Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)

dc.contributor.advisorBernal Morales, José Mauriciospa
dc.contributor.advisorMoreno Sarmiento, Nubiaspa
dc.contributor.authorHernández Jirón, Isabel Cristinaspa
dc.contributor.researchgroupBioprocesos y Bioprospecciónspa
dc.date.accessioned2024-01-15T17:02:40Z
dc.date.available2024-01-15T17:02:40Z
dc.date.issued2023
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractLos Polihidroxialcanoatos (PHAs) son poliésteres acumulados intracelularmente como fuente de carbono y energía por bacterias en ciertas condiciones. Las características físicas y mecánicas del PHA depende del microorganismo usado, las proteínas, genes involucrados, las condiciones de crecimiento, la ruta metabólica y la fuente de carbono suministrada. Por ejemplo, los copolímeros de cadena corta y media exhiben características como, una temperatura de fusión más baja, un módulo de Young más bajo y un alargamiento de rotura más alto, esto significa que es un plástico más resistente y flexible. El Grupo de Investigación de Bioprocesos y Bioprospección de la Universidad Nacional (UNAL) ha enfocado sus esfuerzos en el estudio de microorganismos con potencial biotecnológico para establecer un aprovechamiento sostenible y rentable de bio-productos de interés comercial. Pseudomonas fluorescens y Burkholderia acumulan PHAs de cadena media (PHAmcl) y cadena corta (PHAscl) respectivamente, a partir de diversas fuentes de carbono y han sido objeto de estudio en el grupo de investigación. Análisis genéticos realizados por el grupo han demostrado que la especie P. fluorescens IBUN S1602 contiene la polimerasa tipo II para producción de PHAmcl, no obstante, hasta la fecha el grupo no ha hecho un reporte parecido para Burkholderia sp. IBUN 2G57. Dentro del trabajo realizado con IBUN S1602 se recomendó para futuras investigaciones establecer las condiciones de fermentación para producir PHAs e iniciar la manipulación genética usando el conocimiento de los genes involucrados en la producción de PHAmcl. El objetivo de este trabajo es aprovechar los recursos genéticos de Pseudomonas y Burkholderia para producir PHAs de cadena corta y media que podrían ser considerados más competitivos en el mercado y que suplieran las necesidades y limitaciones de la obtención de estos biopolímeros. En el desarrollo del proyecto se estandarizaron las condiciones de PCR de cinco pares de cebadores para amplificar el operón phaCAB y los genes phaC, phaA, phaB de Burkholderia sp. IBUN 2G57 involucrados en la producción de PHB (poli-3-Hidroxibutirato), se determinó que esta cepa tiene la organización genética de la sintasa tipo I al igual que la cepa más estudiada Cupriavidus necator, a su vez, se diseñó un vector de transformación con el operón phaCAB y el gen phaC y se realizaron ensayos de transformación de P. fluorescens IBUN S1602. La evaluación del vector de transformación construido en este trabajo llevó a considerar que los insertos provenientes de las cepas de Burkholderia presentaban un grado de toxicidad que impedían la exitosa transformación de IBUN S1602. (Texto tomado de la fuente)spa
dc.description.abstractPolyhydroxyalkanoates (PHAs) are polyesters accumulated intracellularly as a carbon and energy source by bacteria under certain conditions. The physical and mechanical characteristics of PHA depends on the microorganism used, the proteins, genes involved, the growth conditions, the metabolic pathway and the carbon source supplied. For example, short and medium chain copolymers exhibit characteristics such as, lower melting temperature, lower Young's modulus, and higher elongation at break, this means that it is a stronger and more flexible plastic, leading to improved bioplastic properties. The Bioprocesses and Bioprospecting Research Group of the National University (UNAL) has focused its efforts on the study of microorganisms with biotechnological potential with the objective of establishing a sustainable and profitable use of bio-products of commercial interest. Pseudomonas fluorescens and Burkholderia are microorganisms that accumulate medium-chain PHAs (PHAmcl) and short-chain PHAs (PHAscl) respectively, using diverse carbon sources and have been the object of study in the research group. Genetic analyses performed by the group have shown that P. fluorescens IBUN S1602 contains the type II polymerase for PHAmcl production, however, to date the group has not made a similar report for Burkholderia sp. IBUN 2G57. Within the work carried out with IBUN S1602, it was recommended for future research to establish fermentation conditions for this strain and to initiate genetic manipulation taking advantage of the knowledge of the genes involved in PHAmcl production. The objective of this work is to take advantage of the genetic resources of Pseudomonas and Burkholderia to produce short- and medium-chain PHAs that could be considered more competitive in the market and that would meet the needs and limitations of obtaining these biopolymers. In the development of the project, the PCR conditions of five pairs of primers were optimized to amplify the pha operon and the phaC, phaA, phaB genes of Burkholderia sp. IBUN 2G57 involved in the production of PHB (poly-3-Hydroxybutyrate), it was determined that this strain has the genetic organization of type I synthase like the most studied strain Cupriavidus necator, in turn, a transformation vector with the pha operon and phaC gene was designed and transformation assays of P. fluorescens IBUN S1602 were performed. The evaluation of the transformation vector constructed in this work led to consider that the inserts from the Burkholderia strains presented a degree of toxicity that prevented the successful transformation of IBUN S1602.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaBiopolímeros y Fermentacionesspa
dc.format.extentxix, 119 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85280spa
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAlvarez-Santullano, N., Villegas, P., Mardones, M. S., Durán, R. E., Donoso, R., González, A., … Seeger, M. (2021). Genome-wide metabolic reconstruction of the synthesis of polyhydroxyalkanoates from sugars and fatty acids by burkholderia sensu lato species. Microorganisms, 9(6). https://doi.org/10.3390/microorganisms9061290spa
dc.relation.referencesAmitai, G., & Sorek, R. (2012). PanDaTox: A tool for accelerated metabolic engineering. Bioengineered, 3(4), 218–221. https://doi.org/10.4161/bbug.20431spa
dc.relation.referencesAnjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069spa
dc.relation.referencesAssal, N., & Lin, M. (2020). PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis. BioRxiv, 2020.02.18.953695. https://doi.org/10.1101/2020.02.18.953695spa
dc.relation.referencesBarbosa, M., Espinosa Hernández, A., Malagón Romero, D., & Moreno Sarmiento, N. (2005). PRODUCCIÓN DE POLI-β POR Ralstonia eutropha ATCC 17697. Universitas Scientiarum, 10(1), 45–54spa
dc.relation.referencesBecerra Jiménez, M. L. (2013). Producción De Un Polímero Tipo Polihidroxialcanoato (Pha) Empleando Residuos De La Producción De Biodiesel. Revista de Ingeniería, (18), 175–190. https://doi.org/http://dx.doi.org/10.16924%2Friua.v0i18.492spa
dc.relation.referencesBecerra, S. A. (2014). SELECCIÓN DE MUTANTES HIPERPRODUCTORAS DE POLIHIDROXIALCANOATOS EN LA CEPA Burkholderia cepacia 2G57. UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCAspa
dc.relation.referencesBudde, C. F., Riedel, S. L., Willis, L. B., Rha, C., & Sinskey, A. J. (2011). Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Applied and Environmental Microbiology, 77(9), 2847–2854. https://doi.org/10.1128/AEM.02429-10spa
dc.relation.referencesBurdon, K. L. (1946). Fatty Material in Bacteria and Fungi Revealed by Staining Dried, Fixed Slide Preparations. Journal of Bacteriology, 52(6), 665–678. https://doi.org/10.1128/jb.52.6.665-678.1946spa
dc.relation.referencesCardona, A., Mora, A., & Marín, M. (2013). Identificación Molecular de Bacterias Productoras de Polihidroxialcanoatos en Subproductos de Lácteos y Caña de Azúcar. Facultad Nacional de Agronomia, 66(2), 7129–7140spa
dc.relation.referencesCespedes, L. G., Nahat, R. A. T. P. S., Mendonça, T. T., Tavares, R. R., Oliveira-Filho, E. R., Silva, L. F., … Gomez, J. G. C. (2018). A non-naturally-occurring P(3HB-co-3HAMCL) is produced by recombinant Pseudomonas sp. from an unrelated carbon source. International Journal of Biological Macromolecules, 114, 512–519. https://doi.org/10.1016/j.ijbiomac.2018.03.051spa
dc.relation.referencesCha, D., Ha, H. S., & Lee, S. K. (2020). Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresource Technology, 309(January), 123332. https://doi.org/10.1016/j.biortech.2020.123332spa
dc.relation.referencesChek, M. F., Hiroe, A., Hakoshima, T., Sudesh, K., & Taguchi, S. (2019). PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Applied Microbiology and Biotechnology, 103(3), 1131–1141. https://doi.org/10.1007/s00253-018-9538-8spa
dc.relation.referencesChen, G. Q., & Jiang, X. R. (2017). Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synthetic and Systems Biotechnology, 2(3), 192–197. https://doi.org/10.1016/j.synbio.2017.09.001spa
dc.relation.referencesChen, G. Q., Jiang, X. R., & Guo, Y. (2016). Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA). Synthetic and Systems Biotechnology, 1(4), 236–242. https://doi.org/10.1016/j.synbio.2016.09.006spa
dc.relation.referencesCiesielski, S., Cydzik-Kwiatkowska, A., Pokoj, T., & Klimiuk, E. (2006). Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. Journal of Applied Microbiology, 101(1), 190–199. https://doi.org/10.1111/j.1365-2672.2006.02973.xspa
dc.relation.referencesConlan, L. H., Thomas, J. J., Thornton, K. C., & Dupureur, C. M. (1999). Modulating restriction endonuclease activities and specificities using neutral detergents. BioTechniques, 27(5), 955–960. https://doi.org/10.2144/99275st02spa
dc.relation.referencesDaligault, H. E., Davenport, K. W., Minogue, T. D., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., … Johnson, S. L. (2014). Whole-genome assemblies of 56 Burkholderia species. Genome Announcements, 2(6). https://doi.org/10.1128/GENOMEA.01106-14spa
dc.relation.referencesDe Andrade Rodrigues, M. F., Valentin, H. E., Berger, P. A., Tran, M., Asrar, J., Gruys, K. J., & Steinbüchel, A. (2000). Polyhydroxyalkanoate accumulation in Burkholderia sp.: A molecular approach to elucidate the genes involved in the formation of two homopolymers consisting of short-chain-length 3-hydroxyalkanoic acids. Applied Microbiology and Biotechnology, 53(4), 453–460. https://doi.org/10.1007/s002530051641spa
dc.relation.referencesDe Andrade Rodrigues, Maria Filomena, Vicente, E. J., & Steinbüchel, A. (2000). Studies on polyhydroxyalkanoate (PHA) accumulation in a PHA synthase I-negative mutant of Burkholderia cepacia generated by homogenotization. FEMS Microbiology Letters, 193(1), 179–185. https://doi.org/10.1016/S0378-1097(00)00483-3spa
dc.relation.referencesDennis, J. J., & Sokol, P. A. (1995). Electrotransformation of Pseudomonas. Methods in Molecular Biology (Clifton, N.J.), 47, 125–133. https://doi.org/10.1385/0-89603-310-4:125spa
dc.relation.referencesDorado Pérez, G. (2014). Clonacion del DNA amplificado mediante Pcr. Biotecnología: Marcadores Moleculares, Ingeniería Genética y Transformación, Genómica., 1–22. Retrieved from http://www.uco.es/dptos/bioquimica-biol-mol/spa
dc.relation.referencesFarell, E. M., & Alexandre, G. (2012). Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Research Notes, 5(1), 1. https://doi.org/10.1186/1756-0500-5-257spa
dc.relation.referencesFlynn, A., Jones, D., Man, E., Shipman, S., & Tung, S. (2002). The Influence of the Size and Number of Digested pBR322 Fragments on the Inhibition of Transformation of E . coli HB101 Cells by the Plasmids pBR322 and p328 . 5. 2(April), 57–67spa
dc.relation.referencesGonzález García, Y., Meza Contreras, J. C., González Reynoso, O., & Córdova López, J. A. (2013). Síntesis y Biodegradación de Polihidroxialcanoatos: Plásticos de Origen Microbiano. Revista Internacional de Contaminación Ambiental, 29(1), 77–115. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992013000100007spa
dc.relation.referencesHall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012spa
dc.relation.referencesHardjasa, A., Ling, M., Ma, K., & Yu, H. (2010). Investigating the Effects of DMSO on PCR Fidelity Using a Restriction Digest-Based Method. Journal of Experimental Microbiology and Immunology (JEMI), 14(April), 161–164spa
dc.relation.referencesJendrossek, D. (2009). Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). Journal of Bacteriology, 191(10), 3195–3202. https://doi.org/10.1128/JB.01723-08spa
dc.relation.referencesJeon, J. M., Brigham, C. J., Kim, Y. H., Kim, H. J., Yi, D. H., Kim, H., … Yang, Y. H. (2014). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Applied Microbiology and Biotechnology, 98(12), 5461–5469. https://doi.org/10.1007/s00253-014-5617spa
dc.relation.referencesKeenan, T. M., Tanenbaum, S. W., Stipanovic, A. J., & Nakas, J. P. (2004). Production and Characterization of Poly-β-hydroxyalkanoate Copolymers from Burkholderia cepacia Utilizing Xylose and Levulinic Acid. Artificial Cells Blood Substitutes And Immobilization Biotechnologyartif Cells Blood Substit Immobi, (12)spa
dc.relation.referencesKim, J., Chang, J. H., Kim, E. J., & Kim, K. J. (2014). Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Biochemical and Biophysical Research Communications, 443(3), 783–788. https://doi.org/10.1016/j.bbrc.2013.10.150spa
dc.relation.referencesKimelman, A., Levy, A., Sberro, H., Kidron, S., Leavitt, A., Amitai, G., … Sorek, R. (2012). A vast collection of microbial genes that are toxic to bacteria. Genome Research, 22(4), 802–809. https://doi.org/10.1101/gr.133850.111spa
dc.relation.referencesKjeldsen, A., Price, M., Lilley, C., Guzniczak, E., & Archer, I. (2019). A Review of Standards for Biodegradable Plastics with support from. In Industrial Biotechnology Innovation Centre IBioICspa
dc.relation.referencesKovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd, & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166(1), 175–176. https://doi.org/10.1016/0378-1119(95)00584-1spa
dc.relation.referencesKovalcik, A., Obruca, S., Fritz, I., & Marova, I. (2019). Polyhydroxyalkanoates: Their Importance and Future. BioResources, 14(2), 2468–2471spa
dc.relation.referencesKrela, R., Poreba, E., Weglewska, M., Skrzypczak, T., & Lesniewicz, K. (2019). A novel method for cloning of coding sequences of highly toxic proteins. Biochimica et Biophysica Acta - General Subjects, 1863(3), 521–527. https://doi.org/10.1016/j.bbagen.2018.12.010spa
dc.relation.referencesLau, N. S., & Sudesh, K. (2012). Revelation of the ability of burkholderia sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB Express, 2(1), 1–9. https://doi.org/10.1186/2191-0855-2-41spa
dc.relation.referencesLindenkamp, N., Volodina, E., & Steinbüchel, A. (2012). Genetically modified strains of Ralstonia eutropha H16 with β- ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents. Applied and Environmental Microbiology, 78(15), 5375–5383. https://doi.org/10.1128/AEM.00824-12spa
dc.relation.referencesLiu, C. H., Chen, H. Y., Chen, Y. L. L., & Sheu, D. S. (2021). The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3-hydroxybutyrate-dominant hybrid of short- and medium-chain-length PHA. Enzyme and Microbial Technology, 143(142), 109719. https://doi.org/10.1016/j.enzmictec.2020.109719spa
dc.relation.referencesLiu, Y., Feng, Y., Cao, X., Li, X., & Xue, S. (2015). Structure-directed construction of a high-performance version of the enzyme FabG from the photosynthetic microorganism Synechocystis sp. PCC 6803. FEBS Letters, 589(20), 3052–3057. https://doi.org/10.1016/j.febslet.2015.09.001spa
dc.relation.referencesLu, J., Tappel, R. C., & Nomura, C. T. (2009). Mini-review: Biosynthesis of poly(hydroxyalkanoates). Polymer Reviews, 49(3), 226–248. https://doi.org/10.1080/15583720903048243spa
dc.relation.referencesMarchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., … Bryant, S. H. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43(Database issue), D222–D226. https://doi.org/10.1093/NAR/GKU1221spa
dc.relation.referencesMatsumoto, K., Tanaka, Y., Watanabe, T., Motohashi, R., Ikeda, K., Tobitani, K., … Taguchi, S. (2013). Directed evolution and structural analysis of nadph-dependent acetoacetyl coenzyme A(acetoacetyl-CoA) reductase from ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Applied and Environmental Microbiology, 79(19), 6134–6139. https://doi.org/10.1128/AEM.01768-13spa
dc.relation.referencesMéndez, D. A. (2016). MODELAMIENTO MATEMÁTICO Y OPTIMIZACIÓN DEL PROCESO DE PRODUCCIÓN DE POLIHIDROXIALCANOATOS EMPLEANDO LA BACTERIA Burkholderia cepacia B27 A PARTIR DE ÁCIDOS GRASOS. Universidad Nacional de Colombiaspa
dc.relation.referencesMendez, Daniel A., Cabeza, I. O., Moreno, N. C., & Riascos, C. A. M. (2016). Mathematical modelling and scale-up of batch fermentation with burkholderia cepacia B27 using vegetal oil as carbon source to produce polyhydroxyalkanoates. Chemical Engineering Transactions, 49(March), 277–282. https://doi.org/10.3303/CET1649047spa
dc.relation.referencesMendez, Daniel Alexander. (2016). Evaluación del proceso de extracción de polihidroxialcanoatos ( PHA ) a partir de Burkholderia cepacia ... (November). https://doi.org/10.15446/agron.colomb.sup.2016n1.58399spa
dc.relation.referencesMezzina, M. P., Manoli, M. T., Prieto, M. A., & Nikel, P. I. (2021). Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnology Journal, 16(3). https://doi.org/10.1002/biot.202000165spa
dc.relation.referencesMontoya, D., Moreno, N., Espinosa, A., Buitrago, G., Aristizábal, F., Bernal, M., & Garcia, I. (2017). Del laboratorio a la industria. Revista Colombiana de Biotecnología., Numero esp, 12–17spa
dc.relation.referencesMoreno, N., Gutiérrez, I., Malagón, D., Grosso, V., Revelo, D., González, J., … Montoya, D. (2007). Bioprospecting and characterization of poly-β-hydroxyalkanoate (PHAs) producing bacteria isolated from Colombian sugarcane producing areas. African Journal of Biotechnology, 6(13), 1536–1543. Retrieved from www.ajol.info/index.php/ajb/article/view/57660spa
dc.relation.referencesMożejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192(2016), 271–282. https://doi.org/10.1016/j.micres.2016.07.010spa
dc.relation.referencesMozejko, J., & Ciesielski, S. (2013). Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. Journal of Bioscience and Bioengineering, 116(4), 485–492. https://doi.org/10.1016/j.jbiosc.2013.04.014spa
dc.relation.referencesOjumu, T. ., & Solomon, B. . (2004). Production of Polyhydroxyalkanoates , a bacterial biodegradable polymer. African Journal of Biotechnology, 3(1), 18–24spa
dc.relation.referencesOliveira-Filho, E. R., Guamán, L. P., Mendonca, T. T., Long, P. F., Taciro, M. K., Gomez, J. G. C., & Silva, L. F. (2019). Production of polyhydroxyalkanoates copolymers by recombinant pseudomonas in plasmid- and Antibiotic-free cultures. Journal of Molecular Microbiology and Biotechnology, 28(5), 225–235. https://doi.org/10.1159/000495752spa
dc.relation.referencesPakalapati, H., Chang, C. K., Show, P. L., Arumugasamy, S. K., & Lan, J. C. W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282–292. https://doi.org/10.1016/j.jbiosc.2018.03.016spa
dc.relation.referencesPan, W., Perrotta, J. A., Stipanovic, A. J., Nomura, C. T., & Nakas, J. P. (2012). Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. Journal of Industrial Microbiology and Biotechnology, 39(3), 459–469. https://doi.org/10.1007/s10295-011-1040-6spa
dc.relation.referencesParra Huertas, S. L., Pérez Casas, M. M., Bernal Morales, M., Suárez Moreno, Z., & Montoya Castaño, D. (2006). Implementación y evaluación de dos métodos deconservación y generación de la base de datos del banco de cepas y genes del Instituto de Biotecnología de la Universidad Nacional de Colombia (IBUN). Nova, 4(5), 39. https://doi.org/10.22490/24629448.346spa
dc.relation.referencesPhilip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates : biodegradable polymers with a range of applications. Journal OfChemical Technology and Biotechnology, 247(July 2006), 233–247. https://doi.org/10.1002/jctbspa
dc.relation.referencesPlenderleith, R., Swift, T., & Rimmer, S. (2014). Highly-branched Poly(N-isopropyl acrylamide)s with core-shell morphology below the lower critical solution temperature. J. Mater. Chem. C, 3, 10715–10722. https://doi.org/10.1039/b000000xspa
dc.relation.referencesPoli, A., Di Donato, P., Abbamondi, G. R., & Nicolaus, B. (2011). Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea. Archaea, 2011, 1–13. https://doi.org/10.1155/2011/693253spa
dc.relation.referencesPoltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70spa
dc.relation.referencesRai, R., Keshavarz, T., Roether, J. A., Boccaccini, A. R., & Roy, I. (2011). Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering R: Reports, 72(3), 29–47. https://doi.org/10.1016/j.mser.2010.11.002spa
dc.relation.referencesRaza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(October 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001spa
dc.relation.referencesRehm, B. H. A., Mitsky, T. A., & Steinbüchel, A. (2001). Role of Fatty Acid de novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 67(7), 3102–3109. https://doi.org/10.1128/AEM.67.7.3102-3109.2001spa
dc.relation.referencesRevelo, D. (2005). Diseño de iniciadores y validación de una metodología molecular para la seleccion de bacterias de diferentes géneros acumuladoras de Polihidroxialcanoatos (PHAs). Universidad Nacional de Colombiaspa
dc.relation.referencesRevelo, D., Grosso, M. V., Moreno Solano, N. C., & Montoya, D. (2007). A most effective method for selecting a broad range of short and medium-chain-length polyhidroxyalcanoate producing microorganisms. Electronic Journal of Biotechnology, 10(3), 348–357. https://doi.org/10.2225/vol10-issue3-fulltext-13spa
dc.relation.referencesRodicio, M. D. R., & Mendoza, M. D. C. (2004). Identificación bacteriana mediante secuenciación del ARNr 16S: Fundamento, metodología y aplicaciones en microbiología clínica. Enfermedades Infecciosas y Microbiologia Clinica, 22(4), 238–245. https://doi.org/10.1157/13059055spa
dc.relation.referencesRojas-Rojas, F. U., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, J. A., & Estrada-de los Santos, P. (2019). The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens. Revista Argentina de Microbiologia, 51(1), 84–92. https://doi.org/10.1016/J.RAM.2018.01.002spa
dc.relation.referencesSagong, H.-Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/https://doi.org/10.1016/j.tibs.2018.08.005spa
dc.relation.referencesSagong, H. Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K. J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/10.1016/j.tibs.2018.08.005spa
dc.relation.referencesSaida, F., Uzan, M., Odaert, B., & Bontems, F. (2006). Expression of Highly Toxic Genes in E. coli: Special Strategies and Genetic Tools. Current Protein and Peptide Science, 7(1), 47–56. https://doi.org/10.2174/138920306775474095spa
dc.relation.referencesScales, B. S., Dickson, R. P., Lipuma, J. J., & Huffnagle, G. B. (2014). Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clinical Microbiology Reviews, 27(4), 927–948. https://doi.org/10.1128/CMR.00044-14spa
dc.relation.referencesSegawa, M., Wen, C., Orita, I., Nakamura, S., & Fukui, T. (2019). Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha. Journal of Bioscience and Bioengineering, 127(3), 294–300. https://doi.org/10.1016/j.jbiosc.2018.08.009spa
dc.relation.referencesSerrano, J. Y. (2010). DETERMINACIÓN DEL CLUSTER (phaC1, phaZ, phaC2, phaD, phaF, phaI) ASOCIADO CON LA PRODUCCIÓN DE POLIHIDROXIALCANOATOS (PHAs) SINTASA TIPO II EN UNA CEPA NATIVA COLOMBIANA. Universidad Nacional de Colombiaspa
dc.relation.referencesSerrano Riaño, J., Sastoque Rivera, L. Á., Castaño, D. M., & Moreno Sarmiento, N. (2011). Análisis de las polihidroxialcanoato sintasas (PhaC1 y PhaC2) en una cepa de Pseudomonas fluorescens IBUN S1602, aislada en suelos colombianos. Revista Colombiana de Biotecnología., XIII(2), 84–96spa
dc.relation.referencesSlater, S. C., Voige, W. H., & Dennis, D. E. (1988). Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. Journal of Bacteriology, 170(10), 4431–4436. https://doi.org/10.1128/jb.170.10.4431-4436.1988spa
dc.relation.referencesTan, D., Yin, J., & Chen, G. Q. (2016). Production of Polyhydroxyalkanoates. In Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products (pp. 655–692). https://doi.org/10.1016/B978-0-444-63662-1.00029-4spa
dc.relation.referencesTolmachov, O. E. (2011). DNA Cloning in Plasmid Vectors. In Comprehensive Biotechnology, Second Edition (Second Edi, Vol. 1). https://doi.org/10.1016/B978-0-08-088504-9.00008-8spa
dc.relation.referencesTorres Ospina, A. C. (2019). Formulación de un modelo metabólicamente estructurado para optimizar la producción de Polihidroxialcanoatos (PHA) a partir de Burkholderia cepacia. Universidad Nacional de Colombiaspa
dc.relation.referencesUrtuvia, V., Villegas, P., Fuentes, S., González, M., & Seeger, M. (2018). Burkholderia xenovorans LB400 possesses a functional polyhydroxyalkanoate anabolic pathway encoded by the pha genes and synthesizes poly(3-hydroxybutyrate) under nitrogen-limiting conditions. International Microbiology, 21(1–2), 47–57. https://doi.org/10.1007/s10123-018-0004-3spa
dc.relation.referencesUrtuvia, V., Villegas, P., Gonzalez, M., & Seeger, M. (2014). Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International Journal of Biological Macromolecules, 70, 208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001spa
dc.relation.referencesVasu, K., & Nagaraja, V. (2013). Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiology and Molecular Biology Reviews, 77(1), 53–72. https://doi.org/10.1128/mmbr.00044-12spa
dc.relation.referencesVu, K., Bautos, J., Hong, M.-P., & Gelli, A. (2009). The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel Kiem. National Institutes of Health, 393(2), 234–241. https://doi.org/10.1016/j.ab.2009.06.039spa
dc.relation.referencesWittenborn, E. C., Jost, M., Wei, Y., Stubbe, J. A., & Drennan, C. L. (2016). Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidus necator. Journal of Biological Chemistry, 291(48), 25264–25277. https://doi.org/10.1074/jbc.M116.756833spa
dc.relation.referencesWu, H., Fan, Z., Jiang, X., Chen, J., & Chen, G. Q. (2016). Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbial Cell Factories, 15(1), 1–13. https://doi.org/10.1186/s12934-016-0531-6spa
dc.relation.referencesZhao, F., Liu, X., Kong, A., Zhao, Y., Fan, X., Ma, T., … Yang, C. (2019). Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Scientific Reports, 9(1), 1713–1724. https://doi.org/10.1038/s41598-019-39321-zspa
dc.relation.referencesZheng, Y., Chen, J. C., Ma, Y. M., & Chen, G. Q. (2019). Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metabolic Engineering, (March). https://doi.org/10.1016/j.ymben.2019.07.004spa
dc.relation.referencesZher Neoh, S., Fey Chek, M., Tiang Tan, H., Linares-Pastén, J. A., Nandakumar, A., Hakoshima, T., & Sudesh, K. (2022). Polyhydroxyalkanoate synthase (PhaC): The key enzyme for biopolyester synthesis. Current Research in Biotechnology, 4(November 2021), 87–101. https://doi.org/10.1016/j.crbiot.2022.01.002spa
dc.relation.referencesZhuang, Q., Wang, Q., Liang, Q., & Qi, Q. (2014). Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metabolic Engineering, 24, 78–86. https://doi.org/10.1016/j.ymben.2014.05.004spa
dc.relation.referencesZuriani, R., Vigneswari, S., Azizan, M. N. M., Majid, M. I. A., & Amirul, A. A. (2013). A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnology and Bioprocess Engineering, 18(3), 472–478. https://doi.org/10.1007/s12257-012-0607-zspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsPolihidroxialcanoatosspa
dc.subject.decsPolyhydroxyalkanoateseng
dc.subject.decsBiopolímerosspa
dc.subject.decsBiopolymerseng
dc.subject.decsPoliésteresspa
dc.subject.decsPolyesterseng
dc.subject.decsVectores Genéticosspa
dc.subject.decsGenetic Vectorseng
dc.subject.decsPseudomonas fluorescensspa
dc.subject.decsBurkholderiaspa
dc.subject.proposalPolyhydroxyalkanoateseng
dc.subject.proposalPolihidroxialcanoatosspa
dc.subject.proposalPHAsspa
dc.subject.proposalPHAseng
dc.subject.proposalcopolymereng
dc.subject.proposalcopolímerospa
dc.subject.proposalBurkholderiaspa
dc.subject.proposalBurkholderiaeng
dc.subject.proposalPseudomonasspa
dc.subject.proposalPseudomonaseng
dc.subject.proposalshort and medium chaineng
dc.subject.proposalCadena corta y mediaspa
dc.titleEvaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)spa
dc.title.translatedEvaluation of a transformation vector in p. fluorescens ibun S1602 for production of a short chain (PHAscl) and medium chain (PHAmcl) polyhydroxyalcanoates (PHAs) copolymereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Microbiología.pdf
Tamaño:
3.29 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: