Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)

dc.contributor.advisorde Brito Brandão, Pedro Filipespa
dc.contributor.advisorVanegas Guerrero, Javierspa
dc.contributor.authorBoyacá Vásquez, Vivian Johannaspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.corporatenameUniversidad Antonio Nariñospa
dc.contributor.researchgroupGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente - GERMINAspa
dc.date.accessioned2020-08-05T23:30:11Zspa
dc.date.available2020-08-05T23:30:11Zspa
dc.date.issued2019-04-21spa
dc.description.abstractLas rizobacterias entomopatógenas presentan factores de virulencia como la producción de compuestos antimicrobianos, enzimas degradadoras y toxinas que han sido poco explorados. Mediante genómica se han realizado acercamientos para entender la interacción entre rizobacterias e insectos plaga. El objetivo de este trabajo fue determinar los factores de virulencia de rizobacterias entomopatógenas de Tecia solanivora mediante un acercamiento genómico. Para esto, se caracterizó el genoma de dos rizobacterias entomopatógenas que causaron una mortalidad superior al 75% en T. solanivora, y se compararon los factores de virulencia con genomas reportados de rizobacterias entomopatógenas. Se realizó extracción de ADN genómico, secuenciación masiva utilizando HiSeq 4000 (Illumina), ensamblaje y anotación y se determinó el porcentaje de similitud. Las lecturas de Raoultella C47 y Enterobacter TN152 fueron ensambladas en 58 y 121 contigs, respectivamente, con un tamaño de genoma medio de 5,4 kb, sin presencia de plásmidos. Se encontró que las categorías más relevantes fueron metabolismo, procesamiento de proteínas y respuesta a estrés, defensa y virulencia. Raoultella C47 mostró alta diversidad de compuestos volátiles incluyendo el ácido cianhídrico y presentó un gen para ramnolípidos. Enterobacter TN152 presentó dos toxinas entomopatógenas homólogas a toxinas Tc. Se detectaron enzimas degradadoras en ambos genomas. Al comparar con otras 14 rizobacterias, se encontró un 55% de similitud, y el perfil entomopatógeno más cercano para Raoultella C47 y Enterobacter TN152 fue Yersinia entomophaga MH96. Este estudio contribuye a entender los mecanismos de patogenicidad de rizobacterias, extendiendo el limitado grupo de rizobacterias entomopatógenas que se conocen y su respectiva secuenciación.spa
dc.description.abstractEntomopathogenic rhizobacteria present virulence factors such as the production of antimicrobial compounds, degrading enzymes and toxins, which have been little explored. By genomic methods, approaches have been made to understand the interaction between rhizobacteria and pest insects. The objective of this work was to determine the virulence factors of entomopathogenic rhizobacteria of Tecia solanivora using a genomic approach. The genome of two entomopathogenic rhizobacteria causing a mortality greater than 75% on T. Solanivora was characterized and virulence factors were compared with reported genomes of entomopathogenic rhizobacteria. Genomic DNA was extracted and massive sequencing was performed using HiSeq 4000 (Illumina). Assembly and annotation and the percentage of similarity was determined. The Raoultella C47 and Enterobacter TN152 readings were assembled in 58 and 121 contigs, respectively, with an average genome size of 5.4 kb without the presence of plasmids. The most relevant categories were metabolism, protein processing and response to stress, defense and virulence. Raoultella C47 showed high diversity of volatile compounds including hydrocyanic acid; a gene for ramnolipids was also found. Enterobacter TN152 showed two entomopathogenic toxins homologous to Tc toxins. Degrading enzymes were detected in both genomes. When comparing against other 14 rhizobacteria, a similarity of 55% was found, and the closest entomopathogenic profile for Raoultella C47 and Enterobacter TN152 was Yersinia entomophaga MH96. This study helps to understand the mechanisms of pathogenicity of rhizobacteria, extending the limited group of entomopathogenic rhizobacteria that are known and their respective sequencing.spa
dc.description.additionalLínea de Investigación Micro biología Ambiental y Aplicada.spa
dc.description.degreelevelMaestríaspa
dc.description.projectInteracciones entre Tecia solanivora, rizobacterias con actividad entomopatógena y plantas de papa para favorecer la competitividad de la cadena papera en el Departamento de Boyacáspa
dc.description.sponsorshipCOLCIENCIAS, LA GOBERNACIÓN DE BOYACÁ, LA UNIVERSIDAD ANTONIO NARIÑOspa
dc.format.extent86spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationBoyacá-Vásquez V.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77948
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAbby, S. S., & Rocha, E. P. C. (2017). Identification of protein secretion systems in bacterial genomes using MacSyFinder. Methods in Molecular Biology, 1615(March), 1–21. https://doi.org/10.1007/978-1-4939-7033-9_1spa
dc.relation.referencesAbebe-Akele, F., Tisa, L. S., Cooper, V. S., Hatcher, P. J., Abebe, E., & Thomas, W. K. (2015). Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BMC Genomics, 16(1), 1–15. https://doi.org/10.1186/s12864-015-1697-8spa
dc.relation.referencesAbraham, J., & Silambarasan, S. (2015). Plant Growth Promoting Bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in Mineralization of Endosulfan. Applied Biochemistry and Biotechnology, 175(7), 3336–3348. https://doi.org/10.1007/s12010-015-1504-7spa
dc.relation.referencesAdnan, M., Patel, M., Reddy, M. N., Khan, S., Alshammari, E., Abdelkareem, A. M., & Hadi, S. (2016). ARPN Journal of Agricultural and Biological Science ISOLATION AND CHARACTERIZATION OF EFFECTIVE AND EFFICIENT PLANT GROWTH-PROMOTING RHIZOBACTERIA FROM RICE RHIZOSPHERE OF DIVERSE PADDY FIELDS OF INDIAN SOIL. 11(9), 373–379.spa
dc.relation.referencesAleti, G., Nikolić, B., Brader, G., Pandey, R. V., Antonielli, L., Pfeiffer, S., … Sessitsch, A. (2017). Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02314-xspa
dc.relation.referencesAssefa, S., Keane, T. M., Otto, T. D., Newbold, C., & Berriman, M. (2009). ABACAS: Algorithm-based automatic contiguation of assembled sequences. Bioinformatics, 25(15), 1968–1969. https://doi.org/10.1093/bioinformatics/btp347spa
dc.relation.referencesÁvila, E. (2015). MANUAL PAPA del Programa De Apoyo Agrícola Y Agroindustrial Vicepresidencia De Fortalecimiento Empresarial Cámara De Comercio De Bogotá. In Cámara de Comercio de Bogotá.spa
dc.relation.referencesAziz, R. K., Bartels, D., Best, A., DeJongh, M., Disz, T., Edwards, R. A., … Zagnitko, O. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9, 1–15. https://doi.org/10.1186/1471-2164-9-75spa
dc.relation.referencesBabalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11), 1559–1570. https://doi.org/10.1007/s10529-010-0347-0spa
dc.relation.referencesBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., … Pevzner, P. A. (2012). and Its Applications to Single-Cell Sequencing. 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021spa
dc.relation.referencesBenson, D. A., Cavanaugh, M., Clark, K., Karsch-mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. 41(November 2012), 36–42. https://doi.org/10.1093/nar/gks1195spa
dc.relation.referencesBhattacharya, D., Nowotny, J., Cao, R., & Cheng, J. (2016). 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Research, 44(W1), W406–W409. https://doi.org/10.1093/nar/gkw336spa
dc.relation.referencesBiggs, M. B., & Papin, J. A. (2013). Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation. 8(10), 1–8. https://doi.org/10.1371/journal.pone.0078011spa
dc.relation.referencesBisch, G., Ogier, J. C., Médigue, C., Rouy, Z., Vincent, S., Tailliez, P., … Gaudriault, S. (2016). Comparative genomics between two xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species. Genome Biology and Evolution, 8(1), 148–160. https://doi.org/10.1093/gbe/evv248spa
dc.relation.referencesBlackburn, M., Golubeva, E., Bowen, D., & Ffrench-Constant, R. H. (1998). A novel insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta. Applied and Environmental Microbiology, 64(8), 3036–3041.spa
dc.relation.referencesBode, H. B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology, 13(2), 224–230. https://doi.org/10.1016/j.cbpa.2009.02.037spa
dc.relation.referencesBosa, C. F., & Cotes, A. M. (2004). Effect of culture conditions on the enzymatic activity of Serratia marcescens against Tecia solanivora (Lepidoptera: Gelechiidae). Revista Colombiana de Entomología, 30(1), 79–85. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882004000100012&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesBrady, S., Kai, M., Daniel, R., Gottschalk, G., Weise, T., Th, A., & Piechulla, B. (2018). VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. (September), 45–53. https://doi.org/10.1111/1574-6968.12359spa
dc.relation.referencesBrettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., … Xia, F. (2015). RASTtk : A modular and extensible implementation of the RAST algorithm for annotating batches of genomes. https://doi.org/10.1038/srep08365spa
dc.relation.referencesBroderick, K. E., Chan, A., Balasubramanian, M., Feala, J., Reed, S. L., Panda, M., … Boss, G. R. (2008). Cyanide Produced by Human Isolates of Pseudomonas aeruginosa Contributes to Lethality in Drosophila melanogaster . The Journal of Infectious Diseases, 197(3), 457–464. https://doi.org/10.1086/525282spa
dc.relation.referencesBusby, J. N., Landsberg, M. J., Simpson, R. M., Jones, S. A., Hankamer, B., Hurst, M. R. H., & Lott, J. S. (2012). Structural Analysis of Chi1 Chitinase from Yen-Tc : The Multisubunit Insecticidal ABC Toxin Complex of Yersinia entomophaga. Journal of Molecular Biology, 415(2), 359–371. https://doi.org/10.1016/j.jmb.2011.11.018spa
dc.relation.referencesCabanás, C. G. L., Legarda, G., Ruano-Rosa, D., Pizarro-Tobías, P., Valverde-Corredor, A., Niqui, J. L., … Mercado-Blanco, J. (2018). Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: From the host roots to the bacterial genomes. Frontiers in Microbiology, 9(FEB). https://doi.org/10.3389/fmicb.2018.00277spa
dc.relation.referencesCabral, C. M., Cherqui, A., Pereira, A., & Simões, N. (2004). Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Applied and Environmental Microbiology, 70(7), 3831–3838. https://doi.org/10.1128/AEM.70.7.3831-3838.2004spa
dc.relation.referencesCastagnola, A., & Stock, S. P. (2014). Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects, 5(1), 139–166. https://doi.org/10.3390/insects5010139spa
dc.relation.referencesChaston, J. M., Suen, G., Tucker, S. L., Andersen, A. W., Bhasin, A., Bode, E., … Goodrich-Blair, H. (2011). The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes. PLoS ONE, 6(11). https://doi.org/10.1371/journal.pone.0027909spa
dc.relation.referencesChen, W. J., Hsieh, F. C., Hsu, F. C., Tasy, Y. F., Liu, J. R., & Shih, M. C. (2014). Characterization of an Insecticidal Toxin and Pathogenicity of Pseudomonas taiwanensis against Insects. PLoS Pathogens, 10(8). https://doi.org/10.1371/journal.ppat.1004288spa
dc.relation.referencesChen, Y., Shen, X., Peng, H., Hu, H., Wang, W., & Zhang, X. (2015). Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genomics Data, 4, 33–42. https://doi.org/10.1016/j.gdata.2015.01.006spa
dc.relation.referencesCIP. (2017). Hechos y cifras sobre la papa. 2. Retrieved from www.cipotato.orgspa
dc.relation.referencesCowles, K. N., & Goodrich-Blair, H. (2005). Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cellular Microbiology, 7(2), 209–219. https://doi.org/10.1111/j.1462-5822.2004.00448.xspa
dc.relation.referencesCriscuolo, A., & Brisse, S. (2013). AlienTrimmer: A tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics, 102(5–6), 500–506. https://doi.org/10.1016/j.ygeno.2013.07.011spa
dc.relation.referencesDANE. (2014). Polilla guatemalteca (Tecia solanivora), plaga de gran impacto económico en el cultivo de la papa. Retrieved from https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/insumos_factores_de_produccion_jul_2014.pdfspa
dc.relation.referencesDavis, J. J., Boisvert, S., Brettin, T., Kenyon, R. W., Mao, C., Olson, R., … Stevens, R. (2016). Antimicrobial Resistance Prediction in PATRIC and RAST. Scientific Reports, 6(May), 1–12. https://doi.org/10.1038/srep27930spa
dc.relation.referencesDereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., … Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(Web Server issue), 465–469. https://doi.org/10.1093/nar/gkn180spa
dc.relation.referencesDesjardins, P. R., & Conklin, D. S. (2011). Microvolume quantitation of nucleic acids. Current Protocols in Molecular Biology, (SUPPL.93), 1–5. https://doi.org/10.1002/0471142727.mba03js93spa
dc.relation.referencesDevi, K. K., & Kothamasi, D. (2009). Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiology Letters, 300(2), 195–200. https://doi.org/10.1111/j.1574-6968.2009.01782.xspa
dc.relation.referencesE. Özgül Inceoglu. (2012). Soil and Cultivar Type Shape the Bacterial Community in the Potato Rhizosphere. 63(2), 460–470.spa
dc.relation.referencesEasom, C. A., & Clarke, D. J. (2008). Motility is required for the competitive fitness of entomopathogenic Photorhabdus luminescens during insect infection. BMC Microbiology, 8, 1–11. https://doi.org/10.1186/1471-2180-8-168spa
dc.relation.referencesEgami, I., Iiyama, K., Zhang, P., Chieda, Y., Ino, N., Hasegawa, K., … Shimizu, S. (2009). Insecticidal bacterium isolated from an ant lion larva from Munakata, Japan. Journal of Applied Entomology, 133(2), 117–124. https://doi.org/10.1111/j.1439-0418.2008.01329.xspa
dc.relation.referencesEkblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107(1), 1–15. https://doi.org/10.1038/hdy.2010.152spa
dc.relation.referencesEkblom, Robert, & Wolf, J. B. W. (2014). A field guide to whole-genome sequencing, assembly and annotation. Evolutionary Applications, 7(9), 1026–1042. https://doi.org/10.1111/eva.12178spa
dc.relation.referencesEndrullat, C., Glökler, J., Franke, P., & Frohme, M. (2016). Applied & Translational Genomics Standardization and quality management in next-generation sequencing. ATG, 10, 2–9. https://doi.org/10.1016/j.atg.2016.06.001spa
dc.relation.referencesFAOSTAT. (2018). WORLD FOOD AND AGRICULTURE 2018: STATISTICAL POCKETBOOK. In Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/faostat/en/#home%0Ahttp://www.fao.org/faostat/en/#rankingsspa
dc.relation.referencesFedhila, S., Buisson, C., Dussurget, O., Serror, P., Glomski, I. J., Liehl, P., … Nielsen-LeRoux, C. (2010). Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. Journal of Invertebrate Pathology, 103(1), 24–29. https://doi.org/10.1016/j.jip.2009.09.005spa
dc.relation.referencesFlury, P., Aellen, N., Ruffner, B., Péchy-Tarr, M., Fataar, S., Metla, Z., … Maurhofer, M. (2016). Insect pathogenicity in plant-beneficial pseudomonads: Phylogenetic distribution and comparative genomics. ISME Journal, 10(10). https://doi.org/10.1038/ismej.2016.5spa
dc.relation.referencesFlury, P., Vesga, P., Péchy-tarr, M., Aellen, N., & Dennert, F. (2017). Antimicrobial and Insecticidal : Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0 , CMR12a , and PCL1391 Contribute to Insect Killing. Frontiers in Microbiology, 8(February). https://doi.org/10.3389/fmicb.2017.00100spa
dc.relation.referencesGarcía Ventocilla, D., Gamarra, G. M., Cabello, N. R., Salas, L. S., Marín, A. C., & Jauregui, J. M. (2011). Efecto de la adición de materia orgánica sobre la dinámica poblacional bacteriana del suelo en cultivos de papa y maíz. Revista Peruana de Biologia, 18(3), 355–360. https://doi.org/10.15381/rpb.v18i3.452spa
dc.relation.referencesGarrido-Sanz, D., Meier-Kolthoff, J. P., Göker, M., Martín, M., Rivilla, R., & Redondo-Nieto, M. (2016). Genomic and genetic diversity within the Pseudomonas fluoresces complex. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0150183spa
dc.relation.referencesGillespie, J. J., Wattam, A. R., Cammer, S. A., Gabbard, J. L., Shukla, M. P., Dalay, O., … Sobral, B. W. (2011). Patric: The comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infection and Immunity, 79(11), 4286–4298. https://doi.org/10.1128/IAI.00207-11spa
dc.relation.referencesGlick, B. R. (2012). Plant Growth-Promoting Bacteria : Mechanisms and Applications. 2012.spa
dc.relation.referencesGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). BIOINFORMATICS APPLICATIONS NOTE Genome analysis QUAST : quality assessment tool for genome assemblies. 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086spa
dc.relation.referencesHaas, D., Keel, C., & Reimmann, C. (2002). Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81(1–4), 385–395. https://doi.org/10.1023/A:1020549019981spa
dc.relation.referencesHarrison, F., Browning, L. E., Vos, M., & Buckling, A. (2006). Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biology, 4, 1–5. https://doi.org/10.1186/1741-7007-4-21spa
dc.relation.referencesHeermann, R., & Fuchs, T. M. (2008). Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes : uncovering candidate genes involved in insect pathogenicity. 21, 1–21. https://doi.org/10.1186/1471-2164-9-40spa
dc.relation.referencesHenson, J., Tischler, G., & Ning, Z. (2012). Next-generation sequencing and large genome assemblies. Pharmacogenomics, 13(8), 901–915. https://doi.org/10.2217/pgs.12.72spa
dc.relation.referencesHeroven, A. K., Nuss, A. M., Dersch, P., Kathrin, A., Nuss, A. M., Rna-based, P. D., … Dersch, P. (2017). RNA-based mechanisms of virulence control in Enterobacteriaceae RNA-based mechanisms of virulence control in Enterobacteriaceae. RNA Biology, 14(5), 471–487. https://doi.org/10.1080/15476286.2016.1201617spa
dc.relation.referencesHurst, Mark R.H., Beattie, A., Altermann, E., Moraga, R. M., Harper, L. A., Calder, J., & Laugraud, A. (2016). The draft genome sequence of the yersinia entomophaga entomopathogenic type strain MH96T. Toxins, 8(5). https://doi.org/10.3390/toxins8050143spa
dc.relation.referencesHurst, Mark R.H., Beattie, A., Jones, S. A., Laugraud, A., van Koten, C., & Harper, L. (2018). Characterization of Serratia proteamaculans strain AGR96X encoding an 2 anti-feeding prophage (tailocin) with activity against grass grub 3 (Costelytra giveni) and manuka beetle (Pyronota spp.) larvae. Applied and Environmental Microbiology, 84(10), 1–54. https://doi.org/10.1128/AEM.02739-17spa
dc.relation.referencesHurst, Mark R.H., Jones, S. A., Binglin, T., Harper, L. A., Jackson, T. A., & Glare, T. R. (2011). The main virulence determinant of Yersinia entomophaga MH96 is a broad-host-range toxin complex active against insects. Journal of Bacteriology, 193(8), 1966–1980. https://doi.org/10.1128/JB.01044-10spa
dc.relation.referencesHurst, Mark R.H., Jones, S. M., Tan, B., & Jackson, T. A. (2007). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiology Letters, 275(1), 160–167. https://doi.org/10.1111/j.1574-6968.2007.00886.xspa
dc.relation.referencesHurst, Mark Robin Holmes, Jones, S. A., Beattie, A., van Koten, C., Shelton, A. M., Collins, H. L., & Brownbridge, M. (2019). Assessment of Yersinia entomophaga as a control agent of the diamondback moth Plutella xylostella. Journal of Invertebrate Pathology, 162(February), 19–25. https://doi.org/10.1016/j.jip.2019.02.002spa
dc.relation.referencesI. B. Gross. (2007). Automatic Emotion Regulation. Soc. Personal. Psychol. Compass, 1(1), 146–167.spa
dc.relation.referencesInstituto Colombiano Agropecuario. (2011). Manejo Fitosanitario del Cultivo de la Papa. Línea Agrícola ICA, 112(483), 211–212. https://doi.org/10.1192/bjp.112.483.211-aspa
dc.relation.referencesInstituto Colombiano Agropecuario. (2016). Informe especial: Polilla Guatemalteca o Polilla de la Papa. Retrieved from http://www.boyacaradio.com/noticia.php?id=10187spa
dc.relation.referencesIshii, K., Adachi, T., Hara, T., Hamamoto, H., & Sekimizu, K. (2014). Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori. Journal of Invertebrate Pathology, 117(1), 61–67. https://doi.org/10.1016/j.jip.2014.02.001spa
dc.relation.referencesIzzo, V. M., Chen, Y. H., Schoville, S. D., Wang, C., & Hawthorne, D. J. (2018). Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 111(2), 868–878. https://doi.org/10.1093/jee/tox367spa
dc.relation.referencesJeong, H. U., Mun, H. Y., Oh, H. K., Kim, S. B., Yang, K. Y., Kim, I., & Lee, H. B. (2010). Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth. Journal of Microbiology, 48(4), 541–545. https://doi.org/10.1007/s12275-010-0221-9spa
dc.relation.referencesJones, P., Binns, D., Chang, H., Fraser, M., Li, W., Mcanulla, C., … Hunter, S. (2014). Sequence analysis InterProScan 5 : genome-scale protein function classification. 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031spa
dc.relation.referencesJoshi, M. C., Sharma, A., Kant, S., Birah, A., Gupta, G. P., Khan, S. R., … Banerjee, N. (2008). An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. Journal of Biological Chemistry, 283(42), 28287–28296. https://doi.org/10.1074/jbc.M804416200spa
dc.relation.referencesKamal, A., Shaik, A. B., Ganesh Kumar, C., Mongolla, P., Usha Rani, P., Rama Krishna, K. V. S., … Joseph, J. (2012). Metabolic profiling and biological activities of bioactive compounds produced by Pseudomonas sp. strain ICTB-745 isolated from Ladakh, India. Journal of Microbiology and Biotechnology, 22(1), 69–79. https://doi.org/10.4014/jmb.1105.05008spa
dc.relation.referencesKhan, A. R., Park, G., Asaf, S., Hong, S., Jung, K., & Shin, J. (2017). Complete genome analysis of Serratia marcescens RSC-14 : A plant growth-promoting bacterium that alleviates cadmium stress in host plants. 1–17. https://doi.org/10.1371/journal.pone.0171534spa
dc.relation.referencesKievit, T. R. De. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 11, 279–288. https://doi.org/10.1111/j.1462-2920.2008.01792.xspa
dc.relation.referencesKim, S. K., Kim, Y. C., Lee, S., Kim, J. C., Yun, M. Y., & Kim, I. S. (2011). Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). Journal of Agricultural and Food Chemistry, 59(3), 934–938. https://doi.org/10.1021/jf104027xspa
dc.relation.referencesKoroney, A. S., Plasson, C., Pawlak, B., Sidikou, R., Driouich, A., Menu-Bouaouiche, L., & Vicré-Gibouin, M. (2016). Root exudate of solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of pectobacterium atrosepticum. Annals of Botany, 118(4), 797–808. https://doi.org/10.1093/aob/mcw128spa
dc.relation.referencesKupferschmied, P., Maurhofer, M., & Keel, C. (2013). Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 4(July), 1–18. https://doi.org/10.3389/fpls.2013.00287spa
dc.relation.referencesKwak, Y. S., Bonsall, R. F., Okubara, P. A., Paulitz, T. C., Thomashow, L. S., & Weller, D. M. (2012). Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biology and Biochemistry, 54, 48–56. https://doi.org/10.1016/j.soilbio.2012.05.012spa
dc.relation.referencesL. M.-B. M. V.-G. Koroney Abdoul Salam. (2016). Root exudate of Solanum tuberosum is enriched in galactose- containing molecules and impacts the growth of Pectobacterium atrosepticum. 118(4), 797–808.spa
dc.relation.referencesLandsberg, M. J., Jones, S. A., Rothnagel, R., Busby, J. N., Marshall, S. D. G., Simpson, R. M., … Hurst, M. R. H. (2011). 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proceedings of the National Academy of Sciences, 108(51), 20544–20549. https://doi.org/10.1073/pnas.1111155108spa
dc.relation.referencesLareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575–587. https://doi.org/10.1007/s11103-015-0417-8spa
dc.relation.referencesLeggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D., & Davey, R. P. (2013). Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Frontiers in Genetics, 4(DEC), 1–5. https://doi.org/10.3389/fgene.2013.00288spa
dc.relation.referencesLiu, K., McInroy, J. A., Hu, C.-H., & Kloepper, J. W. (2017). Mixtures of Plant-Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Plant Diseases and Plant-Growth Promotion in the Presence of Pathogens. Plant Disease, 102(1), 67–72. https://doi.org/10.1094/pdis-04-17-0478-respa
dc.relation.referencesLiu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., … Law, M. (2014). Comparison of next-generation sequencing systems. The Role of Bioinformatics in Agriculture, 2012, 1–25. https://doi.org/10.1201/b16568spa
dc.relation.referencesLiu, X., Jia, J., Atkinson, S., Cámara, M., Gao, K., Li, H., & Cao, J. (2010). Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World Journal of Microbiology and Biotechnology, 26(8), 1465–1471. https://doi.org/10.1007/s11274-010-0321-yspa
dc.relation.referencesLoper, Joyce E., & Gross, H. (2007). Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research, 265–278. https://doi.org/10.1007/978-1-4020-6776-1_4spa
dc.relation.referencesLoper, Joyce E., Hassan, K. A., Mavrodi, D. V., Davis, E. W., Lim, C. K., Shaffer, B. T., … Paulsen, I. T. (2012). Comparative genomics of plant-associated pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7). https://doi.org/10.1371/journal.pgen.1002784spa
dc.relation.referencesLoper, Joyce Elizabeth, Stockwell, V. O., Loper, J. E., Henkels, M. D., Rangel, L. I., Olcott, M. H., … Hesse, C. N. (2016). Rhizoxin , orfamide a , and chitinase production contribute to the toxicity of pseudomonas protegens strain pf-5 to drosophila ... Rhizoxin analogs , orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Dr. Environmental Microbiology, 00(April). https://doi.org/10.1111/1462-2920.13369spa
dc.relation.referencesLópez-Pazos SA, Rojas A, & Chaparro-Giraldo A. (2013). Actividad biológica de Bacillus thuringiensis sobre la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae). Revista Mutis. Vol, 3(2), 31–42.spa
dc.relation.referencesM. H. Olcott. (2010). Lethality and developmental delay in drosophila melanogaster larvae after ingestion of selected pseudomonas fluorescens strains. PLOS ONE, 5(9), 1–12.spa
dc.relation.referencesM. L. Metzker. (2010). Sequencing technologies — the next generation. Genet. V, 11, 31–46.spa
dc.relation.referencesMa, Z., Geudens, N., Kieu, N. P., Sinnaeve, D., Ongena, M., Martins, J. C., & Höfte, M. (2016). Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Frontiers in Microbiology, 7(MAR), 1–16. https://doi.org/10.3389/fmicb.2016.00382spa
dc.relation.referencesMAHARJAN, R., KWON, M., KIM, J., & JUNG, C. (2010). Mass production of Diglyphus isaea (Hymenoptera: Eulophidae), a biological control agent of aKorean population of potato leaf miner Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae). 48, 18–26. https://doi.org/10.1111/1748-5967spa
dc.relation.referencesMajeed, A., Kaleem Abbasi, M., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6(MAR), 1–10. https://doi.org/10.3389/fmicb.2015.00198spa
dc.relation.referencesManter, D. K., Delgado, J. A., Holm, D. G., & Stong, R. A. (2010). Pyrosequencing Reveals a Highly Diverse and Cultivar-Specific Bacterial Endophyte Community in Potato Roots. 157–166. https://doi.org/10.1007/s00248-010-9658-xspa
dc.relation.referencesMatthijs, S., Laus, G., Meyer, J. M., Abbaspour-Tehrani, K., Schäfer, M., Budzikiewicz, H., & Cornelis, P. (2009). Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. BioMetals, 22(6), 951–964. https://doi.org/10.1007/s10534-009-9247-yspa
dc.relation.referencesMcQuade, R., & Stock, S. P. (2018, June 19). Secretion systems and secreted proteins in gram-negative entomopathogenic bacteria: Their roles in insect virulence and beyond. Insects, Vol. 9. https://doi.org/10.3390/insects9020068spa
dc.relation.referencesMeca, A., Sepúlveda, B., Ogoña, J. C., Grados, N., Moret, A., Moret, A., … Tume, P. (2013). In vitro pathogenicity of Northern Peru native bacteria on Phyllocnistis citrella Stainton (Gracillariidae: Phyllocnistinae), on predator insects (Hippodamia convergens and Chrysoperla externa), on Citrus aurantiifolia Swingle and white rats. Spanish Journal of Agricultural Research, 7(1), 137. https://doi.org/10.5424/sjar/2009071-406spa
dc.relation.referencesMendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028spa
dc.relation.referencesMeng, S., Brown, D. E., Ebbole, D. J., Torto-Alalibo, T., Oh, Y. Y., Deng, J., … Dean, R. A. (2009). Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae. BMC Microbiology, 9(SUPPL. 1), 1–6. https://doi.org/10.1186/1471-2180-9-S1-S8spa
dc.relation.referencesMinAgricultura. (2018). MinAgricultura analiza estrategias para fortalecer el sector de la papa en Colombia. Retrieved from https://www.minagricultura.gov.co/noticias/Paginas/minagricultura-analiza-estrategias-para-fortalecer-el-sector-de-la-papa-en-Colombia.aspxspa
dc.relation.referencesMohan, M., Selvakumar, G., Sushil, S. N., Bhatt, J. C., & Gupta, H. S. (2011). Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World Journal of Microbiology and Biotechnology, 27(11), 2545–2551. https://doi.org/10.1007/s11274-011-0724-4spa
dc.relation.referencesMolina-Santiago, C., Udaondo, Z., & Ramos, J. L. (2015). Draft whole-genome sequence of the antibiotic-producing soil isolate Pseudomonas sp. strain 250J. Environmental Microbiology Reports, 7(2), 288–292. https://doi.org/10.1111/1758-2229.12245spa
dc.relation.referencesMUNIF, A., HALLMANN, J., & A. SIKORA, R. (2013). Isolation of Endophytic Bacteria from Tomato and Their Biocontrol Activities against Fungal Diseases. Microbiology Indonesia, 6(4), 148–156. https://doi.org/10.5454/mi.6.4.2spa
dc.relation.referencesNalini, S., & Parthasarathi, R. (2017). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science, 1–8. https://doi.org/10.1016/j.aasci.2017.11.002spa
dc.relation.referencesNaqqash, T., Hameed, S., Imran, A., & Hanif, M. K. (2016). Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria. 7(February), 1–12. https://doi.org/10.3389/fpls.2016.00144spa
dc.relation.referencesNyambura Ngamau, C. (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology Research, 6(34), 6414–6422. https://doi.org/10.5897/ajmr12.1170spa
dc.relation.referencesOsman, G. H., Assem, S. K., Alreedy, R. M., El-Ghareeb, D. K., Basry, M. A., Rastogi, A., & Kalaji, H. M. (2015). Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Scientific Reports, 5(December), 18067. https://doi.org/10.1038/srep18067spa
dc.relation.referencesPantoja, L. (2018). Efecto de moléculas señal tipo N-acil homoserina lactonas ( AHLs ) de aislamientos provenientes de cultivos de papa en el control de Tecia solanivora ( Lepidóptera : Gelechiidae ) homoserina lactonas ( AHLs ) de aislamientos Gelechiidae ). Universidad Nacional de Colombia.spa
dc.relation.referencesPark, S. J., Kim, S. K., So, Y. I., Park, H. Y., Li, X. H., Yeom, D. H., … Lee, J. H. (2014). Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity. Molecular Microbiology, 94(6), 1298–1314. https://doi.org/10.1111/mmi.12830spa
dc.relation.referencesPatel, R. K., & Jain, M. (2012). NGS QC toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030619spa
dc.relation.referencesPati, A., Ivanova, N. N., Mikhailova, N., Ovchinnikova, G., Hooper, S. D., Lykidis, A., & Kyrpides, N. C. (2010). GenePRIMP: A gene prediction improvement pipeline for prokaryotic genomes. Nature Methods, 7(6), 455–457. https://doi.org/10.1038/nmeth.1457spa
dc.relation.referencesPaulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S. A., Mavrodi, D. V, … Loper, J. E. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23(7), 873–878. https://doi.org/10.1038/nbt1110spa
dc.relation.referencesPéchy-Tarr, M., Borel, N., Kupferschmied, P., Turner, V., Binggeli, O., Radovanovic, D., … Keel, C. (2013). Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environmental Microbiology, 15(3), 736–750. https://doi.org/10.1111/1462-2920.12050spa
dc.relation.referencesPéchy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., … Keel, C. (2008). Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environmental Microbiology, 10(9), 2368–2386. https://doi.org/10.1111/j.1462-2920.2008.01662.xspa
dc.relation.referencesPétriacq, P., Williams, A., Cotton, A., McFarlane, A. E., Rolfe, S. A., & Ton, J. (2017). Metabolite profiling of non-sterile rhizosphere soil. Plant Journal, 92(1), 147–162. https://doi.org/10.1111/tpj.13639spa
dc.relation.referencesPineda-Castellanos, M., Rodríguez-Segura, Z., Villalobos, F., Hernández, L., Lina, L., & Nuñez-Valdez, M. (2015). Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera). Pathogens, 4(2), 210–228. https://doi.org/10.3390/pathogens4020210spa
dc.relation.referencesPinheiro, V. B., & Ellar, D. J. (2007). Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cellular Microbiology, 9(10), 2372–2380. https://doi.org/10.1111/j.1462-5822.2007.00966.xspa
dc.relation.referencesPiro, V. C., Faoro, H., Weiss, V. A., Steffens, M. B. R., Pedrosa, F. O., Souza, E. M., & Raittz, R. T. (2014). Open Access FGAP : an automated gap closing tool. 1–5.spa
dc.relation.referencesPop, M. (2009). Genome assembly reborn: Recent computational challenges. Briefings in Bioinformatics, 10(4), 354–366. https://doi.org/10.1093/bib/bbp026spa
dc.relation.referencesPopova, A. A., Koksharova, O. A., Lipasova, V. A., Zaitseva, J. V., Katkova-Zhukotskaya, O. A., Eremina, S. I., … Khmel, I. A. (2014). Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans , and Drosophila melanogaster . BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/125704spa
dc.relation.referencesR. L. Berendsen. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci., 17(8), 478–486.spa
dc.relation.referencesRangel, L. I., Henkels, M. D., Shaffer, B. T., Walker, F. L., Davis, E. W., Stockwell, V. O., … Loper, J. E. (2016). Characterization of toxin complex gene clusters and insect toxicity of bacteria representing four subgroups of pseudomonas fluorescens. PLoS ONE, 11(8), 1–22. https://doi.org/10.1371/journal.pone.0161120spa
dc.relation.referencesRoesch, L. F. W., Camargo, F. A. O., Bento, F. M., & Triplett, E. W. (2008). Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant and Soil, 302(1–2), 91–104. https://doi.org/10.1007/s11104-007-9458-3spa
dc.relation.referencesRohini, S., Aswani, R., Kannan, M., Sylas, V. P., & Radhakrishnan, E. K. (2018). Culturable Endophytic Bacteria of Ginger Rhizome and their Remarkable Multi-trait Plant Growth-Promoting Features. Current Microbiology, 75(4), 505–511. https://doi.org/10.1007/s00284-017-1410-zspa
dc.relation.referencesRoongsawang, N., Washio, K., & Morikawa, M. (2011). Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Sciences, 12(1), 141–172. https://doi.org/10.3390/ijms12010141spa
dc.relation.referencesRosenau, F., & Jaeger, K. (2000). Bacterial lipases from Pseudomonas : Regulation of gene expression and mechanisms of secretion. Biochimie, 82, 1023–1032.spa
dc.relation.referencesRuffner, B., Péchy-Tarr, M., Höfte, M., Bloemberg, G., Grunder, J., Keel, C., & Maurhofer, M. (2015). Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics, 16(1), 1–14. https://doi.org/10.1186/s12864-015-1763-2spa
dc.relation.referencesRuffner, B., Péchy-tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., … Maurhofer, M. (2012). Oral insecticidal activity of plant-associated Pseudomonads Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15(September 2012), 751–763. https://doi.org/10.1111/j.1462-2920.2012.02884.xspa
dc.relation.referencesRuffner, B., Péchy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., … Maurhofer, M. (2013). Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15(3), 751–763. https://doi.org/10.1111/j.1462-2920.2012.02884.xspa
dc.relation.referencesS. A. Aleti Gajender. (2017). Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. View Issue TOC, 16(8), 2389–2407.spa
dc.relation.referencesS. Pfeiffer. (2017). Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol, 93.spa
dc.relation.referencesS. SHOKRALLA. (2012). Next-generation sequencing technologies for environmental DNA research. 21(8), 1794–1805.spa
dc.relation.referencesSandhya, V., Shrivastava, M., Ali, S. Z., & Sai Shiva Krishna Prasad, V. (2017). Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences, 43(1), 22–34. https://doi.org/10.3103/s1068367417010165spa
dc.relation.referencesSanta, J. D., Berdugo-Cely, J., Cely-Pardo, L., Soto-Suárez, M., Mosquera, T., & Galeano, C. H. M. (2018). QTL analysis reveals quantitative resistant loci for Phytophthora infestans and Tecia solanivora in tetraploid potato (Solanum tuberosum L.). PLoS ONE, 13(7), 1–21. https://doi.org/10.1371/journal.pone.0199716spa
dc.relation.referencesSantoyo, G., del Orozco-Mosqueda, M. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22(8), 855–872. https://doi.org/10.1080/09583157.2012.694413spa
dc.relation.referencesSaravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T., & Samiyappan, R. (2009). Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl, 54(2), 273–286. https://doi.org/10.1007/s10526-008-9166-9spa
dc.relation.referencesSchnider-Keel, U., & Seematter, a. (2000). 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescensCHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of …, 182(5), 1215–1225.spa
dc.relation.referencesSchwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520spa
dc.relation.referencesSeo, S., Lee, S., Hong, Y., & Kim, Y. (2012). Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. Temperata. Applied and Environmental Microbiology, 78(11), 3816–3823. https://doi.org/10.1128/AEM.00301-12spa
dc.relation.referencesSharaby, A. M. F., & Fallatah, S. B. (2019). Protection of stored potatoes from infestation with the potato tuber moth, Phthorimaea operculella (Zeller)(Lepidoptera: Gelechiidae) using plant powders. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0119-5spa
dc.relation.referencesSheets, J. J., Hey, T. D., Fencil, K. J., Burton, S. L., Ni, W., Lang, A. E., … Aktories, K. (2011). Insecticidal toxin complex proteins from Xenorhabdus nematophilus: Structure and pore formation. Journal of Biological Chemistry, 286(26), 22742–22749. https://doi.org/10.1074/jbc.M111.227009spa
dc.relation.referencesShi, J. F., & Sun, C. Q. (2017). Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology, 48(4), 706–714. https://doi.org/10.1016/j.bjm.2017.03.002spa
dc.relation.referencesShokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21(8), 1794–1805. https://doi.org/10.1111/j.1365-294X.2012.05538.xspa
dc.relation.referencesSilby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B., & Jackson, R. W. (2011). Pseudomonas genomes: diverse and adaptable. FEMS Microbiology Reviews, 35(4), 652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.xspa
dc.relation.referencesSingh, B., & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17(2), 93–103. https://doi.org/10.1007/s12298-011-0062-xspa
dc.relation.referencesSingh, P., Kumar, V., & Agrawal, S. (2014). Evaluation of phytase producing bacteria for their plant growth promoting activities. International Journal of Microbiology, 2014. https://doi.org/10.1155/2014/426483spa
dc.relation.referencesSingh, V., Ram, B., Prakash, J., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilizing rhizobacteria ( KSR ): Isolation , identi fi cation , and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065spa
dc.relation.referencesSnyder, E. E., Kampanya, N., Lu, J., Nordberg, E. K., Karur, H. R., & Shukla, M. (2007). PATRIC : The VBI PathoSystems Resource Integration Center. 35(December 2006), 401–406. https://doi.org/10.1093/nar/gkl858spa
dc.relation.referencesStanke, M., & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(SUPPL. 2), 465–467. https://doi.org/10.1093/nar/gki458spa
dc.relation.referencesStavrinides, J., McCloskey, J. K., & Ochman, H. (2009). Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Applied and Environmental Microbiology, 75(7), 2230–2235. https://doi.org/10.1128/AEM.02860-08spa
dc.relation.referencesSugio, A., Dubreuil, G., Giron, D., & Simon, J. C. (2015). Plant-insect interactions under bacterial influence: Ecological implications and underlying mechanisms. Journal of Experimental Botany, 66(2), 467–478. https://doi.org/10.1093/jxb/eru435spa
dc.relation.referencesSzklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., … Von Mering, C. (2015). STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.org/10.1093/nar/gku1003spa
dc.relation.referencesT. S. Walker. (2003). Metabolic profiling of root exudates of Arabidopsis thaliana. J. Agric. Food Chem, 51(9), 2548–2554.spa
dc.relation.referencesTatusova, T. A., & Madden, T. L. (1999). BLAST 2 SEQUENCES, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters, 174(2), 247–250. https://doi.org/10.1016/S0378-1097(99)00149-4spa
dc.relation.referencesTaylor, P., Otsu, Y., Matsuda, Y., Mori, H., Ueki, H., & Nakajima, T. (2010). Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of Phytophagous ladybird beetles Epilachna vigintioctopunctata ( Coleoptera : Coccinellidae ). Biocontrol Science and Technology, 14(5, 427–439), 427–439. https://doi.org/10.1080/09583150410001683538spa
dc.relation.referencesThakur, D., Kaur, M., & Mishra, A. (2017). Isolation and screening of plant growth promoting Bacillus spp . and Pseudomonas spp . and their effect on growth , rhizospheric population and phosphorous concentration of Aloe vera. 5(1), 187–192.spa
dc.relation.referencesThokchom, E., Thakuria, D., Kalita, M. C., Sharma, C. K., & Talukdar, N. C. (2017). Root colonization by host-specific rhizobacteria alters indigenous root endophyte and rhizosphere soil bacterial communities and promotes the growth of mandarin orange. European Journal of Soil Biology, 79, 48–56. https://doi.org/10.1016/j.ejsobi.2017.02.003spa
dc.relation.referencesToribio-Jiménez, J., Aradillas, J. C. V., Romero Ramírez, Y., Rodríguez Barrera, M. Á., González, J. D. C., Luna, J. G., & Noyola, J. L. A. (2014). Pseudomonas sp productoras de biosurfactantes. Tlamati, 5(2), 66–82.spa
dc.relation.referencesUllah, I., Khan, A. L., Ali, L., Khan, A. R., Waqas, M., Hussain, J., … Shin, J. H. (2015). Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. Journal of Microbiology, 53(2), 127–133. https://doi.org/10.1007/s12275-015-4632-4spa
dc.relation.referencesVacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., … Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4(September), 356. https://doi.org/10.3389/fpls.2013.00356spa
dc.relation.referencesVallet-Gely, I., Lemaitre, B., & Boccard, F. (2008, April). Bacterial strategies to overcome insect defences. Nature Reviews Microbiology, Vol. 6, pp. 302–313. https://doi.org/10.1038/nrmicro1870spa
dc.relation.referencesvan Dam, N. M., & Bouwmeester, H. J. (2016). Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends in Plant Science, 21(3), 256–265. https://doi.org/10.1016/j.tplants.2016.01.008spa
dc.relation.referencesVan Der Voort, M., Meijer, H. J. G., Schmidt, Y., Watrous, J., Dekkers, E., Mendes, R., … Raaijmakers, J. M. (2015). Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Frontiers in Microbiology, 6(JUL), 1–14. https://doi.org/10.3389/fmicb.2015.00693spa
dc.relation.referencesVodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., … Boccard, F. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24(6), 673–679. https://doi.org/10.1038/nbt1212spa
dc.relation.referencesVodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., … Lemaitre, B. (2005). Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11414–11419. https://doi.org/10.1073/pnas.0502240102spa
dc.relation.referencesWang, W., Xia, M., Chen, J., Deng, F., Yuan, R., Zhang, X., & Shen, F. (2016). Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum. Data in Brief, 9, 345–348. https://doi.org/10.1016/j.dib.2016.05.025spa
dc.relation.referencesWattam, A. R., Abraham, D., Dalay, O., Disz, T. L., Driscoll, T., Gabbard, J. L., … Sobral, B. W. (2014). PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Research, 42(D1), 581–591. https://doi.org/10.1093/nar/gkt1099spa
dc.relation.referencesWattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., … Stevens, R. L. (2017). Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Research, 45(D1), D535–D542. https://doi.org/10.1093/nar/gkw1017spa
dc.relation.referencesXiong, Z., Niu, J., Liu, H., Xu, Z., Li, J., & Wu, Q. (2017). Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group. Bioorganic and Medicinal Chemistry Letters, 27(9), 2010–2013. https://doi.org/10.1016/j.bmcl.2017.03.011spa
dc.relation.referencesYork, L. M., Carminati, A., Mooney, S. J., Ritz, K., & Bennett, M. J. (2016). The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 67(12), 3629–3643. https://doi.org/10.1093/jxb/erw108spa
dc.relation.referencesZhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., … Chen, L. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biological Control, 119, 12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalgenomicseng
dc.subject.proposalmassive sequencingeng
dc.subject.proposalrizobacteriasspa
dc.subject.proposalbiocontroleng
dc.subject.proposalentomopathogenic activityeng
dc.subject.proposalinsecto-plagaspa
dc.subject.proposaltecia solanivoraspa
dc.titleGenómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)spa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TESIS_MAESTRÍA CIENCIAS BIOQUÍMICA_1010181650.pdf
Tamaño:
2.75 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: