Revealing brain network dynamics during the emotional state of suspense using topological data analysis

dc.contributor.advisorPerea, José
dc.contributor.advisorGómez Jaramillo, Francisco Albeiro
dc.contributor.authorOlave Herrera, Astrid Arena
dc.contributor.researchgroupCOMBIOSspa
dc.date.accessioned2022-03-16T13:13:26Z
dc.date.available2022-03-16T13:13:26Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, gráficas, tablasspa
dc.description.abstractSuspense is an affective state ubiquitous in human life, from art to quotidian events. However, little is known about the behavior of large-scale networks during suspenseful experiences. To address this question, we examined the continuous brain responses of participants watching a suspenseful movie along with a reported level of suspense from viewers. We employed sliding window analysis and Pearson correlation to measure functional connectivity states along time. Then, we used Mapper, a tool of Topological Data Analysis, to obtain a graphical representation capturing the brain’s dynamical transitions across states. Our analysis revealed changes in the functional connectivity within and between Salience, Fronto-Parietal, and Default networks associated with suspense. In particular, the functional connectivity between Salience and Fronto-Parietal networks increased with the level of suspense. In contrast, the connections of both networks with the Default network decreased. Together, our findings expose the dynamical changes of functional connectivity at the network level associated with the variation of suspense and reveal topological analysis as a potentially powerful tool for studying dynamic brain networks.eng
dc.description.abstractEl suspenso es un estado emocional omnipresente en la vida humana, desde el arte hasta los eventos cotidianos. Sin embargo, se sabe poco sobre el comportamiento de las redes cerebrales a gran escala durante las experiencias de suspenso. Para abordar esta pregunta, examinamos continuamente las respuestas cerebrales de participantes que ven una película de suspenso junto a un reporte de los espectadores ds su nivel de suspenso. Empleamos el análisis de ventana deslizante y el índice de correlación de Pearson para medir los estados de conectividad funcional a lo largo del tiempo. Luego, usamos Mapper, una herramienta del análisis topologico de datos, para obtener una representación gráfica que captura las transiciones dinámicas del cerebro a través de los estados. Nuestro análisis reveló cambios en la conectividad funcional dentro y entre las redes saliente, fronto-parietal y por defecto asociadas con el suspenso. En particular, la conectividad funcional entre las redes saliente y fronto-parietal aumentó con el nivel de suspenso. Por el contrario, las conexiones de ambas redes con la red por defecto disminuyeron. Nuestros resultados muestran los cambios dinámicos de la conectividad funcional a nivel de red asociados con la variacion de suspenso y revelan al análisis topológico de datos como una herramienta potencialmente poderosa para estudiar la redes dinámicas del cerebro. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemática Aplicadaspa
dc.description.notesCode to reproduce and document the analyses is accessible online at https://github.com/aaolaveh/TDA_suspenseeng
dc.description.researchareaMatemáticas Aplicadasspa
dc.format.extent´xviii, 69 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81235
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemática Aplicadaspa
dc.relation.referencesLehne, M., and Koelsch, S., Toward a general psychological model of tension and suspense, Frontiers in Psychology 6 (2015)spa
dc.relation.referencesSchm ̈alzle, R., and Grall, C., The coupled brains of captivated audiences, Journal of Media Psychology (2020)spa
dc.relation.referencesLindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., and Barrett, L. F., The brain basis of emotion: A meta-analytic review, Behavioral and Brain Sciences 35 (2012), no. 3spa
dc.relation.referencesLehne, M., Emotional experiences of tension and suspense: psychological mechanisms and neural correlates, Ph.D. thesis, Fachbereich Erziehungswissenschaft und Psychologie der Freien Universit ̈at Berlin, 2014spa
dc.relation.referencesPessoa, L., A network model of the emotional brain, Trends in cognitive sciences 21 (2017), no. 5spa
dc.relation.referencesHermans, E. J., Henckens, M. J., Jo ̈els, M., and Fernández, G., Dynamic adaptation of large-scale brain networks in response to acute stressors, Trends in Neurosciences 37 (2014), no. 6spa
dc.relation.referencesMcMenamin, B. W., Langeslag, S. J. E., Sirbu, M., Padmala, S., and Pessoa, L., Network organization unfolds over time during periods of anxious anticipation, Journal of Neuroscience 34 (2014), no. 34spa
dc.relation.referencesNajafi, M., Kinnison, J., and Pessoa, L., Dynamics of intersubject brain networks during anxious anticipation, Frontiers in human neuroscience 11 (2017)spa
dc.relation.referencesSaggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P. A., Carlsson, G., Glover, G., and Reiss, A. L., Towards a new approach to reveal dynamical organization of the brain using topological data analysis, Nature communications 9 (2018), no. 1spa
dc.relation.referencesSingh, G., Memoli, F., and Carlsson, G., Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition, Eurographics Symposium on Point-Based Graphics (Botsch, M., Pajarola, R., Chen, B., and Zwicker, M., eds.), The Eurographics Association, 2007spa
dc.relation.referencesLindquist, K., and Barrett, L., A functional architecture of the human brain: Emerging insights from the science of emotion, Trends in cognitive sciences 16 (2012)spa
dc.relation.referencesPessoa, L., and McMenamin, B., Dynamic networks in the emotional brain, The Neuroscientist 23 (2017), no. 4spa
dc.relation.referencesEdelsbrunner, H., and Harer, J., Computational topology: an introduction, American Mathematical Soc., 2010spa
dc.relation.referencesPiekenbrock, M., Doran, D., and Kramer, R., Efficient multi-scale simplicial complex generation for mapper, 2018spa
dc.relation.referencesPiekenbrock, M., Doran, D., and Kramer, R., Mapper, 2019, https://github.com/peekxc/Mapperspa
dc.relation.referencesWang, H. E., B énar, C. G., Quilichini, P. P., Friston, K. J., Jirsa, V. K., and Bernard, C., A systematic framework for functional connectivity measures, Frontiers in Neuroscience 8 (2014)spa
dc.relation.referencesBressler, S. L., and Menon, V., Large-scale brain networks in cognition: emerging methods and principles, Trends in cognitive sciences 14 (2010), no. 6spa
dc.relation.referencesLeDoux, J. E., Emotion circuits in the brain, Annual Review of Neuroscience 23 (2000), no. 1.spa
dc.relation.referencesCeleghin, A., Diano, M., Bagnis, A., Viola, M., and Tamietto, M., Basic emotions in human neuroscience: neuroimaging and beyond, Frontiers in psychology 8 (2017)spa
dc.relation.referencesKnobloch-Westerwick, S., David, P., Eastin, M. S., Tamborini, R., and Greenwood, D., Sports spectators’ suspense: Affect and uncertainty in sports entertainment, Journal of Communication 59 (2009), no. 4spa
dc.relation.referencesKnobloch-Westerwick, S., and Keplinger, C., Thrilling news: Factors generating suspense during news exposure, Media Psychology 9 (2007), no. 1spa
dc.relation.referencesLöker, A., Film and suspense, Trafford Publishing, 2005spa
dc.relation.referencesSmith, G. M., Film structure and the emotion system, Cambridge University Press, 2003spa
dc.relation.referencesPrieto-Pablos, J. A., The paradox of suspense, Poetics 26 (1998), no. 2.spa
dc.relation.referencesSmuts, A., The paradox of suspense, 2009, https://plato.stanford.edu/archives/fall2009/entries/paradox- suspense/spa
dc.relation.referencesVorderer, P., Wulff, H. J., and Friedrichsen, M., Suspense: Conceptualizations, theoretical analyses, and empirical explorations, Routledge, 1996spa
dc.relation.referencesBezdek, M. A., Gerrig, R. J., Wenzel, W. G., Shin, J., Revill, K. P., and Schumacher, E. H., Neural evidence that suspense narrows attentional focus, Neuroscience 303 (2015)spa
dc.relation.referencesBezdek, M. A., Wenzel, W. G., and Schumacher, E. H., The effect of visual and musical suspense on brain activation and memory during naturalistic viewing, Biological Psychology 129 (2017)spa
dc.relation.referencesLehne, M., Engel, P., Rohrmeier, M., Menninghaus, W., Jacobs, A. M., and Koelsch, S., Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference, PLoS One 10 (2015), no. 5spa
dc.relation.referencesLehne, M., Rohrmeier, M., and Koelsch, S., Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music, Social Cognitive and Affective Neuroscience 9 (2013), no. 10spa
dc.relation.referencesNORDEN, M. F., Toward a theory of audience response to suspenseful films, Journal of the University Film Association 32 (1980), no. 1/2spa
dc.relation.referencesSteinbeis, N., and Koelsch, S., Shared Neural Resources between Music and Language Indicate Semantic Processing of Musical Tension-Resolution Patterns, Cerebral Cortex 18 (2007), no. 5spa
dc.relation.referencesBassett, D. S., and Gazzaniga, M. S., Understanding complexity in the human brain, Trends in cognitive sciences 15 (2011), no. 5spa
dc.relation.referencesTelesford, Q. K., Lynall, M.-E., Vettel, J., Miller, M. B., Grafton, S. T., and Bassett, D. S., Detection of functional brain network reconfiguration during task-driven cognitive states, NeuroImage 142 (2016)spa
dc.relation.referencesKinnison, J., Padmala, S., Choi, J.-M., and Pessoa, L., Network analysis reveals increased integration during emotional and motivational processing, Journal of Neuro- science 32 (2012), no. 24spa
dc.relation.referencesRaz, G., Winetraub, Y., Jacob, Y., Kinreich, S., Maron-Katz, A., Shaham, G., Podlip- sky, I., Gilam, G., Soreq, E., and Hendler, T., Portraying emotions at their unfolding: A multilayered approach for probing dynamics of neural networks, NeuroImage 60 (2012), no. 2spa
dc.relation.referencesTouroutoglou, A., Bickart, K. C., Barrett, L. F., and Dickerson, B. C., Amygdala task-evoked activity and task-free connectivity independently contribute to feelings of arousal, Human Brain Mapping 35 (2014), no. 10spa
dc.relation.referencesTouroutoglou, A., Lindquist, K. A., Dickerson, B. C., and Barrett, L. F., Intrinsic connectivity in the human brain does not reveal networks for ‘basic’emotions, Social cognitive and affective neuroscience 10 (2015), no. 9.spa
dc.relation.referencesWilson-Mendenhall, C. D., Barrett, L. F., and Barsalou, L. W., Variety in emotional life: within-category typicality of emotional experiences is associated with neural activity in large-scale brain networks, Social cognitive and affective neuroscience 10 (2015), no. 1spa
dc.relation.referencesRaz, G., Touroutoglou, A., Wilson-Mendenhall, C., Gilam, G., Lin, T., Gonen, T., Jacob, Y., Atzil, S., Admon, R., Bleich-Cohen, M., et al., Functional connectiv- ity dynamics during film viewing reveal common networks for different emotional experiences, Cognitive, Affective, & Behavioral Neuroscience 16 (2016), no. 4spa
dc.relation.referencesDiano, M., Tamietto, M., Celeghin, A., Weiskrantz, L., Tatu, M.-K., Bagnis, A., Duca, S., Geminiani, G., Cauda, F., and Costa, T., Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions, Scientific Reports 7 (2017), no. 1spa
dc.relation.referencesSatpute, A. B., and Lindquist, K. A., The default mode network’s role in discrete emotion, Trends in Cognitive Sciences 23 (2019), no. 10spa
dc.relation.referencesDabaghian, Y., M ́emoli, F., Frank, L., and Carlsson, G., A topological paradigm for hippocampal spatial map formation using persistent homology, PLoS computational biology 8 (2012), no. 8spa
dc.relation.referencesReimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., D lotko, P., Levi, R., Hess, K., and Markram, H., Cliques of neurons bound into cavities provide a missing link between structure and function, Frontiers in computational neuroscience 11 (2017)spa
dc.relation.referencesSizemore, A. E., Giusti, C., Kahn, A., Vettel, J. M., Betzel, R. F., and Bassett, D. S., Cliques and cavities in the human connectome, Journal of computational neuroscience 44 (2018), no. 1spa
dc.relation.referencesYoo, J., Kim, E. Y., Ahn, Y. M., and Ye, J. C., Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages, Journal of neuroscience methods 267 (2016)spa
dc.relation.referencesChazal, F., and Michel, B., An introduction to topological data analysis: fundamental and practical aspects for data scientists, ArXiv abs/1710.04019 (2017)spa
dc.relation.referencesBressler, S. L., and Menon, V., Large-scale brain networks in cognition: emerging methods and principles, Trends in cognitive sciences 14 (2010), no. 6spa
dc.relation.referencesUddin, L. Q., Yeo, B. T. T., and Spreng, R. N., Towards a universal taxonomy of macro-scale functional human brain networks, Brain Topography 32 (2019), no. 6spa
dc.relation.referencesPower, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., et al., Functional network organization of the human brain, Neuron 72 (2011), no. 4spa
dc.relation.referencesBarrett, L. F., and Satpute, A. B., Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain, Current opinion in neurobiology 23 (2013), no. 3spa
dc.relation.referencesPessoa, L., Understanding emotion with brain networks, Current opinion in behavioral sciences 19 (2018)spa
dc.relation.referencesBraun, U., Sch ̈afer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., Schweiger, J. I., Grimm, O., Heinz, A., Tost, H., et al., Dynamic reconfiguration of frontal brain networks during executive cognition in humans, Proceedings of the National Academy of Sciences 112 (2015), no. 37spa
dc.relation.referencesKhambhati, A. N., Sizemore, A. E., Betzel, R. F., and Bassett, D. S., Modeling and interpreting mesoscale network dynamics, NeuroImage 180 (2018)spa
dc.relation.referencesHuang, X., Yao, Y., Bowman, G. R., Sun, J., Guibas, L. J., Carlsson, G. E., and Pande, V. S., Constructing multi-resolution markov state models (msms) to elucidate rna hairpin folding mechanisms, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing (2010)spa
dc.relation.referencesYao, Y., Sun, J., Huang, X., Bowman, G. R., Singh, G., Lesnick, M., Guibas, L. J., Pande, V. S., and Carlsson, G., Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics 130 (2009), no. 14spa
dc.relation.referencesNicolau, M., Levine, A. J., and Carlsson, G., Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Proceedings of the National Academy of Sciences 108 (2011), no. 17spa
dc.relation.referencesNielson, J. L., Paquette, J., Liu, A. W., Guandique, C. F., Tovar, C. A., Inoue, T., Irvine, K.-A., Gensel, J. C., Kloke, J., Petrossian, T. C., et al., Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury, Nature communications 6 (2015), no. 1spa
dc.relation.referencesFeged-Rivadeneira, A., ́Angel, A., Gonz ́alez-Casabianca, F., and Rivera, C., Malaria intensity in colombia by regions and populations, PLOS ONE 13 (2018), no. 9spa
dc.relation.referencesBakken Stovner, R., On the mapper algorithm, Ph.D. thesis, Norwegian University of Science and Technolog, 2012spa
dc.relation.referencesCampbell, K. L., Shafto, M. A., Wright, P., Tsvetanov, K. A., Geerligs, L., Cusack, R., Tyler, L. K., and ..., Idiosyncratic responding during movie-watching predicted by age differences in attentional control, Neurobiology of Aging 36 (2015), no. 11spa
dc.relation.referencesShafto, M. A., , Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., Calder, A. J., Marslen-Wilson, W. D., Duncan, J., Dalgleish, T., Henson, R. N., Brayne, C., and Matthews, F. E., The cambridge centre for ageing and neuroscience (cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing, BMC Neurology 14 (2014), no. 1spa
dc.relation.referencesGabert-Quillen, C. A., Bartolini, E. E., Abravanel, B. T., and Sanislow, C. A., Ratings for emotion film clips, Behavior research methods 47 (2015), no. 3.spa
dc.relation.referencesHasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., and Heeger, D. J., Neurocinematics: The neuroscience of film, Projections 2 (2008), no. 1spa
dc.relation.referencesBiocca, F., David, P., and West, M., Continuous response measurement (crm): A computerized tool for research on the cognitive processing of media messages, A. Lang (Ed.) (1993)spa
dc.relation.referencesNummenmaa, L., Glerean, E., Viinikainen, M., J ̈a ̈askel ̈ainen, I. P., Hari, R., and Sams, M., Emotions promote social interaction by synchronizing brain activity across individuals, Proceedings of the National Academy of Sciences 109 (2012), no. 24spa
dc.relation.referencesGorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., and Ghosh, S. S., Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python, Frontiers in neuroinformatics 5 (2011)spa
dc.relation.referencesAbraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., and Varoquaux, G., Machine learning for neuroimaging with scikit-learn, Frontiers in neuroinformatics 8 (2014)spa
dc.relation.referencesEickhoff, S. B., Yeo, B. T., and Genon, S., Imaging-based parcellations of the human brain, Nature Reviews Neuroscience 19 (2018), no. 11spa
dc.relation.referencesShen, X., Tokoglu, F., Papademetris, X., and Constable, R. T., Groupwise whole-brain parcellation from resting-state fmri data for network node identification, Neuroimage 82 (2013)spa
dc.relation.referencesFinn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., and Constable, R. T., Functional connectome fingerprinting: iden- tifying individuals using patterns of brain connectivity, Nature Neuroscience 18 (2015), no. 11spa
dc.relation.referencesPapademetris, X., Bioimage suite web, https://github.com/bioimagesuiteweb/bisweb, GitHub. Retrieved February 2, 2021spa
dc.relation.referencesPreti, M. G., Bolton, T. A., and Van De Ville, D., The dynamic functional connectome: State-of-the-art and perspectives, Neuroimage 160 (2017)spa
dc.relation.referencesShakil, S., Lee, C.-H., and Keilholz, S. D., Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states, Neuroimage 133 (2016)spa
dc.relation.referencesLeonardi, N., and Van De Ville, D., On spurious and real fluctuations of dynamic functional connectivity during rest, Neuroimage 104 (2015)spa
dc.relation.referencesHutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., et al., Dynamic functional connectivity: promise, issues, and interpretations, Neuroimage 80 (2013)spa
dc.relation.referencesDunlap, W. P., Jones, M. B., and Bittner, A. C., Average correlations vs. correlated averages, Bulletin of the Psychonomic Society 21 (1983), no. 3spa
dc.relation.referencesSilver, N. C., and Dunlap, W. P., Averaging correlation coefficients: should fisher’s z transformation be used?, Journal of applied psychology 72 (1987), no. 1spa
dc.relation.referencesBullmore, E. T., and Bassett, D. S., Brain graphs: graphical models of the human brain connectome, Annual review of clinical psychology 7 (2011).spa
dc.relation.referencesCarriere, M., Michel, B., and Oudot, S., Statistical analysis and parameter selection for mapper, The Journal of Machine Learning Research 19 (2018), no. 1spa
dc.relation.referencesHajij, M., Wang, B., and Rosen, P., Mog: Mapper on graphs for relationship preserving clustering, 2018, arXiv preprint arXiv:1804.11242spa
dc.relation.referencesLum, P. Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J., and Carlsson, G., Extracting insights from the shape of complex data using topology, Scientific reports 3 (2013)spa
dc.relation.referencesTenenbaum, J. B., De Silva, V., and Langford, J. C., A global geometric framework for nonlinear dimensionality reduction, science 290 (2000), no. 5500spa
dc.relation.referencesBorg, I., and Groenen, P. J., Modern multidimensional scaling: Theory and applica- tions, Springer Science & Business Media, 2005spa
dc.relation.referencesEstivill-Castro, V., Why so many clustering algorithms: a position paper, SIGKDD Explorations 4 (2002)spa
dc.relation.referencesGan, G., Ma, C., and Wu, J., Data clustering: theory, algorithms, and applications, vol. 20, Siam, 2007spa
dc.relation.referencesSilverman, B. W., Density estimation for statistics and data analysis, vol. 26, CRC press, 1986spa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011).spa
dc.relation.referencesTralie, C., Saul, N., and Bar-On, R., Ripser.py: A lean persistent homology library for python, The Journal of Open Source Software 3 (2018), no. 29spa
dc.relation.referencesHindriks, R., Adhikari, M., Murayama, Y., Ganzetti, M., Mantini, D., Logothetis, N., and Deco, G., Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?, NeuroImage 127 (2016)spa
dc.relation.referencesPrichard, D., and Theiler, J., Generating surrogate data for time series with several simultaneously measured variables, Physical Review Letters 73 (1994), no. 7spa
dc.relation.referencesGirvan, M., and Newman, M. E. J., Community structure in social and biological networks, Proceedings of the National Academy of Sciences 99 (2002), no. 12spa
dc.relation.referencesChiang, S., Cassese, A., Guindani, M., Vannucci, M., Yeh, H. J., Haneef, Z., and Stern, J. M., Time-dependence of graph theory metrics in functional connectivity analysis, NeuroImage 125 (2016)spa
dc.relation.referencesOu, J., Xie, L., Jin, C., Li, X., Zhu, D., Jiang, R., Chen, Y., Zhang, J., Li, L., and Liu, T., Characterizing and differentiating brain state dynamics via hidden markov models, Brain Topography 28 (2014), no. 5spa
dc.relation.referencesYang, Z., Craddock, R. C., Margulies, D. S., Yan, C.-G., and Milham, M. P., Common intrinsic connectivity states among posteromedial cortex subdivisions: Insights from analysis of temporal dynamics, NeuroImage 93 (2014)spa
dc.relation.referencesAllen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D., Tracking Whole-Brain Connectivity Dynamics in the Resting State, Cerebral Cortex 24 (2012), no. 3spa
dc.relation.referencesHutchison, R. M., and Morton, J. B., Tracking the brain’s functional coupling dynamics over development, Journal of Neuroscience 35 (2015), no. 17spa
dc.relation.referencesUddin, L. Q., Clare Kelly, A., Biswal, B. B., Xavier Castellanos, F., and Milham, M. P., Functional connectivity of default mode network components: correlation, anticorrelation, and causality, Human brain mapping 30 (2009), no. 2spa
dc.relation.referencesSun, F. T., Miller, L. M., and D’Esposito, M., Measuring interregional functional connectivity using coherence and partial coherence analyses of fmri data, NeuroImage 21 (2004), no. 2spa
dc.relation.referencesBastos, A. M., and Schoffelen, J.-M., A tutorial review of functional connectivity analysis methods and their interpretational pitfalls, Frontiers in systems neuroscience 9 (2016)spa
dc.rightsDerechos reservados al autos, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.otherNeurofisiologíaspa
dc.subject.otherNeurophysiologyeng
dc.subject.proposalfMRIeng
dc.subject.proposalDynamic functional connectivityeng
dc.subject.proposalTopological data analysiseng
dc.subject.proposalMappereng
dc.subject.proposalSuspenseeng
dc.subject.proposalSuspensospa
dc.subject.proposalConectividad funcional dinámicaspa
dc.subject.proposalAnálisis topológico de datosspa
dc.subject.unescoInvestigación sobre el cerebrospa
dc.subject.unescoBrain researcheng
dc.titleRevealing brain network dynamics during the emotional state of suspense using topological data analysiseng
dc.title.translatedDescubriendo las dinámicas de las redes cerebrales durante el estado emocional de suspenso usando análisis topológico de datosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030657446.2021.pdf
Tamaño:
7.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemática Aplicada

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: