. guineensis), alimento y hospedero natural del S. aloeus. Entre los cuales se identificaron la 2-butanona y la 3-pentanona, cetonas previamente reportadas por Rochat et al. (2000) como constituyentes de la feromona del insecto, lo que indicó su participación en la interacción interespecífica. Por medio de la extracción directa con hexano de las glándulas, en los insectos adultos de S. aloeus se identificaron el 2,4,7,9-tetrametil-5-decin-4,7-diol, el 4-metiloctanoato de etilo y el acetato de sec-butilo como VOCs macho-específicos de esta especie. La respuesta comportamental de insectos adultos de ambos sexos de S. aloeus frente a estos tres compuestos, solos o en mezcla, demostró su atracción significativa, lo que sugiere su participación en la interacción intraespecífica, es decir, como feromona de la especie. Los semioquímicos identificados en la interacción Elaeis guineensis- Strategus aloeus representan una alternativa para ser incorporados en el MIP de esta plaga en cultivos de palma de aceite, por lo que se recomienda su evaluación en campo. (Texto tomado de la fuente).spa
dc.description.abstractThe oil palm has been one of the most important agro-industrial crops in Colombia since 1960, due to its high productivity. Currently, the country is the fourth largest palm oil producer in the world, and the first in the Americas, with more than 550,000 hectares of plantations. Colombia has four palm-growing zones, of which the eastern zone accounts for 41% of the total planted area. As is often the case in the agricultural field, this crop, and mainly in the eastern zone, is affected by diseases and pests, including the Strategus aloeus, commonly known as the bull beetle. The serious economic repercussions resulting from S. aloeus infestation led ICA, in 2015, to declare this species as subject to official control. One of the tactics of Integrated Pest Management (IPM) consists of ethological control through the use of semiochemicals or volatile organic compounds (VOCs) that act as pest behavior modifiers. For S. aloeus, the pheromone reported by Rochat et al. (2000) has not been effective in the field. Thus further study of the semiochemicals of this species is required. This study was designed to identify the semiochemicals responsible for interactions in the oil palm (Elaeis guineensis) host-host system with the pest insect Strategus aloeus. To this end, the research covered the following stages: extraction of volatiles released by the host plant and by male S. aloeus individuals; separation, analysis and identification of VOCs by gas chromatography coupled with mass spectrometry; and, validation of some VOCs by evaluating the electrophysiological and behavioral response of insects to the identified compounds. In Headspace Solid Phase Micro Extraction (HS-SPME) and Dynamic Headspace (DHS) extractions 45 VOCs released by oil palm (E. guineensis), a food source and natural host of S. aloeus, were identified. Among them, 2-butanone and 3-pentanone, ketones previously reported by Rochat et al. (2000) as constituents of the insect pheromone, were identified, indicating their participation in the interspecific interaction. By direct hexane extraction from glands, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, ethyl 4-methyloctanoate and sec-butyl acetate were identified as male-specific VOCs in adult S. aloeus insects. The behavioral response of adult S. aloeus insects of both sexes to these three compounds alone or in mixture showed their significant attraction, suggesting their involvement in intraspecific interaction, i.e., as a pheromone specific to the specie. The semiochemicals identified in the Elaeis guineensis-Strategus aloeus interaction constitute an alternative for incorporation in the IPM of this pest in oil palm crops, hence their evaluation in the field is recommended. (Texto tomado de la fuente).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaEcología químicaspa
dc.format.extent120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79709
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesWhittaker, R. H.; Feeny, P. P. Allelochemics: Chemical Interactions between Species. Science (80-. ). 1971, 171, 757–770.spa
dc.relation.referencesBrown, W. L.; Eisner, T.; Whittaker, R. H. Allomones and Kairomones: Transspecific Chemical Messengers. Bioscience 1970, 20 (1), 21–22.spa
dc.relation.referencesFont Quer, P. Diccionario de Botánica, 9° reimpre.; Editorial Labor, S. A.: Barcelona, 1985.spa
dc.relation.referencesFreiría, M.; Alvarez, A.; Lorenzo, R.; Racamonde, F.; Rodríguez, A. Aplicaciones de La Técnica Denominada Espacio de Cabeza. Rev. Cuba. Química 1998, 10, 32–53.spa
dc.relation.referencesAsociación de Academias de la Lengua Española. Real Academia de la Lengua Española https://dle.rae.es.spa
dc.relation.referencesOxford Unifersity Press. Oxford Languages https://languages.oup.com/google-dictionary-es/.spa
dc.relation.referencesBarrera, J. F.; Toledo, J.; Infante, F. Manejo Integrado de Plagas : Conceptos y Estrategias. In Manejo Integrado de Plagas; Editorial Trillas: México, 2008; pp 13–33.spa
dc.relation.referencesFAO. Glosario de términos fitosanitarios de la FAO http://www.fao.org/3/W3587E/w3587e03.htm.spa
dc.relation.referencesLaw, J. H.; Regnier, F. E. Pheromones. Annu. Rev. Biochem. 1971, 40, 533–548.spa
dc.relation.referencesDudareva, N.; Klempien, A.; Muhlemann, J. K.; Kaplan, I. Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds. New Phytol. 2013, 198 (1), 16–32.spa
dc.relation.referencesAnaya Lang, A. L. Ecología Química, 1st ed.; Plaza y Valdés, S.A. de C.V: México D.F., 2003.spa
dc.relation.referencesDangond, I. El Aceite Del Post Conflicto. El Espectador. 2015.spa
dc.relation.referencesAguilera, D. M. Palma Africana En La Costa Caribe. In Documentos de Trabajo Sobre Economia Regional, Centro de Estudios Economicos regionales No 30; Banco de la Republica: Cartagena de Indias, 2002.spa
dc.relation.referencesFedepalma. La palma de Aceite en Colombia https://web.fedepalma.org/sites/default/files/files/infografia-palmadeaceite-colombia-2020.pdf.spa
dc.relation.referencesCenipalma. Sanidad de la Palma https://www.cenipalma.org/sanidad/.spa
dc.relation.referencesAldana-De la Torre, R.; Montes-Bazurto, L. G.; Barrios-Trilleras, C. E.; Matabanchoy-Solarte, J. A.; Beltrán-Aldana, I. J.; Rosero-Guerrero, M.; Bustillo-Pardey, A. E. Guía de Bolsillo Para El Reconocimiento de Las Plagas Más Frecuentes En La Palma de Aceite; Cenipalma-Fedepalma-SENA: Bogotá D. C., 2017.spa
dc.relation.referencesGenty, P.; Desmier de Chenons, R.; Morin, J.-P. Las Plagas de La Palma Aceitera En América Latina. Oleagineux 1978, 33 (7), 326–420.spa
dc.relation.referencesAhumada, M.; Calvache-Guerrero, H.; Cruz, M.; Luque, J. Strategus aloeus (L.) (Coleoptera: Scarabaeidae): Biología y Comportamiento En Puerto Wilches (Santander). Rev. Palmas 1995, 16 (3), 9–16.spa
dc.relation.referencesMontesinos, G. A. Estudios Preliminares Para La Determinación de Atrayentes Sexuales de Strategus aloeus (L.) (Coleoptera:Scarabaeidae) Puerto Wilches (Santander), Instituto Universitario de la Paz Barrancabermeja, Colombia, 1999.spa
dc.relation.referencesAldana-De la Torre, R.; Aldana-De la Torre, J. A.; Calvache-Guerrero, H. H.; Franco-Bautista, P. N. Manual de Plagas de La Palma de Aceite En Colombia, Cuarta Edi.; Centro de Investigación en Palma de Aceite, Cenipalma- SENA-: Bogotá D. C., 2010.spa
dc.relation.referencesAldana, J.; Pallares, C.; Correa, N. Control Químico de Strategus aloeus (L.) (Coleoptera: Scarabaeidae). Ceniavances. 2000, pp 1–4.spa
dc.relation.referencesBergmann, J.; González, A.; Zarbin, P. H. G. Insect Pheromone Research in South America. J. Braz. Chem. Soc. 2009, 20 (7), 1206–1219.spa
dc.relation.referencesVillanueva Mejía, D. F.; Saldamando Benjumea, C. I. Tecia Solanivora, Povolny (Lepidoptera: Gelechiidae): Una Revisión Sobre Su Origen, Dispersión y Estrategias de Control Biológico. Ing. y Cienc. 2013, 9 (18), 197–214.spa
dc.relation.referencesKarlson, P.; Butenandt, A. Pheromones (Ectohormones) in Insects. Annu. Rev. Entomol. 1958, 4, 39–58.spa
dc.relation.referencesRomero-Frías, A. A. Estudio de Los Semioquímicos Responsables de La Interacción Entre La Guayaba (Psidium guajava L.) y El Picudo de La Guayaba Conotrachelus psidii Marshall, Universidad Nacional de Colombia, 2015.spa
dc.relation.referencesRochat, D.; Ramirez-Lucas, P.; Malosse, C.; Aldana-De la Torre, R. C.; Kakul, T.; Morin, J. P. Role of Solid-Phase Microextraction in the Identification of Highly Volatile Pheromones of Two Rhinoceros Beetles Scapanes australis and Strategus aloeus (Coleoptera, Scarabaeidae, Dynastinae). J. Chromatogr. A 2000, 885 (1–2), 433–444.spa
dc.relation.referencesCenipalma. Comunicaciones Personales, 2017.spa
dc.relation.referencesKlaschka, U. Chemical Communication by Infochemicals. Environ. Sci. Pollut. Res. 2009, 16 (4), 367–369.spa
dc.relation.referencesNordlund, D. A.; Lewis, W. J. Terminology of Chemical Releasing Stimuli in Intraspecific and Interspecific Interactions. J. Chem. Ecol. 1976, 2 (2), 211–220.spa
dc.relation.referencesVisser, J. H.; De Jong, R. Olfactory Coding In The Perception Of Semiochemicals. J. Chem. Ecol. 1988, 14 (11), 2005–2018.spa
dc.relation.referencesStensmyr, M. C. The Fly Nose -Function and Evolution, Swedish Univesity of Agricultural Sciences, 2004.spa
dc.relation.referencesDicke, M.; Sabelis, M. W. Infochemical Terminology: Based on Cost-Benefit Analysis Rather than Origin of Compounds? Funct. Ecol. 1988, 2 (2), 131–139.spa
dc.relation.referencesKarlson, P.; Lüscher, M. “Pheromones”: A New Term for a Class of Biologically Active Substances. Nature 1959, 183 (4653), 55–56.spa
dc.relation.referencesBrown, W. L. An Hypothesis Concerning The Function Of The Metapleural Glands In Ants. Am. Nat. 1968, 102, 188–191.spa
dc.relation.referencesEl-ghany, N. M. A. Semiochemicals for Controlling Insect Pests. J. Plant Protecion Res. 2019, 59 (1), 1–11.spa
dc.relation.referencesMorse, R. A. Honey Bee Alarm Pheromone: Another Function. Annu. Entomol. Soc. Am. 1972, 756, 1430.spa
dc.relation.referencesWood, D. L.; Browne, L. E.; Bedard, W. D.; Tilden, P. E.; Silverstein, R. M.; Rodin, J. O. Response of Ips confusus to Synthetic Sex Pheromones in Nature. Science (80-. ). 1968, 159 (3821), 1373–1374.spa
dc.relation.referencesRaffa, K. F.; Dahlsten, D. L. Differential Responses among Natural Enemies and Prey to Bark Beetle Pheromones. Oecologia 1995, 102 (1), 17–23.spa
dc.relation.referencesNgumbi, E.; Fadamiro, H. Comparative Responses of Four Pseudacteon Phorid Fly Species to Host Fire Ant Alarm Pheromone and Analogs. Chemoecology 2015, 25 (2), 85–92.spa
dc.relation.referencesWood, W. F. Chemical Ecology: Chemical Communication in Nature. J. Chem. Educ. 1983, 60 (7), 531–539. https://doi.org/10.1021/ed060p531.spa
dc.relation.referencesElsevier. Scopus https://www-scopus-com.ezproxy.unal.edu.co/term/analyzer.uri?sid=40ae560a588554dbb35190defc6ba6dd&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%22chemical+ecology%22+OR+%22semiochemical%22%29&sort=plf-f&sdt=b&sot=b&sl=52&count=4067&analyzeResults=Analyze+re.spa
dc.relation.referencesOrmeño, E.; Goldstein, A.; Niinemets, Ü. Extracting and Trapping Biogenic Volatile Organic Compounds Stored in Plant Species. TrAC - Trends Anal. Chem. 2011, 30 (7), 978–989.spa
dc.relation.referencesTholl, D.; Boland, W.; Hansel, A.; Loreto, F.; Ro, U. S. R. Practical Approaches to Plant Volatile Analysis. 2006, 540–560.spa
dc.relation.referencesMaterić, D.; Bruhn, D.; Turner, C.; Morgan, G.; Mason, N.; Gauci, V. Methods in Plant Foliar Volatile Organic Compounds Research. Appl. Plant Sci. 2015, 3 (12), 1500044.spa
dc.relation.referencesBarbosa-cornelio, R.; Cantor, F.; Coy-barrera, E. Tools in the Investigation of Volatile Semiochemicals on Insects : From Sampling to Statistical Analysis. 2019, 1–35.spa
dc.relation.referencesHuang, S.; Chen, G.; Ye, N.; Kou, X.; Zhu, F.; Shen, J.; Ouyang, G. Solid-Phase Microextraction : An Appealing Alternative for the Determination of Endogenous Substances - A Review. Anal. Chim. Acta 2019, 1077, 67–86.spa
dc.relation.referencesPawliszyn, J. Theory of Solid-Phase Microextraction. In Handbook of Solid Phase Microextraction; Elsevier Inc., 2012; pp 13–60.spa
dc.relation.referencesOuyang, G.; Pawliszyn, J. A Critical Review in Calibration Methods for Solid-Phase Microextraction. 2008, 7, 184–197.spa
dc.relation.referencesMaia, A. C. D.; Gibernau, M.; Dötterl, S.; Do Amaral Ferraz Navarro, D. M.; Seifert, K.; Müller, T.; Schlindwein, C. The Floral Scent of Taccarum ulei (Araceae): Attraction of Scarab Beetle Pollinators to an Unusual Aliphatic Acyloin. Phytochemistry 2013, 93, 71–78.spa
dc.relation.referencesRochat, D.; Meillour, P. N. Le; Esteban-Duran, J. R.; Malosse, C.; Perthuis, B.; Morin, J. P.; Descoins, C. Identification of Pheromone Synergists in American Palm Weevil, Rhynchophorus palmarum, and Attraction of Related Dynamis borassi. J. Chem. Ecol. 2000, 26 (1), 155–187.spa
dc.relation.referencesRomero-frías, A.; Sinuco, D. C.; Bento, J. M. S. Big Avocado Seed Weevil Heilipus lauri Management with Volatile Organic Compounds Produced by Males of This Species. In 5th Congress of Latin American Association of Chemical Ecology-ALAEQ; Valparaíso, Chile, 2018.spa
dc.relation.referencesAlves Filho, E. G.; Brito, R. S.; Rodrigues, T. H. S.; Silva, L. M. A.; de Brito, E. S.; Canuto, K. M.; Krug, C.; Zocolo, G. J. Association of Pollinators of Different Species of Oil Palm with the Metabolic Profiling of Volatile Organic Compounds. Chem. Biodivers. 2019, 16 (6).spa
dc.relation.referencesWard, A.; Moore, C.; Anitha, V.; Wightman, J.; Rogers, D. J. Identification of the Sex Pheromone of Holotrichia reynaudi. J. Chem. Ecol. 2002, 28 (3), 515–522.spa
dc.relation.referencesLeal, W. S.; Yada, C.; Vijayvergia, J. Aggregation of the Scarab Beetle Holotrichia consanguinea in Response to Female-Released Pheromone Suggests Secondary Function Hypothesis for Semiochemical. J. Chem. Ecolo 1996, 22 (8), 1557–1566.spa
dc.relation.referencesCortez, V.; Favila, M. E.; Verdú, J. R.; Ortiz, A. J. Behavioral and Antennal Electrophysiological Responses of a Predator Ant to the Pygidial Gland Secretions of Two Species of Neotropical Dung Roller Beetles. Chemoecology 2012, 22 (1), 29–38.spa
dc.relation.referencesTada, S.; Leal, W. S. Localization and Morphology of Sex Pheromone Glands in Scarab Beetles. J. Chem. Ecol. 1997, 23 (4), 903–915.spa
dc.relation.referencesBrezolin, A. N.; Martinazzo, J.; Muenchen, D. K.; de Cezaro, A. M.; Rigo, A. A.; Steffens, C.; Steffens, J.; Blassioli-Moraes, M. C.; Borges, M. Tools for Detecting Insect Semiochemicals: A Review. Anal. Bioanal. Chem. 2018, 410 (17), 4091–4108.spa
dc.relation.referencesBlight, M. M. Techniques for Isolation and Characterization of Volatile Semiochemicals of Phytophagous Insects. In Chromatography and Isolation of Insect Hormones and Pheromones; McCaffery, A. ., Wilson, I. D., Eds.; Plenum Poress: New York, 1990; Vol. 1, pp 281–288.spa
dc.relation.referencesStashenko, E. E.; Martínez, J. R. Algunos Aspectos Prácticos Para La Identificación de Analitos Por Cromatografía de Gases Acoplada a Espectrometría de Masas. Sci. Chromatogr. 2009, 1 (3), 31–49.spa
dc.relation.referencesJones, G. R.; Oldham, N. J. Pheromone Analysis Using Capillary Gas Chromatographic Techniques. J. Chromatogr. A. 1999, 843 (199–236).spa
dc.relation.referencesStashenko, E. E.; Martínez, J. R. Algunos Aspectos Prácticos Para La Identificación de Analitos Por Cromatografía de Gases Acoplada a Espectrometría de Masas. Sci. Chromatogr. 2010, 2 (1), 29–47.spa
dc.relation.referencesBruce, T. J. A.; Wadhams, L. J.; Woodcock, C. M. Insect Host Location: A Volatile Situation. Trends Plant Sci. 2005, 10 (6), 269–274. https://doi.org/10.1016/j.tplants.2005.04.003.spa
dc.relation.referencesXu, H.; Turlings, T. C. J. Plant Volatiles as Mate-Finding Cues for Insects. Trends Plant Sci. 2018, 23 (2), 100–111.spa
dc.relation.referencesHilker, M.; Meiners, T. Plants and Insect Eggs: How Do They Affect Each Other? Phytochemistry 2011, 72 (13), 1612–1623.spa
dc.relation.referencesVisser, J. Host Odor Perception in Phytophagous Insects. Annu. Rev. Entomol. 1986, 31 (1), 121–144.spa
dc.relation.referencesSchneider, D. Elektrophysiologische Untersuchungen von Chemo- Und Mechanorezeptoren Der Antenne Des Seidenspinners Bombyx mori L. Z. Vergl. Physiol. 1957, 40, 8–41.spa
dc.relation.referencesWeissbecker, B.; Holighaus, G.; Schütz, S. Gas Chromatography with Mass Spectrometric and Electroantennographic Detection: Analysis of Wood Odorants by Direct Coupling of Insect Olfaction and Mass Spectrometry. J. Chromatogr. A 2004, 1056 (1-2 SPEC.ISS.), 209–216.spa
dc.relation.referencesHassemer, M. J.; Santana, J.; de Oliveira, M. W. M.; Borges, M.; Laumann, R. A.; Caumo, M.; Blassioli-Moraes, M. C. Chemical Composition of Alphitobius diaperinus (Coleoptera: Tenebrionidae) Abdominal Glands and the Influence of 1,4-Benzoquinones on Its Behavior. J. Econ. Entomol. 2015, 108, 2107–2116.spa
dc.relation.referencesSaïd, I.; Aldana-De la Torre, R. C.; Morin, J. P.; Rochat, D. Adaptation of a Four-Arm Olfactometer for Behavioural Bioassays of Large Beetles. Chemoecology 2006, 16 (1), 9–16.spa
dc.relation.referencesSmith, R. F.; Apple, J. L.; Bottrell, D. G. The Origins of Integrated Pest Management Concepts for Agricultural Crops. Integr. Pest Manag. 2012, 1–16.spa
dc.relation.referencesProkopy, R. J. Two Decades of Bottom-up, Ecologically Based Pest Management in a Small Commercial Apple Orchard in Massachusetts. Agric. Ecosyst. Enviroment 2003, 94, 299–309.spa
dc.relation.referencesWitzgall, P.; Kirsch, P.; Cork, A. Sex Pheromones and Their Impact on Pest Management. J. Chem. Ecol. 2010, 36 (1), 80–100.spa
dc.relation.referencesTewari, S.; Leskey, T. C.; Nielsen, A. L.; Piñero, J. C.; Rodriguez-Saona, C. R. Use of Pheromones in Insect Pest Management, with Special Attention to Weevil Pheromones; 2013.spa
dc.relation.referencesBorrero-Echeverry, F.; Barreto-Triana, N.; Aragón-Rodríguez, S. M.; Rivera-Trujillo, H. F.; Oehlschlager, C.; Cotes-Prado, A. M. Las Feromonas En El Control de Insectos. Control biológico fitopatógenos, insectos y ácaros 2018, 411–453.spa
dc.relation.referencesBakthavatsalam, N. Chapter 19 - Semiochemicals; Elsevier Inc., 2016.spa
dc.relation.referencesBedford, G. O. Biology and Management of Palm Dynastid Beetles : Recent Advances. 2013.spa
dc.relation.referencesGries, R.; Oehlschlager, A. C.; Perez, A. L.; Gonzales, L. M.; Gries, G.; Pierce, H. D. Aggregation Pheromone of the African Rhinoceros Beetle, Oryctes monoceros (Olivier) (Coleoptera: Scarabaeidae). Zeitschrift für Naturforsch. C 1994, 49 (5–6), 363–366.spa
dc.relation.referencesHasni, N.; Pinier, C.; Imed, C.; Ouhichi, M.; Couzi, P.; Chermiti, B.; Frérot, B.; Saïd, I.; Rochat, D. Synthetic Co-Attractants of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon. J. Chem. Ecol. 2017, 43 (7), 631–643.spa
dc.relation.referencesSmart, L. E.; Aradottir, G. I.; Bruce, T. J. A. Role of Semiochemicals in Integrated Pest Management; Elsevier Inc., 2014.spa
dc.relation.referencesAdam, D. Does Colombia hold the answer to sustainable palm oil? https://chinadialogue.net/en/food/11720-does-colombia-hold-the-answer-to-sustainable-palm-oil/.spa
dc.relation.referencesFedepalma; SISPA. Sistema de Información Estadística del Sector Palmero http://sispaweb.fedepalma.org/sispaweb/.spa
dc.relation.referencesMesa, D. J. Fedepalma, 55 Años de Gestión Gremial Para Desarrollar y Consolidar Agroindustria de La Palma de Aceite En Colombia. El Palmicultor 2018, 552.spa
dc.relation.referencesGarcés, I.; Sánchez Cuéllar, M. Productos Derivados de La Industria de La Palma de Aceite : Usos. Rev. Palmas 1997, 18 (1), 33–48.spa
dc.relation.referencesMarquez Sierra, J. D.; Sierra, L.; Olivero-Verbel, J. Potencial de La Palma Aceitera ( Elaeis guineensis Jacq ). Agron. Mesoam. 2017, 28 (2), 523–534.spa
dc.relation.referencesHenson, I. E. A Brief History of Oil Palm; AOCS Press, 1916.spa
dc.relation.referencesNair, K. P. P. Oil Palm (Elaeis guineensis Jacquin). In The Agronomy and Economy of Important Tree Crops of the Developing World; 2010; pp 209–236.spa
dc.relation.referencesBauer, S.; Kauffman, L. The anatomy of oil palm https://chinadialogue.net/en/food/the-anatomy-of-an-oil-palm/.spa
dc.relation.referencesNg, S.; Uexkull, V.; Hardter, R. Aspectos Botánicos de La Palma de Aceite Pertinentes Al Manejo de Cultivo. In Palma de aceite: manejo para rendimientos altos y sostenibles.; Fairhurst, T., Hardter, R., Eds.; International Plant: Quito, 2012; pp 33–46.spa
dc.relation.referencesSanabria García, R. Estudio Faunístico de La Tribu Oryctini (Coleoptera: Scarabaeidae: Dynastinae) de Colombia, Universidad Nacional de Colombia, 2012.spa
dc.relation.referencesPardo, L. C. Escarabajos (Coleoptera-Scarabaeidae) de Importancia Agrícola en Colombia, 1994, 159–182.spa
dc.relation.referencesRatcliffe, B. C. A Revision of the Genus Strategus (Coleoptera:Scarabaeidae). Bulletin of the University of Nebraska State Museum. 1976, pp 93–204.spa
dc.relation.referencesCalvache, H.; Gómez, P. . Comportamiento de Las Plagas de La Palma de Aceite En Colombia. Palmas 1991, 12 (3), 7–14.spa
dc.relation.referencesAldana-De la Torre, R. C.; Cabra, M. G.; Pineda, J.; E., B.-P. A. Parámetros Poblacionales de Strategus aloeus, Barrenador de La Palma de Aceite. XIV Reun. Técnica Nac. Palma Aceite. 2017, 2011.spa
dc.relation.referencesPallares, C. H.; Aldana-De la Torre, J. A.; Calvache-Guerrero, H.; Ramírez-Lucas, P.; Luque, J.; Correa, N. Análisis Del Comportamiento y Comunicación Química Intraespecífica En Strategus aloeus (L.) (Coleoptera, Scarabaeidae - Dynastinae). Rev. Palmas 2000, 21 (especial,), 185–194.spa
dc.relation.referencesRodríguez Farías, Á. L. Semioquímicos Para El Manejo Integrado de Insectos Plaga de La Familia Taxonómica Scarabaeidae, Universidad Antonio Nariño, 2019.spa
dc.relation.referencesGalante, E.; Marcos, Á. Detrívoros,Coprófagos y Necrófagos. Bol. S.E.A. 1997, 20, 57–64.spa
dc.relation.referencesArias, L. Evaluación Del Comportamiento Del Escarabajo-Plaga Strategus aloeus (Coleoptera: Scarabaeidae: Dynastinae) Frente a Compuestos Orgánicos Volátiles Que Median Su Comunicación Química, Universidad Antonio Nariño. Colombia, 2019.spa
dc.relation.referencesValencia, C.; Pérez, S. M.; Aldana De la Torre, R. C.; Mesa, E.; Gomes de Olivera, H. Patogenicidad de Hongos Entomopatógenos Del Género Metarhizium Sobre Larvas de Strategus aloeus L. ( Coleoptera: Scarabaeidae) , En Condiciones de Laboratorio. Rev. Palmas 2011, 32 (4), 30–40.spa
dc.relation.referencesICA. Plaguicidas Registrados https://www.ica.gov.co/getdoc/d3612ebf-a5a6-4702-8d4b-8427c1cdaeb1/registrosnacionales-pqua-15-04-09.aspx.spa
dc.relation.referencesMartínez, L. C.; Plata-Rueda, A.; Zanuncio, J. C.; Serrao, J. E. Comparative Toxicity of Six Insecticides on the Rhinoceros Beetle (Coleoptera : Scarabaeidae). Florida Entomol. 2014, 97 (3), 1056–1062.spa
dc.relation.referencesMarín, C.; Céspedes, C. Compuestos Volátiles de Plantas, Origen, Emisión, Efectos, Análisis y Aplicaciones Agro. Rev. Fitotec. Mex. 2007, 30, 327–351.spa
dc.relation.referencesKnudsen, J. T.; Eriksson, R.; Gershenzon, J.; Stahl, B. Diversity and Distribution of Floral Scent. Bot. Rev. 2006, 72 (1), 1–120.spa
dc.relation.referencesDudareva, N.; Negre, F.; Nagegowda, D. A.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. CRC. Crit. Rev. Plant Sci. 2006, 25 (5), 417–440.spa
dc.relation.referencesTholl, D. Biosynthesis and Biological Functions of Terpenoids in Plants. Adv. Biochem. Eng. Biotechnol. 2014, 123 (July 2015), 127–141.spa
dc.relation.referencesPichersky, E.; Noel, J. P.; Dudareva, N. Biosynthesis of Plant Volatiles: Nature’s Diversity and Ingenuity. Science (80-. ). 2006, 311 (5762), 808–811.spa
dc.relation.referencesErvik, F.; Tollsten, L.; Knudsen, J. T. Floral Scent Chemistry and Pollination Ecology in Phytelephantoid Palms (Arecaceae). Plant Syst. Evol. 1999, 217 (3–4), 279–297.spa
dc.relation.referencesKnudsen, J. T.; Tollsten, L.; Ervik, F. Flower Scent and Pollination in Selected Neotropical Palms. Plant Biol. 2001, 3, 642–653.spa
dc.relation.referencesCampos, A.; Maia, D.; Reis, L. K.; Maria, D.; Navarro, F.; Aristone, F.; Augusto, C.; Javier, C.; Barrera, C.; Alberto, L.; Avellaneda, N. Chemical Ecology of Cyclocephala forsteri ( Melolonthidae ), a Threat to Macauba Oil Palm Cultivars ( Acrocomia aculeata , Arecaceae ). 2019, No. April, 1–8.spa
dc.relation.referencesMaia, A. C. D.; Santos, G. K. N.; Gonçalves, E. G.; Navarro, D. M. do A. F.; Nuñez-Avellaneda, L. A. 2-Alkyl-3-Methoxypyrazines Are Potent Attractants of Florivorous Scarabs (Melolonthidae, Cyclocephalini) Associated with Economically Exploitable Neotropical Palms (Arecaceae). Pest Manag. Sci. 2018, 74 (9), 2053–2058.spa
dc.relation.referencesKnudsen, J. T.; Andersson, S.; Bergman, P. Floral Scent Attraction in Geonoma macrostachys, an Understorey Palm of the Amazonian Rain Forest. Oikos 1999, 85 (3), 409.spa
dc.relation.referencesCaissard, J.-C.; Meekijjironenroj, A.; Baudino, S.; Anstett, M.-C. Localization Of Production And Emission Of Pollinator Attractant On Whole Leaves Of Chamaerops humilis (Arecaceae). Maerican J. Bot. 2004, 91 (8), 1190–1199.spa
dc.relation.referencesLumabas, J. L.; Sioson, J. C.; Janairo, J. I. B. Chemical Diversity of Scarab Beetle Pheromones and Its Implication in Chemical Evolution. 2016, 5 (1), 65–70.spa
dc.relation.referencesParra, R. Contribution of Oil Palm Isoprene Emissions to Tropospheric Ozone Levels in the Distrito Metropolitano de Quito ( Ecuador ). 116, 95–104.spa
dc.relation.referencesJardine, K. J.; Gimenez, B. O.; Araüjo, A. C.; Cunha, R. L.; Felizzola, J. F.; Piva, L. R.; Chambers, J. Q.; Higuchi, N. Diurnal Pattern of Leaf, Flower and Fruit Specific Ambient Volatiles above an Oil Palm Plantation in Pará State, Brazil. J. Braz. Chem. Soc. 2016, 27 (8), 1484–1492.spa
dc.relation.referencesVolatiles, F.; Lajis, N. H.; Hussein, M. Y.; Toia, R. F. Extraction and Identification of the Main Compound Present in Elaeis guineensis. Pertanika 1985, 8 (1), 105–108.spa
dc.relation.referencesMuhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B. Analysis of Volatile Organic Compound from Elaeis guineensis Inflorescences Planted on Different Soil Types in Malaysia. AIP Conf. Proc. 2016, 1784.spa
dc.relation.referencesZainol Hilmi, N. H.; Idris, A. S.; Mohd Azmil, M. N. Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry for the Detection of Volatile Organic Compounds Released from Ganoderma boninense and Oil Palm Wood. For. Pathol. 2019, 49 (4), 1–9.spa
dc.relation.referencesBruce, T. J.; Cork, A. Electrophysiological and Behavioral Responses of Female Helicoverpa armigera to Compounds Identified in Flowers of African Marigold, Tagetes Erecta. J. Chem. Ecol. 2001, 27 (6), 1119–1131.spa
dc.relation.referencesWurmitzer, C.; Blüthgen, N.; Krell, F. T.; Maldonado, B.; Ocampo, F.; Müller, J. K.; Schmitt, T. Attraction of Dung Beetles to Herbivore Dung and Synthetic Compounds in a Comparative Field Study. Chemoecology 2017, 27, 75–84.spa
dc.relation.referencesWeevil, A. P.; Rhynchophorus, L. Ethyl Propionate : Synergistic Kairomone For. Agriculture 1994, 20 (4), 889–897.spa
dc.relation.referencesVacas, S.; Melita, O.; Michaelakis, A.; Milonas, P.; Minuz, R.; Riolo, P.; Abbass, M. K.; Lo Bue, P.; Colazza, S.; Peri, E.; Soroker, V.; Livne, Y.; Primo, J.; Navarro-Llopis, V. Lures for Red Palm Weevil Trapping Systems: Aggregation Pheromone and Synthetic Kairomone. Pest Manag. Sci. 2017.spa
dc.relation.referencesHasni, N.; Pinier, C.; Imed, C.; Ouhichi, M.; Couzi, P.; Chermiti, B.; Frérot, B.; Saïd, I.; Rochat, D. Synthetic Co-Attractants of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon. J. Chem. Ecol. 2017, 43 (7), 631–643.spa
dc.relation.referencesRuther, J.; Mayer, C. J. Response of Garden Chafer, Phyllopertha horticola, to Plant Volatiles: From Screening to Application. Entomol. Exp. Appl. 2005, 115 (1), 51–59.spa
dc.relation.referencesLeal, W. S. Chemical Ecology of Phytophagous Scarab Beetles. Annu. Rev. Entomol. 2002, 43 (1), 39–61.spa
dc.relation.referencesLeal, W. S.; Ono, M.; Hasegawa, M.; Sawada, M. Kairomone from Dandelion, Taraxacum officinale, Attractant for Scarab Beetle Anomala Octiescostata. J. Chem. Ecol. 1994, 20 (7), 1697–1704.spa
dc.relation.referencesImai, T.; Maekawa, M.; Tsuchiya, S.; Fujimori, T. Field Attraction of Hoplia communis to 2-Phenylethanol, a Major Volatile Component from Host Flowers, Rosa spp. J. Chem. Ecol. 1998, 24 (9), 1491–1497.spa
dc.relation.referencesChen, R. zhao; Klein, M. G.; Sheng, C. fa; Li, Y.; Li, Q. yun. Male and Female Popillia quadriguttata (Fabricius) and Protaetia brevitarsis (Lewis) (Coleoptera: Scarabaeidae) Response to Japanese Beetle Floral and Pheromone Lures. J. Asia. Pac. Entomol. 2013, 16 (4), 479–484.spa
dc.relation.referencesHallett, R. H. Aggregation Pheromones Of Coleopteran Pests Of Palms, Simon Fraser University, 1996.spa
dc.relation.referencesBarber, I. A.; McGovern, T. P.; Beroza, M.; Hoyt, C. P.; Walker, A. Attractant for de Coconut Rhinoceros Beetle. J. Econ. Entomol. 1971, 64 (5), 1042–1044.spa
dc.relation.referencesMaddison, P. A.; Beroza, M.; McGovern, T. P. Ethyl Chrysanthemumate as an Attractant for the Coconut Rhinoceros Beetle. J. Econ. Entomol. 1972, 66 (3), 591–592.spa
dc.relation.referencesEl-Sayed. The Pherobase: Database of Pheromones and Semiochemicals http://www.pherobase.com.spa
dc.relation.referencesLevinson, H. Z.; Levinson, A. R.; U., M. Action and Composition of the Alarm Pheromone of the Bedbug Cimex lectularius L. Naturwissenschaften 1974, 61, 684–685.spa
dc.relation.referencesCollins, R. P. Carbonyl Compounds Produced by the Bed Bug, Cimex lectularius. Ann. Entomol. Soc. Am. 1967, 61 (5), 1338–1340.spa
dc.relation.referencesChoudhuri, D. K. On the Chemical Components of the Stink of Khrysocoris stollid Wolf. (Heteroptera : Pentatomidae : Insecta). 1969.spa
dc.relation.referencesPontes, G. B.; Bohman, B.; Unelius, C. R.; Lorenzo, M. G. Metasternal Gland Volatiles and Sexual Communication in the Triatomine Bug , Rhodnius prolixus. 2008, 450–457.spa
dc.relation.referencesMorgan, E. D.; Tyler, R. C.; Cammarets, C. Identification of the Components of Dufour Gland Secretion of the Ant Myrmica rubra and Responses to Them. J. Insect Physiol. 1977, 23, 511–515.spa
dc.relation.referencesCammaerts-Tricot, M.-C.; Morgan, E. D.; Tyler, R. C.; Braekman, J.-C. Dufour’s Gland Secretion of Myrmica rubra: Chemical, Electrophysiological, and Ethological Studies. J. Insect Physiol. 1976, 22, 927–932.spa
dc.relation.referencesInouchi, J.; Shibuya, T.; Hatanaka, T. Food Odor Responses of Single Antennal Olfactory Cells in Japanese Dung Beetle, Geotrupes auratus (Coleoptera: Geotrupidae). Appl. Entomol. Zool. 1988, 23 (2), 167–174.spa
dc.relation.referencesMoretto, P. Pollination of Amorphophallus Barthlottii and A. abyssinicus subsp. akeassii (Araceae) by Dung Beetles (Insecta: Coleoptera: Scarabaeoidea). Cathar. La Rev. 2019, 18 (April), 19–36.spa
dc.relation.referencesKrell, F.; Schmitt, T.; Herzner, G. The Attractive Odors of Dung. In The Third, Highly Irregular, Scarab Workshop; 2006.spa
dc.relation.referencesKite, G. C.; Hetterscheid, W. L. A. Phytochemistry Phylogenetic Trends in the Evolution of in Florescence Odours in Amorphophallus. Phytochemistry 2017, 142, 126–142.spa
dc.relation.referencesVitta, A. C. R.; Bohman, B.; Unelius, C. R.; Lorenzo, M. G. Behavioral and Electrophysiological Responses of Triatoma brasiliensis Males to Volatiles Produced in the Metasternal Glands of Females. J. Chem. Ecol. 2009, 35 (10), 1212–1221.spa
dc.relation.referencesManrique, G.; Vitta, A. C. R.; Ferreira, R. A.; Zani, C. L.; Unelius, C. R.; Lazzari, C. R.; Diotaiuti, L.; Lorenzo, M. G. Chemical Communication in Chagas Disease Vectors. Source, Identity, and Potential Function of Volatiles Released by the Metasternal and Brindley’s Glands of Triatoma infestans Adults. J. Chem. Ecol. 2006, 32 (9), 2035–2052.spa
dc.relation.referencesBrossut, R. Allomonal Secretions in Cockroaches. J. Chem. Ecol. 1983, 9 (1), 143–158.spa
dc.relation.referencesSkubatz, H.; Kunkel, D. D.; Howald, W. N.; Trenkle, R.; Mookherjee, B. The Sauromatum guttatum Appendix as an Osmophore: Excretory Pathways, Composition of Volatiles and Attractiveness to Insects. New Phytol. 1996, 134, 631–640.spa
dc.relation.referencesKnudsen, J.T.; Eriksson, E.; Gershenzon, J.; Ståhl, B. Diversity and Distribution of Floral Scent. New York Botanical Review Springer. 2016, 72 (1), 1–120.spa
dc.relation.referencesChoudhary, D. K.; Sharma, A. K.; Agarwak, P.; Varma, A.; Tuteja, N. Volatiles and Food Security; Springer: Singapore, 2017.spa
dc.relation.referencesKite, G.; Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach, Third Edit.; Wiley: Chichester, 2007; Vol. 53.spa
dc.relation.referencesSigma-Aldrich. No TitlePlas-Labs Nitrogen dry-boxes http://www.sigmaaldrich.com/catalog/substance/plaslabsnitrogendryboxglovebox1234598765?lang=en&region=CO (accessed Feb 15, 2017).spa
dc.relation.referencesEngewald, K. D. W. Adsorbent Materials Commonly Used in Air Analysis for Adsorptive Enrichment and Thermal Desorption of Volatile Organic Compounds. Anal Bioanal Chem 2002, 373 (6), 490–500.spa
dc.relation.referencesBuśko, M.; Kulik, T.; Ostrowska, A.; Góral, T.; Perkowski, J. Quantitative Volatile Compound Profiles in Fungal Cultures of Three Different Fusarium graminearum Chemotypes. FEMS Microbiol. Lett. 2014, 359 (1), 85–93.spa
dc.relation.referencesBouwmeester, H. The Role of Volatiles in Plant Communication. Plant J. 2019, 1–16.spa
dc.relation.referencesCastells, A. A. The Role of Terpenes in the Defensive Responses of Conifers against Herbivores and Pathogens, Universitat Autònoma de Barcelona, 2015.spa
dc.relation.referencesMumm, R.; Posthumus, M. A.; Dicke, M. Significance of Terpenoids in Induced Indirect Plant Defence against Herbivorous Arthropods. Plant, Cell Environ. 2008, 31 (4), 575–585.spa
dc.relation.referencesGarms, S.; Boland, W.; Arimura, G. I. Early Herbivore-Elicited Events in Terpenoid Biosynthesis. Plant Signal. Behav. 2008, 3 (6), 418–419.spa
dc.relation.referencesWei, J.; Yang, Z.; Hao, H.; Du, J.; Hope, M.; Blessig, M.; Hope, A. ( R ) - (+) -Limonene , Kairomone for Dastarcus helophoroides , a Natural Enemy of Longhorned Beetles. Agric. For. Entomol. 2008, 10 (4), 323–330.spa
dc.relation.referencesAzuma, H.; Toyota, M.; Asakawa, Y.; Takaso, T.; Tobe, H. Floral Scent Chemistry of Mangrove Plants. 2002, Journal of (115), 47–53.spa
dc.relation.referencesCipriano, A. .; Moya, O. .; Rincón, Á. .; Aldana, R. .; Oliveira, H. .; Ruiz, R. .; Avila, R. Dinámica de Reproducción de Strategus aloeus Bajo Diferentes Métodos de Erradicación y Daño Causado En La Nueva Siembra. Ceniavance 2010, 166, 1–4.spa
dc.relation.referencesÁvila, R. A.; Bayona, C.; Ricón, Á.; Romero, H. M. Effect of Replanting Systems on Populations of Strategus aloeus (L.) and Rhynchophorus palmarum (L.) Associated with the Oil Palm OxG Interspecific Hybrid (Elaeis oleifera × Elaeis guineensis) in Southwestern Colombia. Agron. Colomb. 2014, 32 (2), 224–231.spa
dc.relation.referencesBurger, B. V.; Petersen, W. G. B.; Tribe, G. D. Semiochemicals of the Scarabaeinae, IV*: Identification of an Attractant for the Dung Beetle Pachylomerus femoralis in the Abdominal Secretion of the Dung Beetle Kheper lamarcki. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 1995, 50 (9–10), 675–680.spa
dc.relation.referencesKumano-Nomura, Y.; Yamaoka, R. Beetle Visitations, and Associations with Quantitative Variation of Attractants in Floral Odors of Homalomena propinqua (Araceae). J. Plant Res. 2009, 122 (2), 183–192.spa
dc.relation.referencesAmbrogi, B. G.; Vidal, D. M.; Zarbin, P. H. G.; Rosado-Neto, G. H. Feromônios de Agregação Em Curculionidae (Insecta: Coleoptera) e Sua Implicação Taxonômica. Quim. Nova 2009, 32 (8), 2151–2158.spa
dc.relation.referencesSong, Y.; Kong, Y.; Wang, J.; Ruan, Y.; Huang, Q.; Ling, N.; Shen, Q. Identification of the Produced Volatile Organic Compounds and the Involved Soil Bacteria during Decomposition of Watermelon Plant Residues in a Fusarium-Infested Soil. Geoderma 2018, 315 (November 2017), 178–187.spa
dc.relation.referencesStotzky, G.; Schenck, S. Sources of Organic Reagents. Adv. Org. Synth. 1971, No. May, 161–165.spa
dc.relation.referencesAzmi, W. A.; Daud, S. N.; Hussain, M. H.; Wai, Y. K.; Chik, Z.; Sajap, A. S. Field Trapping of Adult Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Curcilionidae) with Food Baits and Synthetic Pheromone Lure in a Coconut Plantation. Philipp. Agric. Sci. 2014, 97 (4), 409–415.spa
dc.relation.referencesTillman, J. A.; Seybold, S. J.; Jurenka, R. A.; Blomquist, G. J. Insect Pheromones — an Overview of Biosynthesis and Endocrine Regulation. Insect Biochem. Mol. Biol. 1999, 29, 481–514.spa
dc.relation.referencesVanderwel, D.; Oehlschlager, A. C. Biosynthesis of Pheromones and Endocrine Regulation of Pheromone Production in Coleoptera. In Pheromone Biochemistry; Prestwich, G., Blomquist, G., Eds.; Academic Press, 1987; pp 175–215.spa
dc.relation.referencesSeybold, S. J.; Vanderwel, D. Biosynthesis and Endocrine Regulation of Pheromone Production in the Coleoptera. In Insect Pheromone Biochemistry and Molecular Biology; Blomquist, G., Vogt, R., Eds.; Academic Press, 2003; pp 137–200.spa
dc.relation.referencesJurenka, R.; Blomquist, G. J.; Schal, C.; Tittiger, C. Biochemistry and Molecular Biology of Pheromone Production ☆; 2017.spa
dc.relation.referencesBlomquist, G. J.; Jurenka, R.; Schal, C.; Tittiger, C. Pheromone Production: Biochemistry and Molecular Biology.; Elsevier, 2012.spa
dc.relation.referencesDe Mazo, L.; Vit, S. Contribution to the Knowledge of Palearctic batrisinae (Colopetera:Pselaphidae). Antennal Male Glands of Batrisus Aubé and Batrisodes Reitter: Morponogy, Histology and Taxanomical Implications. Entomologica 1983, 18, 77–110.spa
dc.relation.referencesFaustini, D. L.; Post, D. C.; Burkholder, W. E. Histology of Aggregation Pheromone Gland in the Red Flour Beetle. Ann. Entomol. Soc. Am. 1982, 75, 187–190.spa
dc.relation.referencesHoshino, K.; Nakaba, S.; Inoue, H.; Iwabuchi, K. Structure and Development of Male Pheromone Gland of Longicorn Beetles and Its Phylogenetic Relationships within the Tribe Clytini. J. Exp. Zool. B Mol. Dev. Evol. 2015, 324, 68–76.spa
dc.relation.referencesTumlinson, J. H.; Klein, M. G.; Doolittle, R. E.; Ladd, T. L.; Proveaux, A. T. Identification of the Female Japanese Beetle Sex Pheromone: Inhibition of Male Response by an Enantiomer. Science (80-. ). 1977, 197 (4305), 789–792.spa
dc.relation.referencesZhang, A. Essential Amino Acid Methyl Esters: Mjor Sex Pheromone Components of the Cranberry White Grub, Phyllophaga anxia (Coleoptera: Scarabaeidae). J. Chem. Ecol. 1997, 23 (1), 231–245.spa
dc.relation.referencesHenzel, R. F.; Lowe, M. D. Sex Attractant of the Grass Grub Beetle Social Organization in the Bat Myotis adversus. Science (80-. ). 1970, 168 (2), 1005–1006.spa
dc.relation.referencesLarsson, M. C.; Hedin, J.; Svensson, G. P.; Tolasch, T.; Francke, W. Characteristic Odor of Osmoderma eremita Identified as a Male-Released Pheromone. J. Chem. Ecol. 2003, 29 (3), 575–587.spa
dc.relation.referencesHallett, R. H.; Perez, A. L.; Gries, G.; Gries, R.; Pierce, H. D.; Yue, J.; Oehlschlager, A. C.; Gonzalez, L. M.; Borden, J. H. Aggregation Pheromone of Coconut Rhinoceros Beetle, Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae). J. Chem. Ecol. 1995, 21 (10), 1549–1570.spa
dc.relation.referencesRochat, D.; Mohammadpoor, K.; Malosse, C.; Avand-Faghih, A.; Lettere, M.; Beauhaire, J.; Morin, J.-P.; Pezier, A.; Renou, M.; Absollahi, G. A. Male Aggregation Pheromone of Date Palm Fruit Stalk Borer Oryctes elegans. J. Chem. Ecol. 2004, 30 (2), 387–407.spa
dc.relation.referencesSaïd, I.; Hasni, N.; Abdallah, Z.; Couzi, P.; Ouhichi, M.; Renou, M.; Rochat, D. Identification of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon. J. Chem. Ecol. 2015, 41 (5), 446–457.spa
dc.relation.referencesBento, J. M. S. Comunicaciones Personales, 2019.spa
dc.relation.referencesOpitz, S. E. W.; Mu, Æ. C. Plant Chemistry and Insect Sequestration. 2009, 117–154.spa
dc.relation.referencesRudinsky, B. J. A.; Morgan, M. E.; Libbey, L. M.; Putnam, T. B. Limonene Released by the Scolytid Beetle Dendroctonus pseudotsugae. Zeitschrift für Angew. Entomol. 1977, 82, 376–380.spa
dc.relation.referencesBurger, B. V. First Investigation of the Semiochemistry of South African Dung Beetle Species. In Neurobiology of Chemical Communication; Mucignat-Caretta, C., Ed.; 2014; pp 57–95.spa
dc.relation.referencesManjeri, G. Oryctes Rhinoceros Beetles, an Oil Palm Pest in Malaysia. Annu. Res. Rev. Biol. 2014, 4 (22), 3429–3439.spa
dc.relation.referencesAllou, K.; Morin, J. P.; Kouassi, P.; N’Klo, F. H.; Rochat, D. Oryctes monoceros Trapping with Synthetic Pheromone and Palm Material in Ivory Coast. J. Chem. Ecol. 2006, 32 (8), 1743–1754.spa
dc.relation.referencesLeal, W. S. Molecules and Macromolecules Involved in Chemical Communication of Scarab Beetles . 2001, 73 (3), 613–616.spa
dc.relation.referencesLeal, W. S. Chapter 4. 2005, 45–57.spa
dc.relation.referencesHarvey, D. J.; Vuts, J.; Hooper, A.; Finch, P.; Woodcock, C. M.; Caulfield, J. C.; Kadej, M.; Smolis, A.; Withall, D. M.; Henshall, S.; Pickett, J. A.; Gange, A. C.; Birkett, M. A. Environmentally Vulnerable Noble Chafers Exhibit Unusual Pheromone-Mediated Behaviour. PLoS One 2018, 13 (11), 1–15.spa
dc.relation.referencesRochat, D.; Morin, J. P.; Kakul, T.; Beaudoin-Ollivier, L.; Prior, R.; Renou, M.; Malosse, I.; Stathers, T.; Embupa, S.; Laup, S. Activity of Male Pheromone of Melanesian Rhinoceros Beetle Scapanes australis. J. Chem. Ecol. 2002, 28 (3), 479–500.spa
dc.rightsDerechos Reservados al Autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcEscarabajosspa
dc.subject.ddc572 - Bioquímicaspa
dc.subject.lembBeetleseng
dc.subject.lembPalma africanaspa
dc.subject.lembPalmseng
dc.subject.lembBiological researcheng
dc.subject.lembInvestigaciones biológicasspa
dc.subject.proposalSemioquímicosspa
dc.subject.proposalElaeis guineensis Jacq.spa
dc.subject.proposalStrategus aloeusspa
dc.subject.proposalMIPspa
dc.subject.proposalSemiochemicalseng
dc.subject.proposalIPMeng
dc.subject.proposalOil palm
dc.titleSeñales químicas entre el escarabajo-plaga Strategus aloeus (Coleoptera: Scarabaeidae: Dynastinae) y la palma de aceite (Elaeis guineensis Jacq.)spa
dc.title.translatedChemical signaling between the beetle-pest Strategus aloeus (Coleoptera: Scarabaeidae: Dynastinae) and oil palm (Elaeis guineensis Jacq.)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto código 201822 “Evaluación de sustancias atrayentes con base en la ecología química del escarabajo-plaga Strategus aloeus para su manejo en cultivos de palma de aceite (Elaeis guineensis Jacq.)”.spa
oaire.fundernameCentro de Investigación en Palma de Aceite (CENIPALMA)spa
oaire.fundernameFederación Nacional de Cultivadores de Palma (FEDEPALMA)spa
oaire.fundernameVicerrectoría de Ciencia, Tecnología e Innovación de la Universidad Antonio Nariño (UAN/VCTI)spa
oaire.fundernameDirección de Investigación de la Sede Bogotá de la Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020784777_2021.pdf
Tamaño:
5.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: