Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional

dc.contributor.advisorRuíz Villa, Carlos Alberto
dc.contributor.advisorPatiño Arcila, Iván David
dc.contributor.authorVélez Salazar, Fabián Mauricio
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001521879spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=56Sj_tYAAAAJ&hl=esspa
dc.contributor.orcidVélez Salazar, Fabián Mauricio [0000-0002-7299-5970]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Fabian-Velez-Salazarspa
dc.date.accessioned2023-05-29T19:47:45Z
dc.date.available2023-05-29T19:47:45Z
dc.date.issued2022-07
dc.descriptionilustraciones,spa
dc.description.abstractLos modelos de electroporación y electroquimioterapia son esquemas teóricos que describen procesos electrofisiológicos basados en formulaciones matemáticas que ayudan a comprender y predecir el comportamiento de fenómenos de transporte y dosificación de medicamentos mediante modelado y simulación computacional. En este trabajo se simuló el transporte de masa en tejidos electroporados usando técnicas sin malla mediante un estudio paramétrico de la influencia del voltaje y el espaciamiento entre pulsos en la eficiencia, agresividad y uniformidad del proceso de electroporación analizando el cambio de concentración de medicamentos entre los espacios extracelular e intracelular. Se utilizó el método de Funciones de Base Radial (RBF) para resolver el sistema de ecuaciones diferenciales del fenómeno y se simuló el transporte de fármacos quimioterapéuticos clásicos en tejidos electroporados a través del Método Global MAPS, estudiando la influencia de las dos variables sobre la magnitud y distribución del campo eléctrico, las concentraciones extracelulares e intracelulares y la eficiencia y agresividad del protocolo de electroporación. Los análisis se centran en la comparación de la respuesta de dos medicamentos quimioterapéuticos al cambio de los parámetros de electroporación y la influencia de esta respuesta en la eficiencia y agresividad del tratamiento. Se obtuvo que para ambos medicamentos la agresividad es inversamente proporcional al espaciamiento entre pulsos y directamente proporcional al voltaje. Para el protocolo menos agresivo de ambos medicamentos la eficacia es adecuada para la doxorrubicina y muy baja para el cisplatino. Como conclusión, la agresividad de un protocolo no es necesariamente proporcional a su eficacia; esta relación es determinada por el tipo de medicamento (texto tomado de la fuente)spa
dc.description.abstractElectroporation and electrochemotherapy models are theoretical schemes that describe electrophysiological processes based on mathematical formulations that help to understand and predict the behavior of drug transport and dosing phenomena through modeling and computational simulation. In this work, mass transport in electroporated tissues was simulated using mesh-free techniques through a parametric study of the influence of voltage and pulse spacing on the efficiency, aggressiveness and uniformity of the electroporation process by analyzing the change in drug concentration between the extracellular and intracellular spaces. The Radial Basis Functions (RBF) method was used to solve the system of differential equations of the phenomenon and the transport of classical chemotherapeutic drugs in electroporated tissues was simulated through the Global MAPS Method, studying the influence of the two variables on the magnitude and distribution of the electric field, the extracellular and intracellular concentrations and the efficiency and aggressiveness of the electroporation protocol. The analyses focus on the comparison of the response of two chemotherapeutic drugs to the change of the electroporation parameters and the influence of this response on the efficiency and aggressiveness of the treatment. It was obtained that for both drugs aggressiveness is inversely proportional to pulse spacing and directly proportional to voltage. For the less aggressive protocol of both drugs the efficacy is adequate for doxorubicin and very low for cisplatin. As a conclusion, the aggressiveness of a protocol is not necessarily proportional to its efficacy; this relationship is determined by the type of drugeng
dc.description.curricularareaÁrea Curricular de Ingeniería Administrativa e Ingeniería Industrialspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaOrganizaciones, Gestión Tecnológica y Tic’sspa
dc.format.extent206 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83900
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Industria y Organizacionesspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesKeng-Cheng Ang, “Analysis of a tumour growth model with MATLAB,” Electron. Proc. 14th Asian Technol. Conf. Math., no. December, pp. 17–21, 2009.spa
dc.relation.referencesG. S. Stamatakos and N. Graf, “Multiscale Cancer Modeling and In Silico Oncology: Emerging Computational Frontiers in Basic and Translational Cancer Research,” J. Bioeng. Biomed. Sci., vol. 03, no. 02, pp. 3–5, 2013.spa
dc.relation.referencesL. B. Edelman, J. A. Eddy, and N. D. Price, “In silico models of cancer,” WIREs Syst. Biol. Med., vol. 2, no. 4, pp. 438–459, Jul. 2010.spa
dc.relation.referencesM. Belfiore, M. Pennisi, G. Aricò, S. Ronsisvalle, and F. Pappalardo, “In silico modeling of the immune system: cellular and molecular scale approaches.,” Biomed Res. Int., vol. 2014, p. 371809, 2014.spa
dc.relation.referencesD. J. Gavaghan, J. M. Brady, C. P. Behrenbruch, R. P. Highnam, and P. K. Maini, “Breast Cancer: Modelling and Detection,” J. Theor. Med., vol. 4, no. 1, pp. 3–20, 2002.spa
dc.relation.referencesZ. Wang, J. D. Butner, R. Kerketta, V. Cristini, and T. S. Deisboeck, “Simulating cancer growth with multiscale agent-based modeling,” Semin. Cancer Biol., vol. 30, pp. 70–78, Feb. 2015.spa
dc.relation.referencesD. Gupta, L. Kumar, O. A. Bég, and B. Singh, “Finite element analysis of melting effects on MHD stagnation-point non-Newtonian flow and heat transfer from a stretching/shrinking sheet,” in AIP Conference Proceedings, 2019, vol. 2061, p. 020024.spa
dc.relation.referencesR. Xu and T. Wu, “Finite volume method for solving the stochastic Helmholtz equation,” Adv. Differ. Equations, vol. 2019, no. 1, p. 84, Dec. 2019.spa
dc.relation.referencesB. Boyd and S. Becker, “Macroscopic Modeling of In Vivo Drug Transport in Electroporated Tissue,” J. Biomech. Eng., vol. 138, no. 3, pp. 1–12, Mar. 2016.spa
dc.relation.referencesM. E. Orme and M. A. J. Chaplain, “A mathematical model of vascular tumour growth and invasion,” Math. Comput. Model., vol. 23, no. 10, pp. 43–60, May 1996.spa
dc.relation.referencesZ. Bajzer, M. Marušić, and S. Vuk-Pavlović, “Conceptual frameworks for mathematical modeling of tumor growth dynamics,” Math. Comput. Model., vol. 23, no. 6, pp. 31–46, Mar. 1996.spa
dc.relation.referencesJ. P. Ward and J. R. King, “Mathematical modelling of avascular-tumour growth.,” IMA J. Math. Appl. Med. Biol., vol. 14, no. 1, pp. 39–69, Mar. 1997.spa
dc.relation.referencesA. Litan and S. A. Langhans, “Cancer as a channelopathy: ion channels and pumps in tumor development and progression,” Front. Cell. Neurosci., vol. 9, no. March, pp. 1–11, Mar. 2015.spa
dc.relation.referencesH. Ouadid-Ahidouch, I. Dhennin-Duthille, M. Gautier, H. Sevestre, and A. Ahidouch, “TRP channels: diagnostic markers and therapeutic targets for breast cancer?,” Trends Mol. Med., vol. 19, no. 2, pp. 117–124, Feb. 2013.spa
dc.relation.referencesV. Rao, M. Perez-Neut, S. Kaja, and S. Gentile, “Voltage-Gated Ion Channels in Cancer Cell Proliferation,” Cancers (Basel)., vol. 7, no. 2, pp. 849–875, May 2015.spa
dc.relation.referencesN. Prevarskaya, L. Zhang, and G. Barritt, “TRP channels in cancer,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1772, no. 8, pp. 937–946, Aug. 2007.spa
dc.relation.referencesL. V. Weber et al., “Expression and functionality of TRPV1 in breast cancer cells,” Breast Cancer Targets Ther., vol. Volume 8, pp. 243–252, Dec. 2016.spa
dc.relation.referencesD. Banerjee, “Connexin’s Connection in Breast Cancer Growth and Progression,” Int. J. Cell Biol., vol. 2016, no. 5, pp. 1–11, Nov. 2016.spa
dc.relation.referencesC. M. M. D. Burstein, Harold J. M.D., Ph.D., Polyak, Kornelia M.D., Ph.D., Wong, Julia S. M.D., Lester Susan C., M.D., Ph.D., and Kaelin, “Ductal Carcinoma In Situ of the Breast,” Int. J. Surg. Oncol., vol. 2012, no. 14, pp. 1–12, Apr. 2012.spa
dc.relation.referencesS. J. Franks, H. M. Byrne, J. R. King, J. C. E. Underwood, and C. E. Lewis, “Modelling the early growth of ductal carcinoma in situ of the breast,” J. Math. Biol., vol. 47, no. 5, pp. 424–452, Nov. 2003.spa
dc.relation.referencesD. Kumar, “Simple PDE Model of Ductal Carcinoma in situ and Vascularisation of Nutrient,” vol. 4, no. 2, pp. 69–79, 2013.spa
dc.relation.referencesH. Shafiee, P. A. Garcia, and R. V. Davalos, “A preliminary study to delineate irreversible electroporation from thermal damage using the arrhenius equation,” J. Biomech. Eng., vol. 131, no. 7, pp. 1–5, Jul. 2009.spa
dc.relation.referencesM. Pavlin et al., “Effect of Cell Electroporation on the Conductivity of a Cell Suspension,” Biophys. J., vol. 88, no. 6, pp. 4378–4390, Jun. 2005.spa
dc.relation.referencesM. Pavlin, T. Kotnik, D. Miklavčič, P. Kramar, and A. Maček Lebar, “Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes,” Adv. Planar Lipid Bilayers Liposomes, vol. 6, no. 07, pp. 165–226, 2008.spa
dc.relation.referencesS. Y. Ho and G. S. Mittal, “Electroporation of Cell Membranes: A Review,” Crit. Rev. Biotechnol., vol. 16, no. 4, pp. 349–362, Jan. 1996.spa
dc.relation.referencesT. J. Lewis, “A model for bilayer membrane electroporation based on resultant electromechanical stress,” IEEE Trans. Dielectr. Electr. Insul., vol. 10, no. 5, pp. 769–777, Oct. 2003.spa
dc.relation.referencesJ. C. Weaver and Y. A. Chizmadzhev, “Theory of electroporation: A review,” Bioelectrochemistry Bioenerg., vol. 41, no. 2, pp. 135–160, Dec. 1996.spa
dc.relation.referencesY. Granot and B. Rubinsky, “Mass transfer model for drug delivery in tissue cells with reversible electroporation,” Int. J. Heat Mass Transf., vol. 51, no. 23–24, pp. 5610–5616, Nov. 2008.spa
dc.relation.referencesJ. C. Weaver, “Electroporation of biological membranes from multicellular to nano scales,” IEEE Trans. Dielectr. Electr. Insul., vol. 10, no. 5, pp. 754–768, Oct. 2003.spa
dc.relation.referencesT. Kotnik, L. Rems, M. Tarek, and D. Miklavcic, “Membrane Electroporation and Electropermeabilization: Mechanisms and Models,” Annual Review of Biophysics, vol. 48, no. 1. Annual Reviews Inc., pp. 63–91, 06-May-2019.spa
dc.relation.referencesY. Antov, A. Barbul, and R. Korenstein, “Electroendocytosis: Stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields,” Exp. Cell Res., vol. 297, no. 2, pp. 348–362, 2004.spa
dc.relation.referencesM. Puc, T. Kotnik, L. M. Mir, and D. Miklavčič, “Quantitative model of small molecules uptake after in vitro cell electropermeabilization,” Bioelectrochemistry, vol. 60, no. 1–2, pp. 1–10, Aug. 2003.spa
dc.relation.referencesG. Pucihar, T. Kotnik, D. Miklavčič, and J. Teissié, “Kinetics of Transmembrane Transport of Small Molecules into Electropermeabilized Cells,” Biophys. J., vol. 95, no. 6, pp. 2837–2848, Sep. 2008.spa
dc.relation.referencesP. Kramar, D. Miklavcic, and A. M. Lebar, “A System for the Determination of Planar Lipid Bilayer Breakdown Voltage and Its Applications,” IEEE Trans. Nanobioscience, vol. 8, no. 2, pp. 132–138, Jun. 2009.spa
dc.relation.referencesR. Shirakashi, V. L. Sukhorukov, I. Tanasawa, and U. Zimmermann, “Measurement of the permeability and resealing time constant of the electroporated mammalian cell membranes,” Int. J. Heat Mass Transf., vol. 47, no. 21, pp. 4517–4524, Oct. 2004.spa
dc.relation.referencesJ. Rubinsky, G. Onik, P. Mikus, and B. Rubinsky, “Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation,” J. Urol., vol. 180, no. 6, pp. 2668–2674, Dec. 2008.spa
dc.relation.referencesN. Pavšelj, Z. Bregar, D. Cukjati, D. Batiuskaite, L. M. Mir, and D. Miklavčič, “The Course of Tissue Permeabilization Studied on a Mathematical Model of a Subcutaneous Tumor in Small Animals,” IEEE Trans. Biomed. Eng., vol. 52, no. 8, pp. 1373–1381, Aug. 2005.spa
dc.relation.referencesN. Pavšelj, D. Miklavčič, and S. Becker, “Modeling Cell Electroporation and Its Measurable Effects in Tissue,” in Transport in Biological Media, Christichurch, New Zealand: Elsevier, 2013, pp. 493–520.spa
dc.relation.referencesT. Y. Tsong, “Electroporation of cell membranes,” Biophys. J., vol. 60, no. 2, pp. 297–306, Aug. 1991.spa
dc.relation.referencesE. Nilsson, “Modelling of the electrochemical treatment of tumours: Doctoral thesis,” Royal Institute of Technology, 2000.spa
dc.relation.referencesM. Alló and P. Bertucci, Bio-logía molecular - La logia desconocida. Colección: LAS CIENCIAS NATURALES Y LA MATEMÁTICA. Buenos Aires: Artes Gráficas Rioplatense S. A., 2010.spa
dc.relation.referencesF. M. Vélez Salazar, I. D. Patiño Arcila, and C. A. Ruiz Villa, “Simulation of the influence of voltage level and pulse spacing on the efficiency, aggressiveness and uniformity of the electroporation process in tissues using meshless techniques.,” Int. j. numer. method. biomed. eng., vol. 36, no. 3, p. e3304, Mar. 2020.spa
dc.relation.referencesD. A. Zaharoff, R. C. Barr, C.-Y. Li, and F. Yuan, “Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery,” Gene Ther., vol. 9, no. 19, pp. 1286–1290, Oct. 2002.spa
dc.relation.referencesS. M. Kennedy, Z. Ji, J. C. Hedstrom, J. H. Booske, and S. C. Hagness, “Quantification of Electroporative Uptake Kinetics and Electric Field Heterogeneity Effects in Cells,” Biophys. J., vol. 94, no. 12, pp. 5018–5027, Jun. 2008.spa
dc.relation.referencesM. M. Sadik, J. Li, J. W. Shan, D. I. Shreiber, and H. Lin, “Quantification of propidium iodide delivery using millisecond electric pulses: Experiments,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 4, pp. 1322–1328, Apr. 2013.spa
dc.relation.referencesD. C. Sweeney, J. C. Weaver, and R. V. Davalos, “Characterization of Cell Membrane Permeability In Vitro Part I: Transport Behavior Induced by Single-Pulse Electric Fields*,” Technol. Cancer Res. Treat., vol. 17, p. 153303381879249, Jan. 2018.spa
dc.relation.referencesN. Pavšelj, V. Préat, and D. Miklavčič, “A Numerical Model of Skin Electropermeabilization Based on In Vivo Experiments,” Ann. Biomed. Eng., vol. 35, no. 12, pp. 2138–2144, Nov. 2007.spa
dc.relation.referencesT. Batista Napotnik and D. Miklavčič, “In vitro electroporation detection methods – An overview,” Bioelectrochemistry, vol. 120, pp. 166–182, Apr. 2018.spa
dc.relation.referencesB. Kos, “Treatment Planning for Electrochemotherapy and Irreversible Electroporation of Deep-Seated Tumors,” in Handbook of Electroporation, vol. 2, Cham: Springer International Publishing, 2017, pp. 1001–1017.spa
dc.relation.referencesA. Golberg and B. Rubinsky, “A statistical model for multidimensional irreversible electroporation cell death in tissue,” Biomed. Eng. Online, vol. 9, no. 1, p. 13, 2010.spa
dc.relation.referencesA. Meir and B. Rubinsky, “Electrical impedance tomographic imaging of a single cell electroporation,” Biomed. Microdevices, vol. 16, no. 3, pp. 427–437, Jun. 2014.spa
dc.relation.referencesP. G. Turjanski, “Electroterapia y electroporación en el tratamiento de tumores : modelos teóricos y experimentales,” Universidad de Buenos Aires, 2011.spa
dc.relation.referencesJ. G. Scott, P. Gerlee, D. Basanta, A. G. Fletcher, P. K. Maini, and A. R. A. Anderson, “Mathematical Modeling of the Metastatic Process,” in Experimental Metastasis: Modeling and Analysis, A. Malek (., Dordrecht: Springer Netherlands, 2013, pp. 189–208.spa
dc.relation.referencesN. Bellomo and L. Preziosi, “Modelling and mathematical problems related to tumor immune system interactions,” Math. Comput. Model., vol. 32, no. 00, 2000.spa
dc.relation.referencesB. Ribba, T. Colin, and S. Schnell, “A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies,” Theor. Biol. Med. Model., vol. 3, no. 1, p. 7, Dec. 2006.spa
dc.relation.referencesN. L. Komarova and D. Wodarz, Targeted Cancer Treatment in Silico, vol. 10, no. 9. 2014.spa
dc.relation.referencesM. Kim, R. J. Gillies, and K. A. Rejniak, “Current Advances in Mathematical Modeling of Anti-Cancer Drug Penetration into Tumor Tissues,” Front. Oncol., vol. 3, no. November, pp. 1–10, 2013.spa
dc.relation.referencesD. Deep Shikha, D. Kumar, S. Kumar, and J. and Rajesh, “A Mathematical Model of Chemotherapeutic Drug for Tumor Treatment,” Indian J. Appl. Res., vol. 3, no. 1, pp. 1–10, Oct. 2012.spa
dc.relation.referencesT. Forjanič and D. Miklavčič, “Mathematical model of tumor volume dynamics in mice treated with electrochemotherapy,” Med. Biol. Eng. Comput., vol. 55, no. 7, pp. 1085–1096, Jul. 2017.spa
dc.relation.referencesR. Roe-Dale, D. Isaacson, and M. Kupferschmid, “A Mathematical Model of Breast Cancer Treatment with CMF and Doxorubicin,” Bull. Math. Biol., vol. 73, no. 3, pp. 585–608, Mar. 2011.spa
dc.relation.referencesS. Mahnič-Kalamiza, D. Miklavčič, and E. Vorobiev, “Dual-porosity model of solute diffusion in biological tissue modified by electroporation,” Biochim. Biophys. Acta - Biomembr., vol. 1838, no. 7, pp. 1950–1966, Jul. 2014.spa
dc.relation.referencesB. Boyd and S. Becker, “Modeling of In Vivo Tissue Electroporation and Cellular Uptake Enhancement,” IFAC-PapersOnLine, vol. 48, no. 20, pp. 255–260, Sep. 2015.spa
dc.relation.referencesF. Argus, B. Boyd, and S. M. Becker, “Electroporation of tissue and cells: A three-equation model of drug delivery,” Comput. Biol. Med., vol. 84, no. 1, pp. 226–234, May 2017.spa
dc.relation.referencesI. Lacković, R. Magjarević, and D. Miklavčič, “Incorporating Electroporation-related Conductivity Changes into Models for the Calculation of the Electric Field Distribution in Tissue,” in IFMBE Proceedings, vol. 29, 2010, pp. 695–698.spa
dc.relation.referencesS. Čorović, I. Lackovič, P. Šuštarič, T. Šuštar, T. Rodic, and D. Miklavčič, “Modeling of electric field distribution in tissues during electroporation.,” Biomed. Eng. Online, vol. 12, no. 1, p. 16, Feb. 2013.spa
dc.relation.referencesA. T. Esser, K. C. Smith, T. R. Gowrishankar, and J. C. Weaver, “Towards Solid Tumor Treatment by Irreversible Electroporation: Intrinsic Redistribution of Fields and Currents in Tissue,” Technol. Cancer Res. Treat., vol. 6, no. 4, pp. 261–273, Aug. 2007.spa
dc.relation.referencesA. L. Vera-Tizatl et al., “Computational Feasibility Analysis of Electrochemotherapy With Novel Needle-Electrode Arrays for the Treatment of Invasive Breast Ductal Carcinoma,” Technol. Cancer Res. Treat., vol. 17, p. 153303381879493, Jan. 2018.spa
dc.relation.referencesW. Krassowska and P. D. Filev, “Modeling Electroporation in a Single Cell,” Biophys. J., vol. 92, no. 2, pp. 404–417, Jan. 2007.spa
dc.relation.referencesJ. C. Weaver and R. A. Mintzer, “Decreased bilayer stability due to transmembrane potentials,” Phys. Lett. A, vol. 86, no. 1, pp. 57–59, Oct. 1981.spa
dc.relation.referencesK. A. DeBruin and W. Krassowska, “Modeling Electroporation in a Single Cell. I. Effects of Field Strength and Rest Potential,” Biophys. J., vol. 77, no. 3, pp. 1213–1224, Sep. 1999.spa
dc.relation.referencesC. Jiang, R. V. Davalos, and J. C. Bischof, “A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy,” IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 4–20, Jan. 2015.spa
dc.relation.referencesR. R. C. Lee, D. Zhang, and J. Hannig, “B i m e s t,” Annu. Rev. Biomed. Eng., pp. 477–509, 2000.spa
dc.relation.referencesR. Susil, D. Šemrov, and D. Miklavčič, “Electric Field-Induced Transmembrane Potential Depends on Cell Density and Organizatio,” Electro- and Magnetobiology, vol. 17, no. 3, pp. 391–399, Jan. 1998.spa
dc.relation.referencesA. J. de Jesus and T. W. Allen, “The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 864–876, Feb. 2013.spa
dc.relation.referencesM. Tarek, “Membrane Electroporation: A Molecular Dynamics Simulation,” Biophys. J., vol. 88, no. 6, pp. 4045–4053, Jun. 2005.spa
dc.relation.referencesI. van Uitert, S. Le Gac, and A. van den Berg, “The influence of different membrane components on the electrical stability of bilayer lipid membranes,” Biochim. Biophys. Acta - Biomembr., vol. 1798, no. 1, pp. 21–31, Jan. 2010.spa
dc.relation.referencesN. Bao, T. T. Le, J.-X. Cheng, and C. Lu, “Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells,” Integr. Biol., vol. 2, no. 2–3, p. 113, 2010.spa
dc.relation.referencesL. Miller, J. Leor, and B. Rubinsky, “Cancer Cells Ablation with Irreversible Electroporation,” Technol. Cancer Res. Treat., vol. 4, no. 6, pp. 699–705, Dec. 2005.spa
dc.relation.referencesD. Šel, D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavčič, “Sequential Finite Element Model of Tissue Electropermeabilization,” IEEE Trans. Biomed. Eng., vol. 52, no. 5, pp. 816–827, May 2005.spa
dc.relation.referencesE. Neumann, S. Kakorin, and K. Tœnsing, “Fundamentals of electroporative delivery of drugs and genes,” Bioelectrochemistry Bioenerg., vol. 48, no. 1, pp. 3–16, Feb. 1999.spa
dc.relation.referencesD. Miklavčič, D. Sel, D. Cukjati, D. Batiuskaite, T. Slivnik, and L. M. Mir, “Sequential Finite Element Model of Tissue Electropermeabilisation,” in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, vol. 4, no. 5, pp. 3551–3554.spa
dc.relation.referencesD. Miklavčič, D. Šemrov, H. Mekid, and L. M. Mir, “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochim. Biophys. Acta - Gen. Subj., vol. 1523, no. 1, pp. 73–83, Sep. 2000.spa
dc.relation.referencesM. Golzio, J. Teissié, and M.-P. Rols, “Direct visualization at the single-cell level of electrically mediated gene delivery,” Proc. Natl. Acad. Sci., vol. 99, no. 3, pp. 1292–1297, Feb. 2002.spa
dc.relation.referencesJ. Teissié, J. Escoffre, M. Rols, and M. Golzio, “Time dependence of electric field effects on cell membranes. A review for a critical selection of pulse duration for therapeutical applications,” Radiol. Oncol., vol. 42, no. 4, pp. 196–206, Jan. 2008.spa
dc.relation.referencesM. Yu, W. Tan, and H. Lin, “A stochastic model for DNA translocation through an electropore,” Biochim. Biophys. Acta - Biomembr., vol. 1818, no. 11, pp. 2494–2501, Nov. 2012.spa
dc.relation.referencesJ. Li and H. Lin, “Numerical simulation of molecular uptake via electroporation,” Bioelectrochemistry, vol. 82, no. 1, pp. 10–21, Aug. 2011.spa
dc.relation.referencesM. S. Venslauskas, S. Šatkauskas, and R. Rodaitė-Riševičienė, “Efficiency of the delivery of small charged molecules into cells in vitro,” Bioelectrochemistry, vol. 79, no. 1, pp. 130–135, Aug. 2010.spa
dc.relation.referencesD. Miklavčič and L. Towhidi, “Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells,” Radiol. Oncol., vol. 44, no. 1, pp. 34–41, Jan. 2010.spa
dc.relation.referencesD. C. Sweeney, T. A. Douglas, and R. V. Davalos, “Characterization of Cell Membrane Permeability In Vitro Part II: Computational Model of Electroporation-Mediated Membrane Transport*,” Technol. Cancer Res. Treat., vol. 17, p. 153303381879249, Jan. 2018.spa
dc.relation.referencesJ. Dermol and D. Miklavčič, “Mathematical Models Describing Cell Death Due to Electroporation,” in Handbook of Electroporation, vol. 2, Cham: Springer International Publishing, 2017, pp. 1199–1218.spa
dc.relation.referencesS. V. Patankar, Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, 1980.spa
dc.relation.referencesE. J. Kansa, “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations,” Comput. Math. with Appl., vol. 19, no. 8–9, pp. 147–161, 1990.spa
dc.relation.referencesS. Chantasiriwan, “Cartesian grid methods using radial basis functions for solving Poisson, Helmholtz, and diffusion–convection equations,” Eng. Anal. Bound. Elem., vol. 28, no. 12, pp. 1417–1425, Dec. 2004.spa
dc.relation.referencesN. Mai-Duy and T. Tran-Cong, “Mesh-free radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson’s equations,” Eng. Anal. Bound. Elem., vol. 26, no. 2, pp. 133–156, Feb. 2002.spa
dc.relation.referencesI. Boztosun and A. Charafi, “An analysis of the linear advection–diffusion equation using mesh-free and mesh-dependent methods,” Eng. Anal. Bound. Elem., vol. 26, no. 10, pp. 889–895, Dec. 2002.spa
dc.relation.referencesH. Ding, C. Shu, K. S. Yeo, and D. Xu, “Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method,” Comput. Methods Appl. Mech. Eng., vol. 195, no. 7–8, pp. 516–533, Jan. 2006.spa
dc.relation.referencesE. Divo and A. J. Kassab, “An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer,” J. Heat Transfer, vol. 129, no. 2, pp. 124–136, Feb. 2007.spa
dc.relation.referencesB. Šarler and R. Vertnik, “Meshfree explicit local radial basis function collocation method for diffusion problems,” Comput. Math. with Appl., vol. 51, no. 8, pp. 1269–1282, Apr. 2006.spa
dc.relation.referencesD. Stevens, H. Power, and H. Morvan, “An order-N complexity meshless algorithm for transport-type PDEs, based on local Hermitian interpolation,” Eng. Anal. Bound. Elem., vol. 33, no. 4, pp. 425–441, Apr. 2009.spa
dc.relation.referencesN. Mai-Duy and T. Tran-Cong, “Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks,” Int. J. Numer. Methods Fluids, vol. 37, no. 1, pp. 65–86, Sep. 2001.spa
dc.relation.referencesN. Mai-Duy and T. Tran-Cong, “Approximation of function and its derivatives using radial basis function networks,” Appl. Math. Model., vol. 27, no. 3, pp. 197–220, Mar. 2003.spa
dc.relation.referencesG. Yao, B. Šarler, and C. S. Chen, “A comparison of three explicit local meshless methods using radial basis functions,” Eng. Anal. Bound. Elem., vol. 35, no. 3, pp. 600–609, Mar. 2011.spa
dc.relation.referencesC. S. Chen, C. M. Fan, and P. H. Wen, “The method of approximate particular solutions for solving certain partial differential equations,” Numer. Methods Partial Differ. Equ., vol. 28, no. 2, pp. 506–522, Mar. 2012.spa
dc.relation.referencesM. Pavlin and D. Miklavčič, “Effective Conductivity of a Suspension of Permeabilized Cells: A Theoretical Analysis,” Biophys. J., vol. 85, no. 2, pp. 719–729, Aug. 2003.spa
dc.relation.referencesC. S. Djuzenova, U. Zimmermann, H. Frank, V. L. Sukhorukov, E. Richter, and G. Fuhr, “Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells,” Biochim. Biophys. Acta - Biomembr., vol. 1284, no. 2, pp. 143–152, Oct. 1996.spa
dc.relation.referencesA. Golberg and M. L. Yarmush, “Nonthermal irreversible electroporation: fundamentals, applications, and challenges,” IEEE Trans. Biomed. Eng., vol. 60, no. 3, pp. 707–714, Mar. 2013.spa
dc.relation.referencesE. W. Lee et al., “Electron Microscopic Demonstration and Evaluation of Irreversible Electroporation-Induced Nanopores on Hepatocyte Membranes,” J. Vasc. Interv. Radiol., vol. 23, no. 1, pp. 107–113, Jan. 2012.spa
dc.relation.referencesR. E. Neal et al., “In Vivo Irreversible Electroporation Kidney Ablation: Experimentally Correlated Numerical Models,” IEEE Trans. Biomed. Eng., vol. 62, no. 2, pp. 561–569, Feb. 2015.spa
dc.relation.referencesP. W. Partridge, “Towards criteria for selecting approximation functions in the Dual Reciprocity Method,” Eng. Anal. Bound. Elem., vol. 24, no. 7–8, pp. 519–529, Sep. 2000.spa
dc.relation.referencesY. Zhang and S. Zhu, “On the choice of interpolation functions used in the dual-reciprocity boundary-element method,” Eng. Anal. Bound. Elem., vol. 13, no. 4, pp. 387–396, Jan. 1994.spa
dc.relation.referencesC. Shu, H. Ding, and K. . Yeo, “Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations,” Comput. Methods Appl. Mech. Eng., vol. 192, no. 7–8, pp. 941–954, Feb. 2003.spa
dc.relation.referencesI. D. Patiño, H. Power, C. Nieto-Londoño, and W. F. Flórez, “Stokes–Brinkman formulation for prediction of void formation in dual-scale fibrous reinforcements: a BEM/DR-BEM simulation,” Comput. Mech., vol. 59, no. 4, pp. 555–577, Apr. 2017.spa
dc.relation.referencesI. D. Patiño Arcila, H. Power, C. Nieto Londoño, and W. F. Flórez Escobar, “Boundary element simulation of void formation in fibrous reinforcements based on the Stokes-Darcy formulation,” Comput. Methods Appl. Mech. Eng., vol. 304, pp. 265–293, 2016.spa
dc.relation.referencesI. Patiño Arcila, H. Power, C. Nieto Londoño, and W. Flórez Escobar, “Boundary Element Method for the dynamic evolution of intra-tow voids in dual-scale fibrous reinforcements using a Stokes–Darcy formulation,” Eng. Anal. Bound. Elem., vol. 87, pp. 133–152, Feb. 2018.spa
dc.relation.referencesB. Šarler, J. Perko, D. Gobin, B. Goyeau, and H. Power, “Dual reciprocity boundary element method solution of natural convection in Darcy–Brinkman porous media,” Eng. Anal. Bound. Elem., vol. 28, no. 1, pp. 23–41, Jan. 2004.spa
dc.relation.referencesA. Neumaier, “Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization,” SIAM Rev., vol. 40, no. 3, pp. 636–666, Jan. 1998.spa
dc.relation.referencesA. Rap, L. Elliott, D. B. Ingham, D. Lesnic, and X. Wen, “DRBEM for Cauchy convection-diffusion problems with variable coefficients,” Eng. Anal. Bound. Elem., vol. 28, no. 11, pp. 1321–1333, Nov. 2004.spa
dc.relation.referencesJ. Dermol-Černe, J. Vidmar, J. Ščančar, K. Uršič, G. Serša, and D. Miklavčič, “Connecting the in vitro and in vivo experiments in electrochemotherapy - a feasibility study modeling cisplatin transport in mouse melanoma using the dual-porosity model,” J. Control. Release, vol. 286, pp. 33–45, Sep. 2018.spa
dc.relation.referencesT. Murovec, D. C. Sweeney, E. Latouche, R. V. Davalos, and C. Brosseau, “Modeling of Transmembrane Potential in Realistic Multicellular Structures before Electroporation,” Biophys. J., vol. 111, no. 10, pp. 2286–2295, Nov. 2016.spa
dc.relation.referencesP. A. Garcia, R. V. Davalos, and D. Miklavcic, “A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue,” PLoS One, vol. 9, no. 8, p. e103083, Aug. 2014.spa
dc.relation.referencesA. Ongaro et al., “Evaluation of the Electroporation Efficiency of a Grid Electrode for Electrochemotherapy,” Technol. Cancer Res. Treat., vol. 15, no. 2, pp. 296–307, Apr. 2016.spa
dc.relation.referencesD. Voyer, A. Silve, L. M. Mir, R. Scorretti, and C. Poignard, “Dynamical modeling of tissue electroporation,” Bioelectrochemistry, vol. 119, pp. 98–110, Feb. 2018.spa
dc.relation.referencesJ. Chen, Y. Chu, J. Wang, and Z. Long, “Simultaneous visualization for coexpression of multiple neurotrophic factors in living Schwann cells,” African J. Biotechnol., vol. 9, no. 4, pp. 536–544, 2010.spa
dc.relation.referencesS. Ma, S. Wang, C. Zhang, and S. Zhang, “A method to improve the efficiency of an electric aircraft propulsion system,” Energy, vol. 140, pp. 436–443, Dec. 2017.spa
dc.relation.referencesS.-Y. Kim et al., “Correlation between electrical conductivity and apparent diffusion coefficient in breast cancer: effect of necrosis on magnetic resonance imaging,” Eur. Radiol., vol. 28, no. 8, pp. 3204–3214, Aug. 2018.spa
dc.relation.referencesJ. Lankelma, R. Fernández Luque, H. Dekker, W. Schinkel, and H. M. Pinedo, “A Mathematical Model of Drug Transport in Human Breast Cancer,” Microvasc. Res., vol. 59, no. 1, pp. 149–161, Jan. 2000.spa
dc.relation.referencesN. C. for information Biotechnology, “Compound summary Doxorubicin,” 2022. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Doxorubicin. [Accessed: 13-May-2022].spa
dc.relation.referencesD. S. Wishart et al., “DrugBank 5.0: a major update to the DrugBank database for 2018,” Nucleic Acids Res., vol. 46, no. D1, pp. D1074–D1082, Jan. 2018.spa
dc.relation.referencesS. Eikenberry, “A tumor cord model for Doxorubicin delivery and dose optimization in solid tumors,” Theor. Biol. Med. Model., vol. 6, no. 1, p. 16, Dec. 2009.spa
dc.relation.referencesT. L. Jackson, “Intracellular Accumulation and Mechanism of Action of Doxorubicin in a Spatio-temporal Tumor Model,” J. Theor. Biol., vol. 220, no. 2, pp. 201–213, Jan. 2003.spa
dc.relation.referencesM. E. Hubbard, M. Jove, P. M. Loadman, R. M. Phillips, C. J. Twelves, and S. W. Smye, “Drug delivery in a tumour cord model: a computational simulation,” R. Soc. Open Sci., vol. 4, no. 5, p. 170014, May 2017.spa
dc.relation.referencesC. M. Groh et al., “Mathematical and computational models of drug transport in tumours,” J. R. Soc. Interface, vol. 11, no. 94, p. 20131173, May 2014.spa
dc.relation.referencesE. Bellard et al., “Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization,” J. Control. Release, vol. 163, no. 3, pp. 396–403, 2012.spa
dc.relation.referencesM. Brinton, Y. Mandel, I. Schachar, and D. Palanker, “Mechanisms of electrical vasoconstriction,” J. Neuroeng. Rehabil., vol. 15, no. 1, pp. 1–10, 2018.spa
dc.relation.referencesS. Corovic, B. Markelc, M. Dolinar, M. Cemazar, and T. Jarm, “Modeling of microvascular permeability changes after electroporation.,” PLoS One, vol. 10, no. 3, p. e0121370, Mar. 2015.spa
dc.relation.referencesY. Mandel et al., “Vasoconstriction by Electrical Stimulation: New Approach to Control of Non-Compressible Hemorrhage,” Sci. Rep., vol. 3, no. 1, p. 2111, Dec. 2013.spa
dc.relation.referencesJ. Gehl, T. Skovsgaard, and L. M. Mir, “Vascular reactions to in vivo electroporation: Characterization and consequences for drug and gene delivery,” Biochim. Biophys. Acta - Gen. Subj., vol. 1569, no. 1–3, pp. 51–58, 2002.spa
dc.relation.referencesC. J. W. Meulenberg, V. Todorovic, and M. Cemazar, “Differential Cellular Effects of Electroporation and Electrochemotherapy in Monolayers of Human Microvascular Endothelial Cells,” PLoS One, vol. 7, no. 12, pp. 1–9, 2012.spa
dc.relation.referencesB. Markelc et al., “Increased permeability of blood vessels after reversible electroporation is facilitated by alterations in endothelial cell-to-cell junctions,” J. Control. Release, vol. 276, no. 9, pp. 30–41, Apr. 2018.spa
dc.relation.referencesB. Markelc, M. Čemažar, and G. Serša, “Effects of Reversible and Irreversible Electroporation on Endothelial Cells and Tissue Blood Flow,” in Handbook of Electroporation, Cham: Springer International Publishing, 2017, pp. 607–620.spa
dc.relation.referencesS. Ozawa, Y. Sugiyama, Y. Mitsuhashi, T. Kobayashi, and M. Inaba, “Cell killing action of cell cycle phase-non-specific antitumor agents is dependent on concentration-time product,” Cancer Chemother. Pharmacol., vol. 21, no. 3, pp. 185–190, 1988.spa
dc.relation.referencesA. W. El-Kareh and T. W. Secomb, “Two-mechanism peak concentration model for cellular pharmacodynamics of doxorubicin,” Neoplasia, vol. 7, no. 7, pp. 705–713, 2005.spa
dc.relation.referencesN. J. Millenbaugh, M. G. Wientjes, and J. L. S. Au, “A pharmacodynamic analysis method to determine the relative importance of drug concentration and treatment time on effect,” Cancer Chemother. Pharmacol., vol. 45, no. 4, pp. 265–272, 2000.spa
dc.relation.referencesJ. D. Vanegas and I. D. Patiño, “Filling simulation of the RTM process in isotropic homogeneous/non-homogeneous media using the boundary element method,” Adv. Compos. Mater., vol. 24, no. 2, pp. 113–139, 2015.spa
dc.relation.referencesK. E. L. Harrouni, D. Ouazar, L. C. Wrobel, C. A. Brebbia, U. M. V, and E. Mohammadia, “Method for Heterogeneous Porous Media,” Comput. Mech. Publ., no. C, pp. 5–6, 1992.spa
dc.relation.referencesK. E. L. Harrouni, D. Ouazar, L. C. Wrobel, and A. H. D. Cheng, “Global interpolation function based DRBEM applied to Darcy’s flow in heterogeneous media,” Eng. Anal. Bound. Elem., vol. 16, no. 3, pp. 281–285, 1995.spa
dc.relation.referencesP. W. Partridge and C. A. Brebbia, “Computer implementation of the BEM dual reciprocity method for the solution of general field equations,” Commun. Appl. Numer. Methods, vol. 6, no. 2, pp. 83–92, 1990.spa
dc.relation.referencesA. J. Nowak and P. W. Partridge, “Comparison of the dual reciprocity and the multiple reciprocity methods,” Eng. Anal. Bound. Elem., vol. 10, no. 2, pp. 155–160, 1992.spa
dc.relation.referencesJ. M. Granados, H. Power, C. A. Bustamante, W. F. Flórez, and A. F. Hill, “A global particular solution meshless approach for the four-sided lid-driven cavity flow problem in the presence of magnetic fields,” Comput. Fluids, vol. 160, pp. 120–137, 2018.spa
dc.relation.referencesS. J. Jackson, D. Stevens, D. Giddings, and H. Power, “An adaptive RBF finite collocation approach to track transport processes across moving fronts,” Comput. Math. with Appl., vol. 71, no. 1, pp. 278–300, 2016.spa
dc.relation.referencesS. J. Jackson, H. Power, and D. Giddings, “Immiscible thermo-viscous fingering in Hele-Shaw cells,” Comput. Fluids, vol. 156, pp. 621–641, 2017.spa
dc.relation.referencesD. Stevens and H. Power, “The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems,” J. Comput. Phys., vol. 298, pp. 423–445, 2015.spa
dc.relation.referencesS. K. Karode, “Laminar flow in channels with porous walls, revisited,” J. Memb. Sci., vol. 191, no. 1–2, pp. 237–241, 2001.spa
dc.relation.referencesT. Mohammed, M. Singh, J. G. Tiu, and A. S. Kim, “Etiology and management of hypertension in patients with cancer,” Cardio-Oncology, vol. 7, no. 1, pp. 1–13, 2021.spa
dc.relation.referencesF. D. Ramirez, V. Y. Reddy, R. Viswanathan, M. Hocini, and P. Jaïs, “Emerging Technologies for Pulmonary Vein Isolation,” Circ. Res., vol. 127, no. 1, pp. 170–183, 2020.spa
dc.relation.referencesL. D. J. Fiederer et al., “The role of blood vessels in high-resolution volume conductor head modeling of EEG,” Neuroimage, vol. 128, pp. 193–208, 2016.spa
dc.relation.referencesA. Khorasani, “A numerical study on the effect of conductivity change in cell kill distribution in irreversible electroporation,” Polish J. Med. Phys. Eng., vol. 26, no. 2, pp. 69–76, 2020.spa
dc.relation.referencesJ. Robert, A. Illiadis, B. Hoerni, J. P. Cano, M. Durand, and C. Lagarde, “Pharmacokinetics of adriamycin in patients with breast cancer: Correlation between pharmacokinetic parameters and clinical short-term response,” Eur. J. Cancer Clin. Oncol., vol. 18, no. 8, pp. 739–745, 1982.spa
dc.relation.referencesS. Movahed and D. Li, “Microfluidics cell electroporation,” Microfluidics and Nanofluidics, vol. 10, no. 4. Springer, pp. 703–734, 19-Apr-2011.spa
dc.relation.referencesB. Markelc et al., “In Vivo Molecular Imaging and Histological Analysis of Changes Induced by Electric Pulses Used for Plasmid DNA Electrotransfer to the Skin: A Study in a Dorsal Window Chamber in Mice,” J. Membr. Biol., vol. 245, no. 9, pp. 545–554, Sep. 2012.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.lembElectroporación - Modelos matemáticos
dc.subject.proposalCáncerspa
dc.subject.proposalModelos matemáticosspa
dc.subject.proposalSimulación biocomputacionalspa
dc.subject.proposalConcentración extra-intracelularspa
dc.subject.proposalElectroporaciónspa
dc.subject.proposalElectroquimioterapiaspa
dc.subject.proposalCancereng
dc.subject.proposalMathematical modelseng
dc.subject.proposalBiocomputational simulationeng
dc.subject.proposalExtra-intracellular concentrationeng
dc.subject.proposalElectroporationeng
dc.subject.proposalElectrochemotherapyeng
dc.subject.wikidataElectroporación
dc.subject.wikidataElectroquimioterapia
dc.titleRespuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacionalspa
dc.title.translatedResponse of cancer to treatment by chemotherapy and electrochemical therapy using biocomputational modeling and simulationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
75077047.2023.pdf
Tamaño:
7.99 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Industria y Organizaciones

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: