Evaluación de la calidad de imagen en estudios cerebrales con FDG en tomografía por emisión de positrones

dc.contributor.advisorAbril Fajardo, Andreaspa
dc.contributor.advisorSandoval Castillo, Lorenaspa
dc.contributor.authorFranco Olarte, Luz Elianaspa
dc.contributor.educationalvalidatorLondoño Tobon, Angelaspa
dc.contributor.researchgroupGrupo de Física Médicaspa
dc.date.accessioned2025-07-02T02:16:04Z
dc.date.available2025-07-02T02:16:04Z
dc.date.issued2025-03
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa tomografía por emisión de positrones (PET-CT) con FDG es fundamental para evaluar el meta- bolismo cerebral y detectar anomalías. Los estudios PET cerebrales con 18F-FDG permiten iden- tificar enfermedades neurodegenerativas, tumores y trastornos psiquiátricos en etapas tempra- nas. Evaluar los protocolos PET permite mejorar la calidad de imagen, proporcionando mayor precisión diagnóstica, facilitando un tratamiento más efectivo y personalizado. Este trabajo con- tribuye en la evaluación de protocolos de adquisición de estudios PET-CT cerebrales. Para esto, se plantea una metodología que incluye diferentes etapas desde la indagación hasta la evalua- ción. Inicialmente se realiza una revisión bibliográfica en bases de datos correspondiente a los protocolos actuales, identificando que el primer paso requiere de una guía de llenado de los maniquíes cilíndrico y cerebral 3D Hoffman con una actividad de 5mCi de 18F-FDG garantizan- do que al momento de la toma del estudio la actividad en el sistema cerebral sea equivalente y corresponda al valor de actividad en un estudio real; esta guía se presenta como un anexo y pretende ser un recurso para los servicios de medicina nuclear. El proceso de determinación de los parámetros de calidad se realiza en dos sistemas PET/CT Briograph40 TruePoint y Biograph Vision 450 del servicio de medicina nuclear del Instituto Nacional de Cancerología, realizando un análisis cualitativo a partir de la evaluación visual de las imágenes obtenidas y un análisis cuantitativo a partir de la evaluación de parámetros como el ruido, uniformidad y contraste de la materia gris y blanca de las imágenes de cada equipo. Se obtiene una distribución del radio- fármaco en el sistema cerebral comparable a un estudio en un paciente normal con una relación 4:1 en las regiones de materia gris y materia blanca. Se determina la resolución espacial y un FWHM de 4mm y 2mm para los sistemas PET/CT Biograph40 y Vision 450 respectivamente. A su vez, se obtienen valores de contraste de 60-96 % y ruido <6 % para el sistema Vision 450 y % contraste del 66-94 % y ruido <15 % para el sistema Biograph40, los resultados coinciden con los criterios de aceptabilidad propuestos por Ikari et al [1]. (Texto tomado de la fuente).spa
dc.description.abstractFDG positron emission tomography (PET-CT) is essential for evaluating brain metabolism and de- tecting abnormalities. FDG PET brain studies can identify neurodegenerative diseases, tumors, and psychiatric disorders at early stages. Evaluating brain protocols ensures adequate dosing, optimizes image quality, and improves diagnostic accuracy, facilitating more effective and per- sonalized treatment. A bibliographic review is carried out in databases; the cylindrical and 3D Hoffman brain phantoms are filled with an activity of 5mCi of F-18 (FDG), ensuring that at the time of the study, the activity in the brain system is equivalent to the value of activity in an ac- tual study. The phantoms are positioned in the Biograph40 TruePoint and Biograph Vision 450 PET/CT system of the National Cancer Institute. A qualitative analysis is made from the visual evaluation of the images obtained, and a quantitative analysis is made from the evaluation of parameters such as noise, uniformity, and contrast of the grey and white matter of the images of each piece of equipment. The distribution of radiopharmaceuticals in the brain system is com- parable to a study of a typical patient with a 4:1 ratio in grey and white matter regions. Spatial resolution and FWHM of 4mm and 2mm are obtained for the Biograph40 and Vision 450 PET/CT systems, respectively. We obtained 60-96 % contrast and <6 % noise for the Vision 450 system and 66-94 % contrast and <15 % noise for the Biograph40 system; the results agree with the ac- ceptability criteria proposed by Ikari et al. This work evaluated the protocols for acquiring brain PET images with F-18(FDG) in the nuclear medicine service of the National Cancer Institute for the analog and digital PET-CT systems.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.description.researchareaMedicina nuclearspa
dc.format.extent92 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88267
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Nivel Nacionalspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.indexedBiremespa
dc.relation.referencesYasuhiko Ikari, Go Akamatsu, Tomoyuki Nishio, Kenji Ishii, Kengo Ito, Takeshi Iwatsubo, and Michio Senda. Phantom criteria for qualification of brain fdg and amyloid pet across different cameras. EJNMMI physics, 3:1–18, 2016.spa
dc.relation.referencesWorld Health Organization. Dementia, 2023. Accedido: 15 enero 2024.spa
dc.relation.referencesMadhavi Tripathi, Manjari Tripathi, Nishikant Damle, Suman Kushwaha, Abhinav Jaimini, Maria M D’Souza, Rajnish Sharma, Sanjiv Saw, and Anupam Mondal. Differential diagno- sis of neurodegenerative dementias using metabolic phenotypes on f-18 fdg pet/ct. The neuroradiology journal, 27(1):13–21, 2014.spa
dc.relation.referencesAtman Dave, Neil Hansen, Ryan Downey, and Craig Johnson. Fdg-pet imaging of dementia and neurodegenerative disease. In Seminars in Ultrasound, CT and MRI, volume 41, pages 562–571. Elsevier, 2020.spa
dc.relation.referencesIan R Duffy, Amanda J Boyle, and Neil Vasdev. Improving pet imaging acquisition and analysis with machine learning: a narrative review with focus on alzheimer’s disease and oncology. Molecular imaging, 18:1536012119869070, 2019.spa
dc.relation.referencesMaureen Dumba, Sairah Khan, Neva Patel, Laura Perry, Paresh Malhotra, Richard Perry, Kuldip Nijran, Tara Barwick, Kathryn Wallitt, and Zarni Win. Clinical 18f-fdg and amyloid brain positron emission tomography/ct in the investigation of cognitive impairment: where are we now? The British Journal of Radiology, 92(1101):20181027, 2019.spa
dc.relation.referencesRobert L Harrison, Brian F Elston, Darrin W Byrd, Adam M Alessio, Kristin R Swanson, and Paul E Kinahan. A digital reference object representing hoffman’s 3d brain phantom for pet scanner simulations. Medical physics, 47(3):1174–1180, 2020.spa
dc.relation.referencesKim L. Greer and Christopher Scarfone. Three Dimensional Hoffman Brain Phantom User’s Manual, dsc, data spectrum corporation edition, 2014.spa
dc.relation.referencesSyahir Mansor, Elisabeth Pfaehler, Dennis Heijtel, Martin A Lodge, Ronald Boellaard, and Maqsood Yaqub. Impact of pet/ct system, reconstruction protocol, data analysis method, and repositioning on pet/ct precision: An experimental evaluation using an oncology and brain phantom. Medical physics, 44(12):6413–6424, 2017.spa
dc.relation.referencesInstituto Nacional de Imágenes Biomédicas y Bioingeniería. Medicina nuclear, 2024. Acce- dido: 17 de junio de 2024.spa
dc.relation.referencesRachel A Powsner and Edward R Powsner. Essential nuclear medicine physics. John Wiley & Sons, 2008.spa
dc.relation.referencesSimon R Cherry, James A Sorenson, and Michael E Phelps. Physics in nuclear medicine. Soc Nuclear Med, 2013.spa
dc.relation.referencesLuis Illanes and María Eugenia Etcheverry. Física de la medicina nuclear. Series: Libros de Cátedra, 2016.spa
dc.relation.referencesJerrold T Bushberg and John M Boone. The essential physics of medical imaging. Lippincott Williams & Wilkins, 2011.spa
dc.relation.referencesStephan D Voss. Spect/ct, pet/ct and pet/mri: oncologic and infectious applications and protocol considerations. Pediatric Radiology, 53(7):1443–1453, 2023.spa
dc.relation.referencesChinmaya Panigrahy, Ayan Seal, Consuelo Gonzalo-Martín, Pooja Pathak, and Anand Singh Jalal. Parameter adaptive unit-linking pulse coupled neural network based mri–pet/spect image fusion. Biomedical Signal Processing and Control, 83:104659, 2023.spa
dc.relation.referencesJP Suárez Fernández, A Maldonado Suárez, ML Domínguez Grande, JA Serna Macías, O Kostvinseva, A Ordovás Oromendía, E Castell, C Martín, E Gorospe, and JM Alfonso Alfon- so. La tomografía por emisión de positrones (pet) en la práctica clínica oncológica. Oncología (Barcelona), 27(8):15–25, 2004.spa
dc.relation.referencesMarylin Acuña Hernández, Quetzali Pitalua Cortés, and Liset Sánchez Orduz. Uso del pet/tc como herramienta diagnóstica en diversos escenarios clínicos relacionados con el lupus eritematoso sistémico. Revista Colombiana de Reumatología, 29(4):331–334, 2022.spa
dc.relation.referencesFathima Fijula Palot Manzil, Harleen Kaur, and Lajos Szabados. Gallium-68 prostate-specific membrane antigen positron emission tomography: A practical guide for radiologists and clinicians. Cureus, 14(3), 2022.spa
dc.relation.referencesMarlon Perera, Nathan Papa, Matthew Roberts, Michael Williams, Cristian Udovicich, Ian Vela, Daniel Christidis, Damien Bolton, Michael S Hofman, Nathan Lawrentschuk, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advan- ced prostate cancer—updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. European urology, 77(4):403–417, 2020.spa
dc.relation.referencesRafael Puchal Añé. Algunas cuestiones sobre equipos y métodos para la obtención de estudios de Me- dicina Nuclear. Barcelona, 2022.spa
dc.relation.referencesSatoshi Minoshima, Donna Cross, Tanyaluck Thientunyakit, Norman L Foster, and Alexan- der Drzezga. 18f-fdg pet imaging in neurodegenerative dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copatholo- gies. Journal of Nuclear Medicine, 63(Supplement 1):2S–12S, 2022.spa
dc.relation.referencesCecilia Yamil Chain and Luis Illanes. Radiofármacos en medicina nuclear. Series: Libros de Cátedra, 2015.spa
dc.relation.referencesGopal B Saha and Gopal B Saha. Fundamentals of nuclear pharmacy, volume 6. Springer, 2004.spa
dc.relation.referencesOscar Parysow, José San Román, and Francisco Eleta. Introducción a la Tomografía por Emisión de Positrones. Number 1. Fundación Jaime Roca, Buenos Aires, 2002.spa
dc.relation.referencesO Parysow, V Jager, S Racioppi, AM Mollerach, C Collaud, and I Arma. Pet-tc en endocrino- logía. Revista argentina de endocrinología y metabolismo, 45(5):224–243, 2008.spa
dc.relation.referencesValentina Berti, Lisa Mosconi, and Alberto Pupi. Brain: normal variations and benign fin- dings in fdg pet/ct imaging. PET clinics, 9(2):129, 2013.spa
dc.relation.referencesErnesto Roldán-Valadez, Iván Vega-González, Guillermo Valdivieso-Cárdenas, Alfonso Rumoroso-García, Osvaldo Morales-Santillán, and Luis Osorio-Cardiel. Conceptos básicos del 18f-fdg pet/ct. definición y variantes normales. Gaceta médica de México, 144(2):137–146, 2008.spa
dc.relation.referencesJP Suárez Fernández, A Maldonado Suárez, ML Domínguez Grande, JA Serna Macías, O Kostvinseva, A Ordovás Oromendía, E Castell, C Martín, E Gorospe, and JM Alfonso Alfon- so. La tomografía por emisión de positrones (pet) en la práctica clínica oncológica. Oncología (Barcelona), 27(8):15–25, 2004.spa
dc.relation.referencesMarcelo F Di Carli and Martin J Lipton. Cardiac Pet and PET/CT Imaging. Soc Nuclear Med, 2007.spa
dc.relation.referencesSiti Aishah AA, I Normala, et al. Mapping cerebral atrophy and hypometabolism on 18 f-fdg pet/ct scans for detecting alzheimer’s disease in the malaysian population using a malaysian brain atlas template. The Medical Journal of Malaysia, 78(1):46–53, 2023.spa
dc.relation.referencesAnita Nitchingham, Jarett Vanz-Brian Pereira, Eva A Wegner, Vincent Oxenham, Jacqueline Close, and Gideon A Caplan. Regional cerebral hypometabolism on 18f-fdg pet/ct scan in delirium is independent of acute illness and dementia. Alzheimer’s & Dementia, 19(1):97–106, 2023.spa
dc.relation.referencesMichael E Phelps. Molecular imaging and its biological applications. Eur J Nucl Med Mol Imaging, 31:1544, 2004.spa
dc.relation.referencesLisa Mosconi. Brain glucose metabolism in the early and specific diagnosis of alzheimer’s disease: Fdg-pet studies in mci and ad. European journal of nuclear medicine and molecular imaging, 32:486–510, 2005.spa
dc.relation.referencesLisa Mosconi. Brain glucose metabolism in the early and specific diagnosis of alzheimer’s disease: Fdg-pet studies in mci and ad. European journal of nuclear medicine and molecular imaging, 32:486–510, 2005.spa
dc.relation.referencesS Ahmad Sarji. Physiological uptake in fdg pet simulating disease. Biomedical imaging and intervention journal, 2(4), 2006.spa
dc.relation.referencesSofia Montoya Bedoya, Sofia Campuzano Cortina, Isabela Gómez Ruiz, and Juan Camilo Suárez Escudero. Afasia primaria progresiva y sus variantes: diagnóstico, evolución, carac- terísticas imagenológicas y manejo. Acta Neurológica Colombiana, 38(4):230–239, 2022.spa
dc.relation.referencesBeatriz Gómez-Ansón. Neuroimagen en las demencias. EDICIONES MAYO, S.A., Aribau, 185- 187, 08021 Barcelona, Paseo de la Habana, 46, 28036 Madrid, 2011. EB 09-31 1.spa
dc.relation.referencesDonna J Cross, Karina Mosci, and Satoshi Minoshima. Molecular Imaging of Neurodegenerative Disorders. Springer, 2023.spa
dc.relation.referencesJ Borrajo-Sánchez and FJ Cabrero-Fraile. Tomografía por emisión de positrones (pet): funda- mentos y limitaciones tecnológicas. Archivos de la Sociedad Española de Oftalmología, 85(4):129– 130, 2010.spa
dc.relation.referencesSiemens Healthineers. Biograph vision quadra with udr detector. https: //www.siemens-healthineers.com/dk/molecular-imaging/pet-ct/ biograph-vision-quadra/udr-detector. Accessed: 2024-10-08.spa
dc.relation.referencesDale L Bailey, Michael N Maisey, David W Townsend, and Peter E Valk. Positron emission tomography, volume 2. Springer, 2005.spa
dc.relation.referencesSuleman Surti and Joel S Karp. Design considerations for a limited angle, dedicated breast, tof pet scanner. Physics in Medicine & Biology, 53(11):2911, 2008.spa
dc.relation.referencesDavid W Townsend. Dual-modality imaging: combining anatomy and function. Journal of Nuclear Medicine, 49(6):938–955, 2008.spa
dc.relation.referencesSiemens Healthcare. UltraHD•PET Iterative Resolution, Biograph Vision PET/CT, 2021.spa
dc.relation.referencesKristine Gulliksrud, Caroline Stokke, and Anne Catrine Trægde Martinsen. How to measure ct image quality: variations in ct-numbers, uniformity and low contrast resolution for a ct quality assurance phantom. Physica Medica, 30(4):521–526, 2014.spa
dc.relation.referencesEdward J Hoffman, P Duffy Cutler, Thomas M Guerrero, Ward M Digby, and John C Maz- ziotta. Assessment of accuracy of pet utilizing a 3-d phantom to simulate the activity dis- tribution of [18f] fluorodeoxyglucose uptake in the human brain. Journal of Cerebral Blood Flow & Metabolism, 11(1_suppl):A17–A25, 1991.spa
dc.relation.referencesRobert L Harrison, Brian F Elston, Darrin W Byrd, Adam M Alessio, Kristin R Swanson, and Paul E Kinahan. A digital reference object representing hoffman’s 3d brain phantom for pet scanner simulations. Medical physics, 47(3):1174–1180, 2020.spa
dc.relation.referencesJohannes Schindelin, Curtis T Rueden, Mark C Hiner, and Kevin W Eliceiri. The imagej ecosystem: An open platform for biomedical image analysis. Molecular reproduction and deve- lopment, 82(7-8):518–529, 2015.spa
dc.relation.referencesSteve Pieper, Michael Halle, and Ron Kikinis. 3d slicer. In 2004 2nd IEEE international sympo- sium on biomedical imaging: nano to macro (IEEE Cat No. 04EX821), pages 632–635. IEEE, 2004.spa
dc.relation.referencesMarie-Odile Habert, Sullivan Marie, Hugo Bertin, Moana Reynal, Jean-Baptiste Martini, Ma- madou Diallo, Aurélie Kas, and Régine Trébossen. Optimization of brain pet imaging for a multicentre trial: the french cati experience. EJNMMI physics, 3(1):1–17, 2016.spa
dc.relation.referencesEANM Research Ltd (EARL). Programa de Acreditación de PET/CT Cerebral con 18F.EuropeanAssociationofNuclearMedicine(EANM), 2021.spa
dc.relation.referencesMahnaz Shekari, Eline E Verwer, Maqsood Yaqub, Marcel Daamen, Christopher Buckley, Giovanni B Frisoni, Pieter Jelle Visser, Gill Farrar, Frederik Barkhof, Juan Domingo Gispert, et al. Harmonization of brain pet images in multi-center pet studies using hoffman phantom scan. EJNMMI physics, 10(1):68, 2023.spa
dc.relation.referencesSylvain Auvity, Matteo Tonietto, Fabien Caillé, Benedetta Bodini, Michel Bottlaender, Nicolas Tournier, Bertrand Kuhnast, and Bruno Stankoff. Repurposing radiotracers for myelin imaging: a study comparing 18f-florbetaben, 18f-florbetapir, 18f-flutemetamol, 11c-medas, and 11c-pib. European Journal of Nuclear Medicine and Molecular Imaging, 47:490–501, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsFluorodesoxiglucosa F18spa
dc.subject.decsFluorodeoxyglucose F18eng
dc.subject.decsTomografía de Emisión de Positronesspa
dc.subject.decsPositron-Emission Tomographyeng
dc.subject.decsTomografía Computarizada por Tomografía de Emisión de Positronesspa
dc.subject.decsPositron Emission Tomography Computed Tomographyeng
dc.subject.decsEncefalopatíasspa
dc.subject.decsBrain Diseaseseng
dc.subject.proposalTomografía por emisión de positronesspa
dc.subject.proposalFluodeoxiglucosa (FDG)spa
dc.subject.proposalManiquí cerebral 3D Hoffmanspa
dc.subject.proposalCalidad de imagenspa
dc.subject.proposalPositron emission tomographyeng
dc.subject.proposalFluorodeoxyglucose (FDG)eng
dc.subject.proposalHoffman 3D brain phantomeng
dc.subject.proposalImage qualityeng
dc.titleEvaluación de la calidad de imagen en estudios cerebrales con FDG en tomografía por emisión de positronesspa
dc.title.translatedEvaluation of image quality for FDG brain studies in the FDG brain studies in positron emission tomographyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1118568504.2025.pdf
Tamaño:
10.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: