Estrategia para estudiar estrés hidrodinámico y por oxígeno en biorreactores de células vegetales.

dc.contributor.advisorOrozco-Sanchez, Fernando
dc.contributor.advisorOcampo Betancur, Maritza
dc.contributor.authorLópez Taborda, Juan David
dc.date.accessioned2021-10-01T19:55:43Z
dc.date.available2021-10-01T19:55:43Z
dc.date.issued2021
dc.descriptionIlustracionesspa
dc.description.abstractLa hidrodinámica y la transferencia de oxígeno en biorreactores son fenómenos multifactoriales que pueden generar estrés en cultivos de células vegetales. En este trabajo se propuso una estrategia para estudiar diferencialmente los efectos de la velocidad de agitación, flujo de gas y concentración de oxígeno utilizando un sistema de control de oxígeno disuelto (OD) con control de flujo másico de gas. El sistema se evaluó en un cultivo modelo de Azadirachta indica con control a 30% de OD, 400 rpm y 0.08 vvm y se comparó con un sistema control convencional que manipula válvulas solenoides con un flujo variable entre 0-0.08 vvm. Con el sistema de flujo constante se encontró un control preciso de OD (± 1%), limitación en la producción de biomasa (5.2 ± 0.4 g L-1 respecto al control 12.3 ± 0.3 g L-1), viabilidad celular de 70 ± 2%, y una producción de azadiractina (0.6 ± 0.2 mg gDCW-1) 3.5 veces mayor al control. El biorreactor se mantuvo a velocidades de disipación de energía de 0.76 W kg-1 y 488-1332 kW mestela-3 produciendo escalas de Kolmogorov entre 26 ± 5 µm y 149 ± 28 µm; mientras que los agregados celulares tuvieron un diámetro de 101 ± 26 µm. No se encontró limitación por transferencia de oxígeno (Damkhöler < 1) pero el tiempo de transferencia de masa fue 14 veces mayor al tiempo de reacción del OD. La estrategia desarrollada representa un avance tecnológico para manipular condiciones operativas y estudiar el efecto de los fenómenos de transporte (movimiento y masa) en cultivos celulares. (texto tomado de la fuente)spa
dc.description.abstractHydrodynamics and oxygen transfer in bioreactors cause stress in plant cell cultures. In this work, a strategy to study hydrodynamic and oxygen stress was proposed. It used a dissolved oxygen (DO) control system that maintains constant agitation and gassing. The strategy integrates calculations on hydromechanical, biochemical, geometrical, and DO transfer/uptake parameters. The system was evaluated in a model Azadirachta indica cell culture at 30% DO, 400 rpm and 0.08 vvm, and it was compared with a standard DO controller. By using constant gas flow, a precise DO control was found (± 1%), the biomass production was limited (5.2 ± 0.4 g L-1 in comparison with the control 12.3 ± 0.3 g L-1), cell viability was maintained around 70 ± 2%, and azadirachtin was produced (0.6 ± 0.2 mg gDCW-1). The bioreactor provided energy dissipation rates of 0.76 W kg-1 and 488-1332 kW mwake-3, and Kolmogorov microscales between 26 ± 5 µm and 149 ± 28 µm. Also, the most common cell aggregates size was 101 ± 26 µm. There were not oxygen transfer limitations (Damkhöler < 1), but mass transfer time was 30 times higher than DO reaction time. This strategy represents a technological advance to manipulate culture conditions in bioreactors. In this way, the study of transfer phenomena (mass and mixing) in A. indica and other plant species is possible.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias- Biotecnologíaspa
dc.description.researchareaSíntesis de bioprocesosspa
dc.format.extentxxi, 97 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80353
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAcedos, M. G., Hermida, A., Gomez, E., Santos, V. E., & Garcia-Ochoa, F. (2019). Effects of fluid-dynamic conditions in Shimwellia blattae (p424IbPSO)cultures in stirred tank bioreactors: Hydrodynamic stress and change of metabolic routes by oxygen availability. Biochemical Engineering Journal, 149(May), 107238. https://doi.org/10.1016/j.bej.2019.107238spa
dc.relation.referencesAkesson, M., & Hagander, P. (1998). Control of Dissolved Oxygen in Stirred Bioreactors (Technical Reports TFRT-7571).spa
dc.relation.referencesAkesson, M., & Hagander, P. (1999). A Gain-Scheduling Approach for Control of Dissolved Oxygen in Stirred Bioreactors.spa
dc.relation.referencesAl-Whaibi, M. H. (2011). Plant heat-shock proteins: A mini review. Journal of King Saud University - Science, 23(2), 139-150. https://doi.org/10.1016/j.jksus.2010.06.022spa
dc.relation.referencesAlvarez-Yela, A. C., Chiquiza-Montaño, L. N., Hoyos, R., & Orozco-Sánchez, F. (2016). Rheology and mixing analysis of plant cell cultures (Azadirachta indica, Borojoa patinoi and Thevetia peruviana) in shake flasks. Biochemical Engineering Journal, 114, 18-25. https://doi.org/10.1016/j.bej.2016.06.019spa
dc.relation.referencesArias, M., Aguirre, A., Angarita, M., Montoya, C., & Restrepo, J. (2009). Engineering aspects of the in vitro plant cell culture for the production of secondary metabolites. Dyna, 76(157), 109-121.spa
dc.relation.referencesArmstrong, W. (1994). Polarographic oxygen electrodes and their use in plant aeration studies. Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences, 102(May 2015), 511-527. https://doi.org/10.1017/s0269727000014548spa
dc.relation.referencesArrua, L. A., McCoy, B. J., & Smith, J. M. (1990). Gas-liquid mass transfer in stirred tanks. AICHE Journal, 36(11), 1768-1772. https://doi.org/10.1002/aic.690361121spa
dc.relation.referencesArteaga, H., & Vazquez, V. (2012). Control difuso del oxígeno disuelto, pH y temperatura de un biorreactor columna de burbujas en la producción de biomasa de Candida utilis. Departamento de Ciencias Agroindustriales, Universidad Nacional de Trujillo, 2, 10.spa
dc.relation.referencesArya, S. S., Rookes, J. E., Cahill, D. M., & Lenka, S. K. (2020). Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories. Biotechnology Advances, 45(July), 107635. https://doi.org/10.1016/j.biotechadv.2020.107635spa
dc.relation.referencesBabich, O., Sukhikh, S., Pungin, A., Ivanova, S., Asyakina, L., & Prosekov, A. (2020). Modern Trends in the In Vitro Production and Use of Callus, Suspension Cells and Root Cultures of Medicinal Plants. Molecules (Basel, Switzerland), 25(24), 1-18. https://doi.org/10.3390/molecules25245805spa
dc.relation.referencesBalaji, K., Veeresham, C., Srisilam, K., & Kokate, C. (2003). Azadirachtin, a Novel Biopesticide from Cell Cultures of Azadirachta indica. Journal of Plant Biotechnology, 5(2), 121-129.spa
dc.relation.referencesBarbosa, M. J., Albrecht, M., & Wijffels, R. H. (2003). Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnology and Bioengineering, 83(1), 112-120. https://doi.org/10.1002/bit.10657spa
dc.relation.referencesBenavides-López, S., Oviedo-Ramírez, J., López-Taborda, J.-D. D., Martínez-Mira, A., Vásquez-Rivera, A., Hoyos-Sánchez, R., & Orozco-Sánchez, F. (2020). Bioprocess plant design and economic analysis of an environmentally friendly insect controller agent produced with Azadirachta indica cell culture. Biochemical Engineering Journal, 159(March), 107579. https://doi.org/10.1016/j.bej.2020.107579spa
dc.relation.referencesBhambhani, S., Lakhwani, D., Gupta, P., Pandey, A., Dhar, Y. V., Kumar Bag, S., Asif, M. H., & Kumar Trivedi, P. (2017). Transcriptome and metabolite analyses in Azadirachta indica: Identification of genes involved in biosynthesis of bioactive triterpenoids. Scientific Reports, 7(1), 1-12. https://doi.org/10.1038/s41598-017-05291-3spa
dc.relation.referencesBoulton-Stone, J. M., & Blake, J. R. (1993). Gas bubbles bursting at a free surface. Journal of Fluid Mechanics, 254(I), 437-466. https://doi.org/10.1017/S0022112093002216spa
dc.relation.referencesBraga, T. M., Rocha, L., Chung, T. Y., Oliveira, R. F., Pinho, C., Oliveira, A. I., Morgado, J., & Cruz, A. (2021). Azadirachta indica A. Juss. In Vivo Toxicity-An Updated Review. Molecules (Basel, Switzerland), 26(2), 1-21. https://doi.org/10.3390/molecules26020252spa
dc.relation.referencesBuitrago H, G., Otálvaro A, Á. M., & Duarte B., P. G. (2013). Evaluación de la transferencia de oxígeno en un biorreactor convencional con aireador externo. Revista Colombiana de Biotecnología, 15(2), 106-114. https://doi.org/10.15446/rev.colomb.biote.v15n2.41272spa
dc.relation.referencesBusciglio, A., Grisafi, F., Scargiali, F., & Brucato, A. (2013). On the measurement of local gas hold-up, interfacial area and bubble size distribution in gas-liquid contactors via light sheet and image analysis: Imaging technique and experimental results. Chemical Engineering Science, 102, 551-566. https://doi.org/10.1016/j.ces.2013.08.029spa
dc.relation.referencesBusto, V. D., Calabró-López, A., Rodríguez-Talou, J., Giulietti, A. M., & Merchuk, J. C. (2013). Anthraquinones production in Rubia tinctorum cell suspension cultures: Down scale of shear effects. Biochemical Engineering Journal, 77, 119-128. https://doi.org/10.1016/j.bej.2013.05.013spa
dc.relation.referencesÇalik, P., Yilgör, P., Ayhan, P., & Demir, A. S. (2004). Oxygen transfer effects on recombinant benzaldehyde lyase production. Chemical Engineering Science, 59(22-23), 5075-5083. https://doi.org/10.1016/j.ces.2004.07.070spa
dc.relation.referencesCantor del Angel, J. A. (2011). Cultivo de Beta vulgaris L. por lote alimentado para la producción de arabinogalactano-proteínas. Instituto Politécnico Nacional.spa
dc.relation.referencesCapataz Tafur, J., Orozco-Sánchez, F., Vergara Ruiz, R., & Hoyos Sanchez, R. (2007). Efecto antialimentario de los extractos de suspensiones celulares de Azadiractha indica sobre Spodoptera frugiperda en condiciones de laboratorio. Revista Fac, 60(1), 2008.spa
dc.relation.referencesCash, T. P., Pan, Y., & Simon, M. C. (2007). Reactive oxygen species and cellular oxygen sensing. 43, 1219-1225. https://doi.org/10.1016/j.freeradbiomed.2007.07.001spa
dc.relation.referencesChen, J., Fan, X., Zhu, J., Song, L., Li, Z., Lin, F., Yu, R., Xu, H., & Zi, J. (2018). Limonoids from seeds of Azadirachta indica A. Juss. and their cytotoxic activity. Acta Pharmaceutica Sinica B, 2018, 0-5. https://doi.org/10.1016/j.apsb.2017.12.009spa
dc.relation.referencesChisti, Y. (2000). Animal-cell damage in sparged bioreactors. Trends in Biotechnology, 18(10), 420-432. https://doi.org/10.1016/S0167-7799(00)01474-8spa
dc.relation.referencesChoudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species , abiotic stress and stress combination. 856-867. https://doi.org/10.1111/tpj.13299spa
dc.relation.referencesCragg, G. M., & Newman, D. J. (2013). Natural products : A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670-3695. https://doi.org/10.1016/j.bbagen.2013.02.008spa
dc.relation.referencesDat, J. F., Capelli, N., Folzer, H., Bourgeade, P., & Badot, P. (2004). Sensing and signalling during plant flooding. 42, 273-282. https://doi.org/10.1016/j.plaphy.2004.02.003spa
dc.relation.referencesde Jesús, S. S., Moreira Neto, J., & Maciel Filho, R. (2017). Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study. Biochemical Engineering Journal, 118, 70-81. https://doi.org/10.1016/j.bej.2016.11.019spa
dc.relation.referencesDe León-Rodríguez, A., Galindo, E., & Ramírez, O. T. (2010). Design and characterization of a one-compartment scale-down system for simulating dissolved oxygen tension gradients. Journal of Chemical Technology and Biotechnology, 85(7), 950-956. https://doi.org/10.1002/jctb.2384spa
dc.relation.referencesDe León, a, Mayani, H., & Ramírez, O. T. (1998). Design, characterization and application of a minibioreactor for the culture of human hematopoietic cells under controlled conditions. Cytotechnology, 28(1-3), 127-138. https://doi.org/10.1023/A:1008042000744spa
dc.relation.referencesDe León, A., Barba-De La Rosa, A. P., Mayani, H., Galindo, E., & Ramírez, O. T. (2001). Two useful dimensionless parameters that combine physiological, operational and bioreactor design parameters for improved control of dissolved oxygen. Biotechnology Letters, 23(13), 1051-1056. https://doi.org/10.1023/A:1010598121587spa
dc.relation.referencesDoran, P. (1995). Bioprocess Engineering Principles. Academic Press.spa
dc.relation.referencesDoran, P. (1999). Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnology progress, 15(3), 319-335.spa
dc.relation.referencesDoran, P. M. (2013). Bioprocess engineering principles (Second). Elsevier.spa
dc.relation.referencesDuBois, M., Gilles, K. a., Hamilton, J. K., Rebers, P. a., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017spa
dc.relation.referencesDunlop, E. H., & Namdev, P. K. (1994). Effect of fluid shear forces on plant cell suspensions. Chemical Engineering Science, 49(14), 2263-2276. https://doi.org/10.1016/0009-2509(94)E0043-Pspa
dc.relation.referencesDunlop, E. H., Namdev, P. K., & Rosenberg, M. Z. (1994). Effect of fluid shear forces on plant cell suspensions. Chemical Engineering Science, 49(14), 2263-2276. https://doi.org/10.1016/0009-2509(94)E0043-Pspa
dc.relation.referencesEdahiro, J. ichi, & Seki, M. (2006). Phenylpropanoid metabolite supports cell aggregate formation in strawberry cell suspension culture. Journal of Bioscience and Bioengineering, 102(1), 8-13. https://doi.org/10.1263/jbb.102.8spa
dc.relation.referencesEibl, R., Meier, P., Stutz, I., Schildberger, D., Hühn, T., & Eibl, D. (2018). Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology, 102(20), 8661-8675. https://doi.org/10.1007/s00253-018-9279-8spa
dc.relation.referencesFarjaminezhad, R., & Garoosi, G. (2021). Improvement and prediction of secondary metabolites production under yeast extract elicitation of Azadirachta indica cell suspension culture using response surface methodology. AMB Express, 11(1). https://doi.org/10.1186/s13568-021-01203-xspa
dc.relation.referencesFlickinger, M. C., & Doran, P. M. (2010). Bioreactors, Stirred Tank for Culture of Plant Cells. Encyclopedia of Industrial Biotechnology. https://doi.org/10.1002/9780470054581.eib150spa
dc.relation.referencesGarcia-Ochoa, F., Gomez, E., Alcon, A., & Santos, V. E. (2012). The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Bioprocess Biosyst Eng, 1. https://doi.org/10.1007/s00449-012-0825-yspa
dc.relation.referencesGarcia-Ochoa, F., Gomez, E., Alcon, A., & Santos, V. E. (2013). The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Bioprocess and Biosystems Engineering, 36(7), 911-925. https://doi.org/10.1007/s00449-012-0825-yspa
dc.relation.referencesGarcia-ochoa, F., Gomez, E., Santos, V. E., & Merchuk, J. C. (2010). Oxygen uptake rate in microbial processes : An overview. Biochemical Engineering Journal, 49(3), 289-307. https://doi.org/10.1016/j.bej.2010.01.011spa
dc.relation.referencesGarcia-Ochoa, Felix, Escobar, S., & Gomez, E. (2015). Specific oxygen uptake rate as indicator of cell response of Rhodococcus erythropolis cultures to shear effects. Chemical Engineering Science, 122, 491-499. https://doi.org/10.1016/j.ces.2014.10.016spa
dc.relation.referencesGeigenberger, P. (2003). Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology, 6(3), 247-256. https://doi.org/10.1016/S1369-5266(03)00038-4spa
dc.relation.referencesGeorgiev, M., & Weber, J. (2014). Bioreactors for plant cells: Hardware configuration and internal environment optimization as tools for wider commercialization. Biotechnology Letters, 36(7), 1359-1367. https://doi.org/10.1007/s10529-014-1498-1spa
dc.relation.referencesGeorgiev, V., Slavov, A., Vasileva, I., & Pavlov, A. (2018). Plant cell culture as emerging technology for production of active cosmetic ingredients. Engineering in Life Sciences, 18(11), 779-798. https://doi.org/10.1002/elsc.201800066spa
dc.relation.referencesGill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016spa
dc.relation.referencesGomes, J., & Menawat, A. S. (2000). Precise control of dissolved oxygen in bioreactors - a model-based geometric algorithm. Chemical Engineering Science, 55(1), 67-78. https://doi.org/10.1016/S0009-2509(99)00305-Xspa
dc.relation.referencesGomez, E., Santos, V. E., Alcon, A., & Garcia-Ochoa, F. (2006). Oxygen transport rate on Rhodococcus erythropolis cultures: Effect on growth and BDS capability. Chemical Engineering Science, 61(14), 4595-4604. https://doi.org/10.1016/j.ces.2006.02.025spa
dc.relation.referencesGong, Y. W., Li, S. Y., Han, R. Bin, & Yuan, Y. J. (2006). Age-related responses of suspension cultured Taxus cuspidata to hydrodynamic shear stress. Biochemical Engineering Journal, 32(2), 113-118. https://doi.org/10.1016/j.bej.2006.09.010spa
dc.relation.referencesGupta, S. C., Prasad, S., Tyagi, A. K., Kunnumakkara, A. B., & Aggarwal, B. B. (2017). Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine, 34(May), 14-20. https://doi.org/10.1016/j.phymed.2017.07.001spa
dc.relation.referencesGurib-fakim, A. (2006). Medicinal plants : Traditions of yesterday and drugs of tomorrow. 27, 1-93. https://doi.org/10.1016/j.mam.2005.07.008spa
dc.relation.referencesHalliwell, B. (2007). Biochemistry of oxidative stress. Biochemical society transactions. 1147-1150.spa
dc.relation.referencesHazen, T. C., & Stahl, D. A. (2006). Using the stress response to monitor process control : pathways to more effective bioremediation. Current opinion in biotechnology. 285-290. https://doi.org/10.1016/j.copbio.2006.03.004spa
dc.relation.referencesHodgson, H., De La Peña, R., Stephenson, M. J., Thimmappa, R., Vincent, J. L., Sattely, E. S., & Osbourn, A. (2019). Identification of key enzymes responsible for protolimonoid biosynthesis in plants: Opening the door to azadirachtin production. Proceedings of the National Academy of Sciences of the United States of America, 116(34), 17096-17104. https://doi.org/10.1073/pnas.1906083116spa
dc.relation.referencesHong, J. K., Yeo, H. C., Lakshmanan, M., Han, S. hyuk, Cha, H. M., Han, M., & Lee, D. Y. (2020). In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. Journal of Biotechnology, 308(August 2019), 10-20. https://doi.org/10.1016/j.jbiotec.2019.11.011spa
dc.relation.referencesHu, W., Berdugo, C., & Chalmers, J. J. (2011). The potential of hydrodynamic damage to animal cells of industrial relevance : current understanding. 445-460. https://doi.org/10.1007/s10616-011-9368-3spa
dc.relation.referencesHua, J., Erickson, L. E., Yiin, T. Y., & Glasgow, L. a. (1993). A review of the effects of shear and interfacial phenomena on cell viability. Critical reviews in biotechnology, 13(4), 305-328. https://doi.org/10.3109/07388559309075700spa
dc.relation.referencesHuang, S. Y., & Chou, C. J. (2000). Effect of gaseous composition on cell growth and secondary metabolite production in suspension culture of Stizolobium hassjoo cells. Bioprocess Engineering, 23(6), 585-593. https://doi.org/10.1007/s004490000204spa
dc.relation.referencesHuang, Shih Yow, Shen, Y. W., & Chan, H. S. (2002). Development of a bioreactor operation strategy for L-DOPA production using Stizolobium hassjoo suspension culture. Enzyme and Microbial Technology, 30(6), 779-791. https://doi.org/10.1016/S0141-0229(02)00058-3spa
dc.relation.referencesIslas, J. F., Acosta, E., G-Buentello, Z., Delgado-Gallegos, J. L., Moreno-Treviño, M. G., Escalante, B., & Moreno-Cuevas, J. E. (2020). An overview of Neem (Azadirachta indica) and its potential impact on health. Journal of Functional Foods, 74(September), 104171. https://doi.org/10.1016/j.jff.2020.104171spa
dc.relation.referencesJackson, J. R., Overbeck, P. K., & Overby, J. M. (1999). Dissolved Oxygen Control by Pressurized Side Stream Ozone Contacting and Degassing. 623.spa
dc.relation.referencesJonelis, K., Brazauskas, K., & Levišauskas, D. (2012). A system for dissolved oxygen control in industrial aeration tank. Information Technology and Control, 41(1), 46-52. https://doi.org/10.5755/j01.itc.41.1.921spa
dc.relation.referencesKaboré, A. K., Delaunay, S., Blanchard, F., Guedon, E., Fick, M., & Olmos, E. (2019). Study and modeling of fluctuating dissolved oxygen concentration impact on Corynebacterium glutamicum growth in a scale-down bioreactor. Process Biochemistry, 77(November 2018), 8-17. https://doi.org/10.1016/j.procbio.2018.10.016spa
dc.relation.referencesKarimi, A., Golbabaei, F., Mehrnia, M. R., Neghab, M., Mohammad, K., Nikpey, A., & Pourmand, M. R. (2013). Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iranian journal of environmental health science & engineering, 10(1), 6. https://doi.org/10.1186/1735-2746-10-6spa
dc.relation.referencesKieran, P. M., Malone, D. M., & MacLoughlin, P. F. (2000). Effects of hydrodynamic and interfacial forces on plant cell suspension systems. Advances in biochemical engineering/biotechnology, 67, 139-177. https://doi.org/10.1007/3-540-47865-5_5spa
dc.relation.referencesKoul, O. (2009). Azadirachtin. Zeitschrift für Angewandte Entomologie, 98(1-5), 221-223. https://doi.org/10.1111/j.1439-0418.1984.tb02703.xspa
dc.relation.referencesKrasteva, G., Georgiev, V., & Pavlov, A. (2020). Recent applications of plant cell culture technology in cosmetics and foods. Engineering in Life Sciences, October, 1-9. https://doi.org/10.1002/elsc.202000078spa
dc.relation.referencesKrishnan, N. M., Pattnaik, S., Deepak, S. A., Hariharan, A. K., Gaur, P., Chaudhary, R., Jain, P., Vaidyanathan, S., Krishna, P. G. B., & Panda, B. (2011). De novo sequencing and assembly of Azadirachta indica fruit transcriptome. Current Science, 101(12), 1553-1561.spa
dc.relation.referencesKrishnan, N. M., Pattnaik, S., Jain, P., Gaur, P., Choudhary, R., Vaidyanathan, S., Deepak, S., Hariharan, A. K., Krishna, P. G. B., Nair, J., Varghese, L., Valivarthi, N. K., Dhas, K., Ramaswamy, K., & Panda, B. (2012). A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics, 13(1). https://doi.org/10.1186/1471-2164-13-464spa
dc.relation.referencesKumar, B. (2010). Energy Dissipation and Shear Rate with Geometry of Baffled Surface Aerator. Chemical Engineering Research Bulletin, 14(2), 92-96. https://doi.org/10.3329/cerb.v14i2.4910spa
dc.relation.referencesKuravadi, N. A., Yenagi, V., Rangiah, K., Mahesh, H. B., Rajamani, A., Shirke, M. D., Russiachand, H., Loganathan, R. M., Lingu, C. S., Siddappa, S., Ramamurthy, A., Sathyanarayana, B. N., & Gowda, M. (2015). Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree. PeerJ, 2015(8), 1-25. https://doi.org/10.7717/peerj.1066spa
dc.relation.referencesLandau, L., & Lifhitz, E. M. (1976). Fluid Mechanist (P. Press (ed.); 2nd ed.spa
dc.relation.referencesLara, A. R., Galindo, E., Ramírez, O. T., & Palomares, L. A. (2006). Living with heterogeneities in bioreactors: Understanding the effects of environmental gradients on cells. Molecular Biotechnology, 34(3), 355-381. https://doi.org/10.1385/MB:34:3:355spa
dc.relation.referencesLee-Parsons, C. W. T. (2007). Gas composition strategies for the successful scale-up of Catharanthus roseus cell cultures for the production of ajmalicine. Phytochemistry Reviews, 6(2-3), 419-433. https://doi.org/10.1007/s11101-006-9046-9spa
dc.relation.referencesLee-Parsons, C. W. T., & Shuler, M. L. (2005). Sparge gas composition affects biomass and ajmalicine production from immobilized cell cultures of Catharanthus roseus. Enzyme and Microbial Technology, 37(4), 424-434. https://doi.org/10.1016/j.enzmictec.2005.02.016spa
dc.relation.referencesLindblon, T. (2009). Qualitative comparison of optical and electrochemical sensors for measuring dissolved oxygen in bioreactors. En In Situ. Linkoping University.spa
dc.relation.referencesLiu, Y., Li, F., Hu, W., Wiltberger, K., & Ryll, T. (2014). Effects of bubble-liquid two-phase turbulent hydrodynamics on cell damage in sparged bioreactor. Biotechnology Progress, 30(1), 48-58. https://doi.org/10.1002/btpr.1790spa
dc.relation.referencesLiu, Y. S., Wu, J. Y., & Ho, K. P. (2006). Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochemical Engineering Journal, 27(3), 331-335. https://doi.org/10.1016/j.bej.2005.08.031spa
dc.relation.referencesLópez-Taborda, J., Vargas Zapata, A., Ramirez Vargas, J., Valdez Cruz, N., Trujillo Roldán, M., & Orozco Sánchez, F. (2018). A novel system to control dissolved oxygen in bioreactors minimizing variation on hydrodynamic stress. Universidad Nacional de Colombia- Sede Medellín.spa
dc.relation.referencesMacLennan, D. G., & Pirt, S. J. (1966). Automatic control of dissolved oxygen concentration in stirred microbial cultures. Journal of general microbiology, 45(2), 289-302. https://doi.org/10.1099/00221287-45-2-289spa
dc.relation.referencesMartins, F. G. (2005). Tuning PID Controllers using the ITAE Criterion. International Journal of Engineering Education, 21(5), 867-873.spa
dc.relation.referencesMeijer, J. J., ten Hoopen, H. J. G., Luyben, K. C. A. M., & Libbenga, K. R. (1993). Effects of hydrodynamic stress on cultured plant cells: A literature survey. Enzyme and Microbial Technology, 15(3), 234-238. https://doi.org/10.1016/0141-0229(93)90143-Pspa
dc.relation.referencesMittler, R. (2002). Oxidative stress , antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410.spa
dc.relation.referencesMittler, R. (2017). ROS Are Good. Trends in Plant Science, 22(1), 11-19. https://doi.org/10.1016/j.tplants.2016.08.002spa
dc.relation.referencesMohan, R., Kumar, M. S. M., & Rao, L. (2021). Numerical modelling of oxygen mass transfer in diffused aeration systems: A CFD-PBM approach. Journal of Water Process Engineering, 40(September 2020), 101920. https://doi.org/10.1016/j.jwpe.2021.101920spa
dc.relation.referencesMulabagal, V., & Tsay, H. (2004). Plant Cell Cultures - An Alternative and Efficient Source for the Production of Biologically Important Secondary Metabolites. September 2015, 29-48.spa
dc.relation.referencesMuñoz-Cruz, W., Vanegas-Monterrosa, O. A., Guzmán-Rosas, A. A., Capataz-Tafur, J., Hoyos-Sánchez, R., & Orozco-Sánchez, F. (2006). Estimación de variables de operación de un biorreactor con células de Azadirachta indica A. Juss. Revista Facultad Nacional de Agronomía, 59(2), 3467-3478.spa
dc.relation.referencesNamdev, P. K., & Dunlop, E. H. (1995). Shear sensitivity of plant cells in suspensions present and future. Applied Biochemistry and Biotechnology, 54(1-3), 109-131. https://doi.org/10.1007/BF02787914spa
dc.relation.referencesNeunstoecklin, B., Stettler, M., Solacroup, T., Broly, H., Morbidelli, M., & Soos, M. (2015). Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture. Journal of Biotechnology, 194, 100-109. https://doi.org/10.1016/j.jbiotec.2014.12.003spa
dc.relation.referencesNienow, A. W. (1998). Hydrodynamics of stirred bioreactors. Applied Mechanics Reviews, 51(1), 3-32. https://doi.org/10.1115/1.3098990spa
dc.relation.referencesNock, V., Blaikie, R. J., & David, T. (2009). Oxygen control for bioreactors and in-vitro cell assays. AIP Conference Proceedings, 1151(February 2017), 67-70. https://doi.org/10.1063/1.3203249spa
dc.relation.referencesO’Leary, B. M., Asao, S., Millar, A. H., & Atkin, O. K. (2019). Core principles which explain variation in respiration across biological scales. New Phytologist, 222(2), 670-686. https://doi.org/10.1111/nph.15576spa
dc.relation.referencesOksman-Caldentey, K. M., & Inzé, D. (2004). Plant cell factories in the post-genomic era: New ways to produce designer secondary metabolites. Trends in Plant Science, 9(9), 433-440. https://doi.org/10.1016/j.tplants.2004.07.006spa
dc.relation.referencesOrozco-Sánchez, F. (2009). Efecto de la oferta de oxígeno sobre el crecimiento y la producción de terpenoides con células de Azadirachta indica en un biorreactor. 96.spa
dc.relation.referencesOrozco-Sanchez, F., & Rodríguez-Monroy, M. (2007). Cell suspension culture of Azadirachta indica for the production of a bioinsecticide. Revista Mexicana de Ingeniería Química, 6(3), 251-258.spa
dc.relation.referencesOrozco-Sánchez, F., Sepúlveda-Jimenez, G., Trejo-Tapia, G., Zamilpa, A., & Rodríguez-Monroy, M. (2011). Oxygen limitations to growth Azadirachta indica cell culture in shake flask. Revista Mexicana de Ingeniería Química, 10(1), 17-28.spa
dc.relation.referencesPandreka, A., Chaya, P. S., Kumar, A., Aarthy, T., Mulani, F. A., Bhagyashree, D. D., B, S. H., Jennifer, C., Ponnusamy, S., Nagegowda, D., & Thulasiram, H. V. (2021). Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis. Phytochemistry, 184(September 2020), 112669. https://doi.org/10.1016/j.phytochem.2021.112669spa
dc.relation.referencesPatel, S. M., Nagulapalli Venkata, K. C., Bhattacharyya, P., Sethi, G., & Bishayee, A. (2016). Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Seminars in Cancer Biology, 40_41, 100-115. https://doi.org/10.1016/j.semcancer.2016.03.002spa
dc.relation.referencesPérez-Hernández, J., Nicasio-Torres, M. del P., Sarmiento-López, L. G., & Rodríguez-Monroy, M. (2019). Production of anti-inflammatory compounds in Sphaeralcea angustifolia cell suspension cultivated in stirred tank bioreactor. Engineering in Life Sciences, 19(3), 196-205. https://doi.org/10.1002/elsc.201800134spa
dc.relation.referencesPrakash, G., Emmannuel, C. J. S. K., & Srivastava, A. K. (2005). Variability of Azadirachtin in Azadirachta indica (neem) and batch kinetics studies of cell suspension culture. Biotechnology and Bioprocess Engineering, 10, 198-204.spa
dc.relation.referencesPrakash, G., & Srivastava, A. K. (2007). Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture. Process Biochemistry, 42(1), 93-97. https://doi.org/10.1016/j.procbio.2006.06.020spa
dc.relation.referencesRafiq, M., & Dahot, M. U. (2010). Callus and azadirachtin related limonoids production through in vitro culture of neem (Azadirachta indica A. Juss). African Journal of Biotechnology, 9(4), 449-453. https://doi.org/10.5897/AJB09.1091spa
dc.relation.referencesRamaswamy, S., Cutright, T. J., & Qammar, H. K. (2005). Control of a continuous bioreactor using model predictive control. Process Biochemistry, 40(8), 2763-2770. https://doi.org/10.1016/j.procbio.2004.12.019spa
dc.relation.referencesRaposo, S., & Lima-Costa, M. E. (2012). Effects of the hydrodynamic environment and oxygen mass transfer on plant cell growth and milk-clotting protease production in a stirred-tank reactor. Engineering in Life Sciences, 12(4), 441-449. https://doi.org/10.1002/elsc.201100087spa
dc.relation.referencesRaval, K., Hellwig, S., & Srivastava, A. (2003). Necessity of a Two-Stage Process for the Production of Azadirachtin-Related Limonoids in Suspension Cultures of Azadirachta indica. Journal of Bioscience and Bioengineering, 96(I).spa
dc.relation.referencesReyes, C. R., Barrales-cureño, H. J., Hoyos, P. A., Luna-cruz, A., Terrón-mejía, K. A., López-valdez, L. G., Sánchez-herrera, L. M., Cortes-ruíz, J. A., Calderon-caballero, M. C., Orlando, J., Osuna, G., Ingeniería, D. De, Politécnica, U., Naturales, D. D. P., Comunitaria, I. F., & Intercultural, U. (2017). Software Simulator Bioprocess (SSBP) to estimate hydrodynamic stress conditions in cell cultures performed in shaking bioreactors. International Journal of Biosciences (IJB), 10(3), 143-156. https://doi.org/10.12692/ijb/10.3.143-156spa
dc.relation.referencesRodríguez-Monroy, M., & Galindo, E. (1999). Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: A comparative study between cultures grown in shake flasks and in a stirred tank. Enzyme and Microbial Technology, 24(10), 687-693. https://doi.org/10.1016/S0141-0229(99)00002-2spa
dc.relation.referencesRodríguez-Monroy, M., & Orozco-Sánchez, F. (2014). Caracterización, operación y escalado de biorreactores (F. Orozco-Sánchez & M. Rodríguez-Monroy (eds.); 2.a ed.). Universidad Nacional de Colombia.spa
dc.relation.referencesRodríguez-Monroy, M., Trejo-Espino, J. L., Jiménez-Aparicio, A., De La Luz Morante, M., Villarreal, M. L., & Trejo-Tapia, G. (2004). Evaluation of morphological properties of Solanum chrysotrichum cell cultures in a shake flask and fermenter and rheological properties of broths. Food Technology and Biotechnology, 42(3), 153-158.spa
dc.relation.referencesRodríguez Torres, M. I. (2013). Condiciones de cultivo para el crecimiento de Rhizopus oryzae NRRL-395 y la producción de ácido L (+) láctico en un reactor de tanque agitado. En Tesis de maestría, Universidad Nacional de Colombia (Vol. 26, Número 4). Universidad Nacional de Colombia.spa
dc.relation.referencesSaleem, S., Muhammad, G., Hussain, M. A., & Bukhari, S. N. A. (2018). A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. Phytotherapy Research, 32(7), 1241-1272. https://doi.org/10.1002/ptr.6076spa
dc.relation.referencesSantos, R. B., Abranches, R., Fischer, R., Sack, M., & Holland, T. (2016). Putting the Spotlight Back on Plant Suspension Cultures. Frontiers in Plant Science, 7(March), 1-12. https://doi.org/10.3389/fpls.2016.00297spa
dc.relation.referencesSchaepe, S., Kuprijanov, A., Sieblist, C., Jenzsch, M., Simutis, R., & Lübbert, A. (2013). KLa of stirred tank bioreactors revisited. Journal of Biotechnology, 168(4), 576-583. https://doi.org/10.1016/j.jbiotec.2013.08.032spa
dc.relation.referencesShuler, M. L., & Kargi, F. (2017). Bioprocess Engineering: Basic Concepts (Third). Prentice Hall.spa
dc.relation.referencesSmith, C., & Corripio, A. (1991). Control automático de procesos, teoría y práctica.spa
dc.relation.referencesSmith, J. M., Davison, S. W., & Payne, G. F. (1990). Development of a strategy to control the dissolved concentrations of oxygen and carbon dioxide at constant shear in a plant cell bioreactor. Biotechnology and Bioengineering, 35(11), 1088-1101. https://doi.org/10.1002/bit.260351104spa
dc.relation.referencesSoler, A., & Buitrago Hurtado, G. (2010). Evaluación de la transferencia de oxígeno en cultivos con lactococcus lactis empleando un sistema de fermentación con aireación externa. Revista Colombiana de Biotecnología, 12(2), 124-138.spa
dc.relation.referencesSowana, D. D., Williams, D. R. G., Dunlop, E. H., Dally, B. B., O’Neill, B. K., & Fletcher, D. F. (2001). Turbulent Shear Stress Effects on Plant Cell Suspension Cultures. Chemical Engineering Research and Design, 79(8), 867-875. https://doi.org/10.1205/02638760152721370spa
dc.relation.referencesSujanya, S., Devi, B. P., & Sai, I. (2008). In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica. Journal of Biosciences, 33(1), 113-120. https://doi.org/10.1007/s12038-008-0027-6spa
dc.relation.referencesSuresh, S., Srivastava, V. C., & Mishra, I. M. (2009). Techniques for oxygen transfer measurement in bioreactors: A review. Journal of Chemical Technology and Biotechnology, 84(8), 1091-1103. https://doi.org/10.1002/jctb.2154spa
dc.relation.referencesTakeda, T., Tamura, M., Ohtaki, M., & Matsuoka, H. (2003). Gene expression in cultured strawberry cells subjected to hydrodynamic stress. Biochemical Engineering Journal, 15(3), 211-215. https://doi.org/10.1016/S1369-703X(02)00214-0spa
dc.relation.referencesTaylan, E., Kose, A., Celik, Y., & Oncel, S. S. (2021). Design of a horizontal-dual bladed bioreactor for low shear stress to improve hydrodynamic responses in cell cultures : A pilot study in Chlamydomonas reinhardtii. Biochemical Engineering Journal, 169(February), 107970. https://doi.org/10.1016/j.bej.2021.107970spa
dc.relation.referencesThakore, D., & Srivastava, A. K. (2017). Production of biopesticide azadirachtin using plant cell and hairy root cultures. 997-1005. https://doi.org/10.1002/elsc.201700012spa
dc.relation.referencesTrejo-Tapia, G., & Rodríguez-Monroy, M. (2007). La agregación celular en la producción de metabolitos secundarios en cultivos vegetales in vitro. Interciencia, 32(10), 669-674.spa
dc.relation.referencesTrujillo-Roldán, M. A., & Valdez-Cruz, N. A. (2006). El estrés hidrodinámico: Muerte y daño celular en cultivos agitados. Revista Latinoamericana de Microbiologia, 48(3-4), 269-280.spa
dc.relation.referencesTrujillo Roldán, M. A., Peña, C., Ramirez, O. T., & Galindo, E. (2001). Effect of oscillating dissolved oxygen tension on the production of alginate by Azotobacter vinelandii. Biotechnology Progress, 17(6), 1042-1048. https://doi.org/10.1021/bp010106dspa
dc.relation.referencesVan Dongen, J. T., & Licausi, F. (2015). Oxygen sensing and signaling. Annual Review of Plant Biology, 66, 345-367. https://doi.org/10.1146/annurev-arplant-043014-114813spa
dc.relation.referencesVásquez-Rivera, A., Chicaiza-Finley, D., Hoyos, R. A., & Orozco-Sánchez, F. (2015). Production of Limonoids with Insect Antifeedant Activity in a Two-Stage Bioreactor Process with Cell Suspension Culture of Azadirachta indica. Applied Biochemistry and Biotechnology, 177(2), 334-345.spa
dc.relation.referencesVerma, R., Mehan, L., Kumar, R., Kumar, A., & Srivastava, A. (2019). Computational fluid dynamic analysis of hydrodynamic shear stress generated by different impeller combinations in stirred bioreactor. Biochemical Engineering Journal, 151(July), 107312. https://doi.org/10.1016/j.bej.2019.107312spa
dc.relation.referencesVerpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1(1), 13-25. https://doi.org/10.1023/A:1015871916833spa
dc.relation.referencesVillegas-Velásquez, S., Martínez-Mira, A. D., Hoyos, R., Rojano, B., & Orozco-Sánchez, F. (2017). Hydrodynamic stress and limonoid production in Azadirachta indica cell culture. Biochemical Engineering Journal, 122, 75-84. https://doi.org/10.1016/j.bej.2017.03.004spa
dc.relation.referencesVilliger, T. K., Neunstoecklin, B., Karst, D. J., Lucas, E., Stettler, M., Broly, H., Morbidelli, M., & Soos, M. (2018). Experimental and CFD physical characterization of animal cell bioreactors: From micro- to production scale. Biochemical Engineering Journal, 131, 84-94. https://doi.org/10.1016/j.bej.2017.12.004spa
dc.relation.referencesWalls, P. L. L., McRae, O., Natarajan, V., Johnson, C., Antoniou, C., & Bird, J. C. (2017). Quantifying the potential for bursting bubbles to damage suspended cells. Scientific Reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-14531-5spa
dc.relation.referencesWang, Guan, Haringa, C., Tang, W., Noorman, H., Chu, J., Zhuang, Y., & Zhang, S. (2020). Coupled metabolic-hydrodynamic modeling enabling rational scale-up of industrial bioprocesses. En Biotechnology and Bioengineering (Vol. 117, Número 3). https://doi.org/10.1002/bit.27243spa
dc.relation.referencesWang, Guichao, Yang, F., Wu, K., Ma, Y., Peng, C., Liu, T., & Wang, L. (2021). Estimation of the dissipation rate of turbulent kinetic energy : A review. Chemical Engineering Science, 229(229). https://doi.org/10.1016/j.ces.2020.116133spa
dc.relation.referencesWilson, S. A., & Roberts, S. C. (2012). Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnology Journal, 10(3), 249-268. https://doi.org/10.1111/j.1467-7652.2011.00664.xspa
dc.relation.referencesWink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. 64, 3-19. https://doi.org/10.1016/S0031-9422(03)00300-5spa
dc.relation.referencesWu, J. (1995). Mechanisms of animal cell damage associated with gas bubbles and cell protection by medium additives. Journal of Biotechnology, 43(2), 81-94. https://doi.org/10.1016/0168-1656(95)00133-7spa
dc.relation.referencesZhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283-333. https://doi.org/10.1016/j.biotechadv.2005.01.003spa
dc.relation.referencesZhong, C., & Yuan, Y. J. (2009). Responses of Taxus cuspidata to hydrodynamics in bubble column bioreactors with different sparging nozzle sizes. Biochemical Engineering Journal, 45(2), 100-106. https://doi.org/10.1016/j.bej.2009.03.001spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcCélulas y tejidos vegetales - Cultivo
dc.subject.ddc570 - Biologíaspa
dc.subject.lembMetabolitos
dc.subject.lembMetabolites
dc.subject.lembCell culture
dc.subject.lembCultivo de celulas
dc.subject.proposalAzadirachta indicaother
dc.subject.proposalEscala de Kolmogorovspa
dc.subject.proposalEstrés celularspa
dc.subject.proposalOferta de oxígenospa
dc.subject.proposalSistema de controlspa
dc.subject.proposalVelocidad de disipación de energíaspa
dc.subject.proposalKolmogorov microscaleeng
dc.subject.proposalCell stresseng
dc.subject.proposalOxygen transferrateeng
dc.subject.proposalEnergy dissipation rateeng
dc.titleEstrategia para estudiar estrés hidrodinámico y por oxígeno en biorreactores de células vegetales.spa
dc.title.translatedA strategy to study hydrodynamic and oxygen stress in plant cell biorreactors.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152199306.2021.pdf
Tamaño:
2.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias- Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: