Evaluación de la calidad de imagen en estudios cerebrales con FDG en tomografía por emisión de positrones
dc.contributor.advisor | Abril Fajardo, Andrea | spa |
dc.contributor.advisor | Sandoval Castillo, Lorena | spa |
dc.contributor.author | Franco Olarte, Luz Eliana | spa |
dc.contributor.educationalvalidator | Londoño Tobon, Angela | spa |
dc.contributor.researchgroup | Grupo de Física Médica | spa |
dc.date.accessioned | 2025-07-02T02:16:04Z | |
dc.date.available | 2025-07-02T02:16:04Z | |
dc.date.issued | 2025-03 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | La tomografía por emisión de positrones (PET-CT) con FDG es fundamental para evaluar el meta- bolismo cerebral y detectar anomalías. Los estudios PET cerebrales con 18F-FDG permiten iden- tificar enfermedades neurodegenerativas, tumores y trastornos psiquiátricos en etapas tempra- nas. Evaluar los protocolos PET permite mejorar la calidad de imagen, proporcionando mayor precisión diagnóstica, facilitando un tratamiento más efectivo y personalizado. Este trabajo con- tribuye en la evaluación de protocolos de adquisición de estudios PET-CT cerebrales. Para esto, se plantea una metodología que incluye diferentes etapas desde la indagación hasta la evalua- ción. Inicialmente se realiza una revisión bibliográfica en bases de datos correspondiente a los protocolos actuales, identificando que el primer paso requiere de una guía de llenado de los maniquíes cilíndrico y cerebral 3D Hoffman con una actividad de 5mCi de 18F-FDG garantizan- do que al momento de la toma del estudio la actividad en el sistema cerebral sea equivalente y corresponda al valor de actividad en un estudio real; esta guía se presenta como un anexo y pretende ser un recurso para los servicios de medicina nuclear. El proceso de determinación de los parámetros de calidad se realiza en dos sistemas PET/CT Briograph40 TruePoint y Biograph Vision 450 del servicio de medicina nuclear del Instituto Nacional de Cancerología, realizando un análisis cualitativo a partir de la evaluación visual de las imágenes obtenidas y un análisis cuantitativo a partir de la evaluación de parámetros como el ruido, uniformidad y contraste de la materia gris y blanca de las imágenes de cada equipo. Se obtiene una distribución del radio- fármaco en el sistema cerebral comparable a un estudio en un paciente normal con una relación 4:1 en las regiones de materia gris y materia blanca. Se determina la resolución espacial y un FWHM de 4mm y 2mm para los sistemas PET/CT Biograph40 y Vision 450 respectivamente. A su vez, se obtienen valores de contraste de 60-96 % y ruido <6 % para el sistema Vision 450 y % contraste del 66-94 % y ruido <15 % para el sistema Biograph40, los resultados coinciden con los criterios de aceptabilidad propuestos por Ikari et al [1]. (Texto tomado de la fuente). | spa |
dc.description.abstract | FDG positron emission tomography (PET-CT) is essential for evaluating brain metabolism and de- tecting abnormalities. FDG PET brain studies can identify neurodegenerative diseases, tumors, and psychiatric disorders at early stages. Evaluating brain protocols ensures adequate dosing, optimizes image quality, and improves diagnostic accuracy, facilitating more effective and per- sonalized treatment. A bibliographic review is carried out in databases; the cylindrical and 3D Hoffman brain phantoms are filled with an activity of 5mCi of F-18 (FDG), ensuring that at the time of the study, the activity in the brain system is equivalent to the value of activity in an ac- tual study. The phantoms are positioned in the Biograph40 TruePoint and Biograph Vision 450 PET/CT system of the National Cancer Institute. A qualitative analysis is made from the visual evaluation of the images obtained, and a quantitative analysis is made from the evaluation of parameters such as noise, uniformity, and contrast of the grey and white matter of the images of each piece of equipment. The distribution of radiopharmaceuticals in the brain system is com- parable to a study of a typical patient with a 4:1 ratio in grey and white matter regions. Spatial resolution and FWHM of 4mm and 2mm are obtained for the Biograph40 and Vision 450 PET/CT systems, respectively. We obtained 60-96 % contrast and <6 % noise for the Vision 450 system and 66-94 % contrast and <15 % noise for the Biograph40 system; the results agree with the ac- ceptability criteria proposed by Ikari et al. This work evaluated the protocols for acquiring brain PET images with F-18(FDG) in the nuclear medicine service of the National Cancer Institute for the analog and digital PET-CT systems. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Física Médica | spa |
dc.description.researcharea | Medicina nuclear | spa |
dc.format.extent | 92 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88267 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Nivel Nacional | spa |
dc.publisher.department | Departamento de Física | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Física Médica | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | Yasuhiko Ikari, Go Akamatsu, Tomoyuki Nishio, Kenji Ishii, Kengo Ito, Takeshi Iwatsubo, and Michio Senda. Phantom criteria for qualification of brain fdg and amyloid pet across different cameras. EJNMMI physics, 3:1–18, 2016. | spa |
dc.relation.references | World Health Organization. Dementia, 2023. Accedido: 15 enero 2024. | spa |
dc.relation.references | Madhavi Tripathi, Manjari Tripathi, Nishikant Damle, Suman Kushwaha, Abhinav Jaimini, Maria M D’Souza, Rajnish Sharma, Sanjiv Saw, and Anupam Mondal. Differential diagno- sis of neurodegenerative dementias using metabolic phenotypes on f-18 fdg pet/ct. The neuroradiology journal, 27(1):13–21, 2014. | spa |
dc.relation.references | Atman Dave, Neil Hansen, Ryan Downey, and Craig Johnson. Fdg-pet imaging of dementia and neurodegenerative disease. In Seminars in Ultrasound, CT and MRI, volume 41, pages 562–571. Elsevier, 2020. | spa |
dc.relation.references | Ian R Duffy, Amanda J Boyle, and Neil Vasdev. Improving pet imaging acquisition and analysis with machine learning: a narrative review with focus on alzheimer’s disease and oncology. Molecular imaging, 18:1536012119869070, 2019. | spa |
dc.relation.references | Maureen Dumba, Sairah Khan, Neva Patel, Laura Perry, Paresh Malhotra, Richard Perry, Kuldip Nijran, Tara Barwick, Kathryn Wallitt, and Zarni Win. Clinical 18f-fdg and amyloid brain positron emission tomography/ct in the investigation of cognitive impairment: where are we now? The British Journal of Radiology, 92(1101):20181027, 2019. | spa |
dc.relation.references | Robert L Harrison, Brian F Elston, Darrin W Byrd, Adam M Alessio, Kristin R Swanson, and Paul E Kinahan. A digital reference object representing hoffman’s 3d brain phantom for pet scanner simulations. Medical physics, 47(3):1174–1180, 2020. | spa |
dc.relation.references | Kim L. Greer and Christopher Scarfone. Three Dimensional Hoffman Brain Phantom User’s Manual, dsc, data spectrum corporation edition, 2014. | spa |
dc.relation.references | Syahir Mansor, Elisabeth Pfaehler, Dennis Heijtel, Martin A Lodge, Ronald Boellaard, and Maqsood Yaqub. Impact of pet/ct system, reconstruction protocol, data analysis method, and repositioning on pet/ct precision: An experimental evaluation using an oncology and brain phantom. Medical physics, 44(12):6413–6424, 2017. | spa |
dc.relation.references | Instituto Nacional de Imágenes Biomédicas y Bioingeniería. Medicina nuclear, 2024. Acce- dido: 17 de junio de 2024. | spa |
dc.relation.references | Rachel A Powsner and Edward R Powsner. Essential nuclear medicine physics. John Wiley & Sons, 2008. | spa |
dc.relation.references | Simon R Cherry, James A Sorenson, and Michael E Phelps. Physics in nuclear medicine. Soc Nuclear Med, 2013. | spa |
dc.relation.references | Luis Illanes and María Eugenia Etcheverry. Física de la medicina nuclear. Series: Libros de Cátedra, 2016. | spa |
dc.relation.references | Jerrold T Bushberg and John M Boone. The essential physics of medical imaging. Lippincott Williams & Wilkins, 2011. | spa |
dc.relation.references | Stephan D Voss. Spect/ct, pet/ct and pet/mri: oncologic and infectious applications and protocol considerations. Pediatric Radiology, 53(7):1443–1453, 2023. | spa |
dc.relation.references | Chinmaya Panigrahy, Ayan Seal, Consuelo Gonzalo-Martín, Pooja Pathak, and Anand Singh Jalal. Parameter adaptive unit-linking pulse coupled neural network based mri–pet/spect image fusion. Biomedical Signal Processing and Control, 83:104659, 2023. | spa |
dc.relation.references | JP Suárez Fernández, A Maldonado Suárez, ML Domínguez Grande, JA Serna Macías, O Kostvinseva, A Ordovás Oromendía, E Castell, C Martín, E Gorospe, and JM Alfonso Alfon- so. La tomografía por emisión de positrones (pet) en la práctica clínica oncológica. Oncología (Barcelona), 27(8):15–25, 2004. | spa |
dc.relation.references | Marylin Acuña Hernández, Quetzali Pitalua Cortés, and Liset Sánchez Orduz. Uso del pet/tc como herramienta diagnóstica en diversos escenarios clínicos relacionados con el lupus eritematoso sistémico. Revista Colombiana de Reumatología, 29(4):331–334, 2022. | spa |
dc.relation.references | Fathima Fijula Palot Manzil, Harleen Kaur, and Lajos Szabados. Gallium-68 prostate-specific membrane antigen positron emission tomography: A practical guide for radiologists and clinicians. Cureus, 14(3), 2022. | spa |
dc.relation.references | Marlon Perera, Nathan Papa, Matthew Roberts, Michael Williams, Cristian Udovicich, Ian Vela, Daniel Christidis, Damien Bolton, Michael S Hofman, Nathan Lawrentschuk, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advan- ced prostate cancer—updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. European urology, 77(4):403–417, 2020. | spa |
dc.relation.references | Rafael Puchal Añé. Algunas cuestiones sobre equipos y métodos para la obtención de estudios de Me- dicina Nuclear. Barcelona, 2022. | spa |
dc.relation.references | Satoshi Minoshima, Donna Cross, Tanyaluck Thientunyakit, Norman L Foster, and Alexan- der Drzezga. 18f-fdg pet imaging in neurodegenerative dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copatholo- gies. Journal of Nuclear Medicine, 63(Supplement 1):2S–12S, 2022. | spa |
dc.relation.references | Cecilia Yamil Chain and Luis Illanes. Radiofármacos en medicina nuclear. Series: Libros de Cátedra, 2015. | spa |
dc.relation.references | Gopal B Saha and Gopal B Saha. Fundamentals of nuclear pharmacy, volume 6. Springer, 2004. | spa |
dc.relation.references | Oscar Parysow, José San Román, and Francisco Eleta. Introducción a la Tomografía por Emisión de Positrones. Number 1. Fundación Jaime Roca, Buenos Aires, 2002. | spa |
dc.relation.references | O Parysow, V Jager, S Racioppi, AM Mollerach, C Collaud, and I Arma. Pet-tc en endocrino- logía. Revista argentina de endocrinología y metabolismo, 45(5):224–243, 2008. | spa |
dc.relation.references | Valentina Berti, Lisa Mosconi, and Alberto Pupi. Brain: normal variations and benign fin- dings in fdg pet/ct imaging. PET clinics, 9(2):129, 2013. | spa |
dc.relation.references | Ernesto Roldán-Valadez, Iván Vega-González, Guillermo Valdivieso-Cárdenas, Alfonso Rumoroso-García, Osvaldo Morales-Santillán, and Luis Osorio-Cardiel. Conceptos básicos del 18f-fdg pet/ct. definición y variantes normales. Gaceta médica de México, 144(2):137–146, 2008. | spa |
dc.relation.references | JP Suárez Fernández, A Maldonado Suárez, ML Domínguez Grande, JA Serna Macías, O Kostvinseva, A Ordovás Oromendía, E Castell, C Martín, E Gorospe, and JM Alfonso Alfon- so. La tomografía por emisión de positrones (pet) en la práctica clínica oncológica. Oncología (Barcelona), 27(8):15–25, 2004. | spa |
dc.relation.references | Marcelo F Di Carli and Martin J Lipton. Cardiac Pet and PET/CT Imaging. Soc Nuclear Med, 2007. | spa |
dc.relation.references | Siti Aishah AA, I Normala, et al. Mapping cerebral atrophy and hypometabolism on 18 f-fdg pet/ct scans for detecting alzheimer’s disease in the malaysian population using a malaysian brain atlas template. The Medical Journal of Malaysia, 78(1):46–53, 2023. | spa |
dc.relation.references | Anita Nitchingham, Jarett Vanz-Brian Pereira, Eva A Wegner, Vincent Oxenham, Jacqueline Close, and Gideon A Caplan. Regional cerebral hypometabolism on 18f-fdg pet/ct scan in delirium is independent of acute illness and dementia. Alzheimer’s & Dementia, 19(1):97–106, 2023. | spa |
dc.relation.references | Michael E Phelps. Molecular imaging and its biological applications. Eur J Nucl Med Mol Imaging, 31:1544, 2004. | spa |
dc.relation.references | Lisa Mosconi. Brain glucose metabolism in the early and specific diagnosis of alzheimer’s disease: Fdg-pet studies in mci and ad. European journal of nuclear medicine and molecular imaging, 32:486–510, 2005. | spa |
dc.relation.references | Lisa Mosconi. Brain glucose metabolism in the early and specific diagnosis of alzheimer’s disease: Fdg-pet studies in mci and ad. European journal of nuclear medicine and molecular imaging, 32:486–510, 2005. | spa |
dc.relation.references | S Ahmad Sarji. Physiological uptake in fdg pet simulating disease. Biomedical imaging and intervention journal, 2(4), 2006. | spa |
dc.relation.references | Sofia Montoya Bedoya, Sofia Campuzano Cortina, Isabela Gómez Ruiz, and Juan Camilo Suárez Escudero. Afasia primaria progresiva y sus variantes: diagnóstico, evolución, carac- terísticas imagenológicas y manejo. Acta Neurológica Colombiana, 38(4):230–239, 2022. | spa |
dc.relation.references | Beatriz Gómez-Ansón. Neuroimagen en las demencias. EDICIONES MAYO, S.A., Aribau, 185- 187, 08021 Barcelona, Paseo de la Habana, 46, 28036 Madrid, 2011. EB 09-31 1. | spa |
dc.relation.references | Donna J Cross, Karina Mosci, and Satoshi Minoshima. Molecular Imaging of Neurodegenerative Disorders. Springer, 2023. | spa |
dc.relation.references | J Borrajo-Sánchez and FJ Cabrero-Fraile. Tomografía por emisión de positrones (pet): funda- mentos y limitaciones tecnológicas. Archivos de la Sociedad Española de Oftalmología, 85(4):129– 130, 2010. | spa |
dc.relation.references | Siemens Healthineers. Biograph vision quadra with udr detector. https: //www.siemens-healthineers.com/dk/molecular-imaging/pet-ct/ biograph-vision-quadra/udr-detector. Accessed: 2024-10-08. | spa |
dc.relation.references | Dale L Bailey, Michael N Maisey, David W Townsend, and Peter E Valk. Positron emission tomography, volume 2. Springer, 2005. | spa |
dc.relation.references | Suleman Surti and Joel S Karp. Design considerations for a limited angle, dedicated breast, tof pet scanner. Physics in Medicine & Biology, 53(11):2911, 2008. | spa |
dc.relation.references | David W Townsend. Dual-modality imaging: combining anatomy and function. Journal of Nuclear Medicine, 49(6):938–955, 2008. | spa |
dc.relation.references | Siemens Healthcare. UltraHD•PET Iterative Resolution, Biograph Vision PET/CT, 2021. | spa |
dc.relation.references | Kristine Gulliksrud, Caroline Stokke, and Anne Catrine Trægde Martinsen. How to measure ct image quality: variations in ct-numbers, uniformity and low contrast resolution for a ct quality assurance phantom. Physica Medica, 30(4):521–526, 2014. | spa |
dc.relation.references | Edward J Hoffman, P Duffy Cutler, Thomas M Guerrero, Ward M Digby, and John C Maz- ziotta. Assessment of accuracy of pet utilizing a 3-d phantom to simulate the activity dis- tribution of [18f] fluorodeoxyglucose uptake in the human brain. Journal of Cerebral Blood Flow & Metabolism, 11(1_suppl):A17–A25, 1991. | spa |
dc.relation.references | Robert L Harrison, Brian F Elston, Darrin W Byrd, Adam M Alessio, Kristin R Swanson, and Paul E Kinahan. A digital reference object representing hoffman’s 3d brain phantom for pet scanner simulations. Medical physics, 47(3):1174–1180, 2020. | spa |
dc.relation.references | Johannes Schindelin, Curtis T Rueden, Mark C Hiner, and Kevin W Eliceiri. The imagej ecosystem: An open platform for biomedical image analysis. Molecular reproduction and deve- lopment, 82(7-8):518–529, 2015. | spa |
dc.relation.references | Steve Pieper, Michael Halle, and Ron Kikinis. 3d slicer. In 2004 2nd IEEE international sympo- sium on biomedical imaging: nano to macro (IEEE Cat No. 04EX821), pages 632–635. IEEE, 2004. | spa |
dc.relation.references | Marie-Odile Habert, Sullivan Marie, Hugo Bertin, Moana Reynal, Jean-Baptiste Martini, Ma- madou Diallo, Aurélie Kas, and Régine Trébossen. Optimization of brain pet imaging for a multicentre trial: the french cati experience. EJNMMI physics, 3(1):1–17, 2016. | spa |
dc.relation.references | EANM Research Ltd (EARL). Programa de Acreditación de PET/CT Cerebral con 18F.EuropeanAssociationofNuclearMedicine(EANM), 2021. | spa |
dc.relation.references | Mahnaz Shekari, Eline E Verwer, Maqsood Yaqub, Marcel Daamen, Christopher Buckley, Giovanni B Frisoni, Pieter Jelle Visser, Gill Farrar, Frederik Barkhof, Juan Domingo Gispert, et al. Harmonization of brain pet images in multi-center pet studies using hoffman phantom scan. EJNMMI physics, 10(1):68, 2023. | spa |
dc.relation.references | Sylvain Auvity, Matteo Tonietto, Fabien Caillé, Benedetta Bodini, Michel Bottlaender, Nicolas Tournier, Bertrand Kuhnast, and Bruno Stankoff. Repurposing radiotracers for myelin imaging: a study comparing 18f-florbetaben, 18f-florbetapir, 18f-flutemetamol, 11c-medas, and 11c-pib. European Journal of Nuclear Medicine and Molecular Imaging, 47:490–501, 2020. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física::535 - Luz y radiación relacionada | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Fluorodesoxiglucosa F18 | spa |
dc.subject.decs | Fluorodeoxyglucose F18 | eng |
dc.subject.decs | Tomografía de Emisión de Positrones | spa |
dc.subject.decs | Positron-Emission Tomography | eng |
dc.subject.decs | Tomografía Computarizada por Tomografía de Emisión de Positrones | spa |
dc.subject.decs | Positron Emission Tomography Computed Tomography | eng |
dc.subject.decs | Encefalopatías | spa |
dc.subject.decs | Brain Diseases | eng |
dc.subject.proposal | Tomografía por emisión de positrones | spa |
dc.subject.proposal | Fluodeoxiglucosa (FDG) | spa |
dc.subject.proposal | Maniquí cerebral 3D Hoffman | spa |
dc.subject.proposal | Calidad de imagen | spa |
dc.subject.proposal | Positron emission tomography | eng |
dc.subject.proposal | Fluorodeoxyglucose (FDG) | eng |
dc.subject.proposal | Hoffman 3D brain phantom | eng |
dc.subject.proposal | Image quality | eng |
dc.title | Evaluación de la calidad de imagen en estudios cerebrales con FDG en tomografía por emisión de positrones | spa |
dc.title.translated | Evaluation of image quality for FDG brain studies in the FDG brain studies in positron emission tomography | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1118568504.2025.pdf
- Tamaño:
- 10.04 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Física Médica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: