Relación entre niveles de expresión de HPGD con la densidad y el fenotipo de linfocitos T en tejido tumoral de pacientes con cáncer de próstata y su asociación con recurrencia bioquímica

dc.contributor.advisorCombita Rojas, Alba Lucíaspa
dc.contributor.advisorParra Media, Rafael Santiagospa
dc.contributor.authorRodríguez Castañeda, Sergio Fabiánspa
dc.date.accessioned2022-06-29T19:07:51Z
dc.date.available2022-06-29T19:07:51Z
dc.date.issued2022-06-09
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEn este proyecto se planteó determinar la relación entre los niveles de expresión de 15-Hidroxiprostaglandina deshidrogenasa (HPGD) con la densidad y el fenotipo de linfocitos T (LT) en tejido prostático de pacientes con cáncer de próstata (CaP) y su posible asociación con la recurrencia bioquímica (RB). Es un estudio analítico retrospectivo, en tejidos incluidos en parafina de pacientes con CaP tratados en el Instituto Nacional de Cancerología (INC) entre los años 2007 a 2013, intervenidos con prostatectomía radical (PR). Se analizó la expresión de HPGD mediante qRT-PCR e inmunohistoquímica. La población y fenotipo de LT (periféricos e infiltrantes de tumor (TIL)) se determinó mediante inmunohistoquímica a través de la utilización de anticuerpos específicos para cada marcador. Pruebas de χ2 o test exacto de Fisher fueron aplicadas para determinar diferencias estadísticamente significativas entre las variables analizadas con una p<0,05. Se observó una expresión positiva de HPGD en todos los casos, sin embargo, esta expresión fue de bajo nivel den la mayoría. Adicional, no se encontraron diferencias significativas con respecto a los desenlaces de RB ni los grupos grado Gleason (p>0,05). La expresión proteica de HPGD en tejido prostático no tumoral se encontró en alta frecuencia a bajo nivel mientras que, en tejido tumoral se halló una baja frecuencia y bajo nivel (p<0,001). La infiltración de LT se presentó en mayor densidad en la región tumoral vs periférica (p<0,001). La densidad alta de TIL se asoció a mayor infiltración CD4 que CD8 y ambos casos se relacionaron con un riesgo de desarrollo de RB (P<0,05). La razón CD8/CD4 se presentó principalmente en mayor frecuencia en tejido periférico de pacientes sin RB. Por otro lado, la expresión alta de HPGD se encontró casi exclusivamente en tejido tumoral en un número reducido de casos y en estos se relacionó con una tendencia de expresión negativa de ERG y sin RB. Aunque no se pudo establecer una asociación entre la densidad ni la razón TIL CD4/CD8 con los niveles de expresión de HPGD y los desenlaces de RB, nuestros resultados resaltan los hallazgos de que la expresión de ERG podría desregular la expresión de HPGD y esta baja expresión podría explicar la baja actividad de los TIL explicando las características de un tumor frío inmunológicamente. Sin embargo, es necesario realizar otros ensayos que permita establecer un mejor fenotipo de las poblaciones celulares y en un número poblacional mayor. (Texto tomado de la fuente).spa
dc.description.abstractThis project aimed to determine the relationship between the expression levels of 15-Hydroxyprostagladine dehydrogenase (HPGD) with the density and phenotype of T lymphocytes (Tcell) in prostatic tissue from patients with prostate cancer (PCa) and its possible association with biochemical recurrence (BCR). It is a retrospective analytical study, in paraffin-embedded tissues of patients with PCa treated at the National Cancer Institute (INC) between 2007 and 2013, who underwent radical prostatectomy (PR). HPGD expression was analyzed by qRT-PCR and immunohistochemistry. The population and phenotype of LT (peripheral and tumor infiltrating (TIL)) was determined by immunohistochemistry through the use of specific antibodies for each marker. χ2 tests or Fisher's exact test were applied to determine statistically significant differences between the variables analyzed with a p<0.05. Positive expression of HPGD was observed in all cases, however this expression was low level in the majority. Additionally, no significant differences were found regarding the outcomes of BR or the Gleason grade groups (p>0.05). The protein expression of HPGD in non-tumorous prostate tissue was found in high frequency at a low level, while in tumor tissue a low frequency and low level was found (p<0.001). LT infiltration was found to be more dense in the tumor vs. peripheral region (p<0.001). High TIL density was associated with greater CD4 than CD8 infiltration, and both cases were associated with a risk of BR development (P<0.05). The CD8/CD4 ratio was mainly present in higher frequency in peripheral tissue of patients without BR. On the other hand, the high expression of HPGD was found almost exclusively in tumor tissue in a small number of cases and in these it was related to a trend of negative expression of ERG and without RB. Although an association between density and TIL CD4/CD8 ratio with HPGD expression levels and RB outcomes could not be established, our results highlight the findings that ERG expression could dysregulate HPGD expression and this low expression could explain the low activity of TILs, explaining the characteristics of an immunologically cold tumor. However, it is necessary to carry out other tests that allow establishing a better phenotype of the cell populations and in a larger population number.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Inmunologíaspa
dc.description.methodsEs un estudio analítico retrospectivo, para la caracterización de densidad y fenotipos específicos de linfocitos infiltrantes de tumor asociados a los niveles de expresión del gen HPGD y al riesgo de RB.spa
dc.description.sponsorshipMaestría en Inmunología Departamento de Microbiología Facultad de Medicina Universidad Nacional de Colombiaspa
dc.format.extentxvi, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81670
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Microbiologíaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Inmunologíaspa
dc.relation.indexedBiremespa
dc.relation.references[1] H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, doi: 10.3322/caac.21660.spa
dc.relation.references[2] The Global Cancer Observatory, “GLOBOCAN 2020: International Agency Research on Cancer,” 2020. https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf.spa
dc.relation.references[3] P. Rawla, “Epidemiology of Prostate Cancer,” vol. 10, no. 2, pp. 63–89, 2019, doi: 10.1159/000423644.spa
dc.relation.references[4] A. Barsouk et al., “Epidemiology, Staging and Management of Prostate Cancer,” Med. Sci., vol. 8, no. 3, p. 28, 2020, doi: 10.3390/medsci8030028.spa
dc.relation.references[5] Z. Wang et al., “The efficacy and safety of radical prostatectomy and radiotherapy in high-risk prostate cancer: A systematic review and meta-analysis,” World Journal of Surgical Oncology, vol. 18, no. 1. BioMed Central Ltd., Feb. 24, 2020, doi: 10.1186/s12957-020-01824-9.spa
dc.relation.references[6] X. Zhou et al., “Comparing effectiveness of radical prostatectomy versus external beam radiotherapy in patients with locally advanced prostate cancer: A population-based analysis,” Medicine (Baltimore)., vol. 99, no. 34, p. e21642, 2020, doi: 10.1097/MD.0000000000021642.spa
dc.relation.references[7] R. Tourinho-Barbosa et al., “Biochemical recurrence after radical prostatectomy: what does it mean?,” doi: 10.1590/S1677-5538.IBJU.2016.0656.spa
dc.relation.references[8] C. L. Amling, E. J. Bergstralh, M. L. Blute, J. M. Slezak, and H. Zincke, “Defining prostate specific antigen progression after radical prostatectomy: What is the most appropriate cut point?,” J. Urol., vol. 165, no. 4, pp. 1146–1151, 2001, doi: 10.1016/S0022-5347(05)66452-X.spa
dc.relation.references[9] A. I. Cole et al., “Prognostic Value of Percent Gleason Grade 4 at Prostate Biopsy in Predicting Prostatectomy Pathology and Recurrence,” J. Urol., vol. 196, no. 2, pp. 405–411, Aug. 2016, doi: 10.1016/j.juro.2016.01.120.spa
dc.relation.references[10] A. V. D’Amico et al., “Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer,” J. Am. Med. Assoc., vol. 280, no. 11, pp. 969–974, Sep. 1998, doi: 10.1001/jama.280.11.969.spa
dc.relation.references[11] I. M. van Oort, C. A. Hulsbergen-vandeKaa, and J. A. Witjes, “Prognostic Factors in Radical Prostatectomy Specimens: What Do We Need to Know from Pathologists?,” European Urology, Supplements, vol. 7, no. 12. Elsevier, pp. 715–722, Nov. 01, 2008, doi: 10.1016/j.eursup.2008.07.002.spa
dc.relation.references[12] M. N. Simmons, A. J. Stephenson, and E. A. Klein, “Natural History of Biochemical Recurrence after Radical Prostatectomy: Risk Assessment for Secondary Therapy{A figure is presented},” European Urology, vol. 51, no. 5. Elsevier, pp. 1175–1184, May 01, 2007, doi: 10.1016/j.eururo.2007.01.015.spa
dc.relation.references[13] N. Mottet et al., “Highlights on Prostate Cancer from Urological and Oncological Congresses in 2007,” European Urology, Supplements, vol. 7, no. 6. Elsevier, pp. 460–476, Apr. 01, 2008, doi: 10.1016/j.eursup.2008.01.004.spa
dc.relation.references[14] A. Pettersson et al., “The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: A cohort study and meta-analysis,” Cancer Epidemiol. Biomarkers Prev., vol. 21, no. 9, pp. 1497–1509, Sep. 2012, doi: 10.1158/1055-9965.EPI-12-0042.spa
dc.relation.references[15] S. A. Tomlins et al., “Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer,” Science (80-. )., vol. 310, no. 5748, pp. 644–648, 2005, doi: 10.1126/science.1117679.spa
dc.relation.references[16] O. Klezovitch et al., “A causal role for ERG in neoplastic transformation of prostate epithelium,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 6, pp. 2105–2110, Feb. 2008, doi: 10.1073/pnas.0711711105.spa
dc.relation.references[17] S. H. Kim et al., “Overexpression of ERG and wild-type PTEN are associated with favorable clinical prognosis and low biochemical recurrence in prostate cancer,” PLoS One, vol. 10, no. 4, Apr. 2015, doi: 10.1371/journal.pone.0122498.spa
dc.relation.references[18] H. Tai, H. Cho, M. Tong, and Y. Ding, “NAD+-Linked 15-Hydroxyprostaglandin Dehydrogenase: Structure and Biological Functions,” Curr. Pharm. Des., vol. 12, pp. 955–962, 2006.spa
dc.relation.references[19] S. Josson, Y. Matsuoka, L. W. K. Chung, H. E. Zhau, and R. Wang, “Tumor-stroma co-evolution in prostate cancer progression and metastasis,” Seminars in Cell and Developmental Biology, vol. 21, no. 1. Elsevier Ltd, pp. 26–32, 2010, doi: 10.1016/j.semcdb.2009.11.016.spa
dc.relation.references[20] R. D. Schreiber, L. J. Old, and M. J. Smyth, “Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion,” Science, vol. 331, no. 6024. Science, pp. 1565–1570, Mar. 25, 2011, doi: 10.1126/science.1203486.spa
dc.relation.references[21] Y. Kiniwa et al., “CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer,” Clin. Cancer Res., vol. 13, no. 23, pp. 6947–6958, 2007, doi: 10.1158/1078-0432.CCR-07-0842.spa
dc.relation.references[22] L. Schmidleithner et al., “Enzymatic Activity of HPGD in Treg Cells Suppresses Tconv Cells to Maintain Adipose Tissue Homeostasis and Prevent Metabolic Dysfunction,” Immunity, vol. 50, no. 5, pp. 1232-1248.e14, 2019, doi: 10.1016/j.immuni.2019.03.014.spa
dc.relation.references[23] X. Lin et al., “Assessment of biochemical recurrence of prostate cancer (Review),” International Journal of Oncology, vol. 55, no. 6. Spandidos Publications, pp. 1194–1212, Nov. 30, 2019, doi: 10.3892/ijo.2019.4893.spa
dc.relation.references[24] N. Vitkin, S. Nersesian, D. R. Siemens, and M. Koti, “The tumor immune contexture of prostate cancer,” Front. Immunol., vol. 10, no. MAR, pp. 1–10, 2019, doi: 10.3389/fimmu.2019.00603.spa
dc.relation.references[25] D. Lin, X. Wang, S. Y. C. Choi, X. Ci, X. Dong, and Y. Wang, “Immune phenotypes of prostate cancer cells: Evidence of epithelial immune cell-like transition?,” Asian J. Urol., vol. 3, no. 4, pp. 195–202, 2016, doi: 10.1016/j.ajur.2016.08.002.spa
dc.relation.references[26] W. H. Fridman, L. Zitvogel, C. Sautès-Fridman, and G. Kroemer, “The immune contexture in cancer prognosis and treatment,” Nature Reviews Clinical Oncology, vol. 14, no. 12. Nature Publishing Group, pp. 717–734, Dec. 01, 2017, doi: 10.1038/nrclinonc.2017.101.spa
dc.relation.references[27] A. M. Miller et al., “ CD4 + CD25 high T Cells Are Enriched in the Tumor and Peripheral Blood of Prostate Cancer Patients ,” J. Immunol., vol. 177, no. 10, pp. 7398–7405, Nov. 2006, doi: 10.4049/jimmunol.177.10.7398.spa
dc.relation.references[28] V. Nardone et al., “Tumor infiltrating T lymphocytes expressing FoxP3, CCR7 or PD-1 predict the outcome of prostate cancer patients subjected to salvage radiotherapy after biochemical relapse,” Cancer Biol. Ther., vol. 17, no. 11, pp. 1213–1220, 2016, doi: 10.1080/15384047.2016.1235666.spa
dc.relation.references[29] F. Petitprez et al., “PD-L1 Expression and CD8 + T-cell Infiltrate are Associated with Clinical Progression in Patients with Node-positive Prostate Cancer,” Eur. Urol. Focus, vol. 5, no. 2, pp. 192–196, 2019, doi: 10.1016/j.euf.2017.05.013.spa
dc.relation.references[30] N. Ness et al., “Infiltration of CD8+ lymphocytes is an independent prognostic factor of biochemical failure-free survival in prostate cancer,” Prostate, vol. 74, no. 14, pp. 1452–1461, 2014, doi: 10.1002/pros.22862.spa
dc.relation.references[31] J. A. Joyce and D. T. Fearon, “T cell exclusion, immune privilege, and the tumor microenvironment,” Science, vol. 348, no. 6230. American Association for the Advancement of Science, pp. 74–80, Apr. 03, 2015, doi: 10.1126/science.aaa6204.spa
dc.relation.references[32] S. Mariathasan et al., “TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells,” Nature, vol. 554, no. 7693, pp. 544–548, Feb. 2018, doi: 10.1038/nature25501.spa
dc.relation.references[33] M. Lundholm et al., “Secreted factors from colorectal and prostate cancer cells skew the immune response in opposite directions,” Sci. Rep., vol. 5, Oct. 2015, doi: 10.1038/srep15651.spa
dc.relation.references[34] B. Molon et al., “Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells,” J. Exp. Med., vol. 208, no. 10, pp. 1949–1962, Sep. 2011, doi: 10.1084/jem.20101956.spa
dc.relation.references[35] J. A. Taylor et al., “Regulation of the prostaglandin pathway during development of invasive bladder cancer in mice,” Prostaglandins Other Lipid Mediat., vol. 88, no. 1–2, pp. 36–41, Jan. 2009, doi: 10.1016/j.prostaglandins.2008.09.003.spa
dc.relation.references[36] J. Heighway et al., “Expression profiling of primary non-small cell lung cancer for target identification,” Oncogene, vol. 21, no. 50, pp. 7749–7763, Oct. 2002, doi: 10.1038/sj.onc.1205979.spa
dc.relation.references[37] R. Wu et al., “Association of 15-hydroxyprostaglandin dehydrogenate and poor prognosis of obese breast cancer patients,” 2017. Accessed: May 21, 2020. [Online]. Available: www.impactjournals.com/oncotarget.spa
dc.relation.references[38] X. Qi, Y. Wang, J. Hou, and Y. Huang, “A single nucleotide polymorphism in HPGD gene is associated with prostate cancer risk,” J. Cancer, vol. 8, no. 19, pp. 4083–4086, 2017, doi: 10.7150/jca.22025.spa
dc.relation.references[39] P. Vainio et al., “Arachidonic acid pathway members PLA2G7, HPGD, EPHX2, and CYP4F8 identified as putative novel therapeutic targets in prostate cancer,” Am. J. Pathol., vol. 178, no. 2, pp. 525–536, Feb. 2011, doi: 10.1016/j.ajpath.2010.10.002.spa
dc.relation.references[40] M. Tong and H. H. Tai, “Induction of NAD+-linked 15-hydroxyprostaglandin dehydrogenase expression by androgens in human prostate cancer cells,” Biochem. Biophys. Res. Commun., vol. 276, no. 1, pp. 77–81, Sep. 2000, doi: 10.1006/bbrc.2000.3437.spa
dc.relation.references[41] S. Sun et al., “BAP18 coactivates androgen receptor action and promotes prostate cancer progression,” Nucleic Acids Res., vol. 44, no. 17, pp. 8112–8128, 2016, doi: 10.1093/nar/gkw472.spa
dc.relation.references[42] T. H. Kim, J. M. Park, M. Y. Kim, and Y. H. Ahn, “The role of CREB3L4 in the proliferation of prostate cancer cells,” Sci. Rep., vol. 7, no. 1, pp. 1–11, Mar. 2017, doi: 10.1038/srep45300.spa
dc.relation.references[43] A. A. Mohamed et al., “ERG oncogene modulates prostaglandin signaling in prostate cancer cells,” Cancer Biol. Ther., vol. 11, no. 4, pp. 410–417, Feb. 2011, doi: 10.4161/cbt.11.4.14180.spa
dc.relation.references[44] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 68, no. 6, pp. 394–424, 2018, doi: 10.3322/caac.21492.spa
dc.relation.references[45] G. The Global Cancer Observatory, “Prostate 2018,” 2019.spa
dc.relation.references[46] I. de C. en Colombia, “Infocancer Incidencia Próstata Edades.” http://www.infocancer.co/portal/#!/filtro_tasas/.spa
dc.relation.references[47] E. B. O’Keefe, J. P. Meltzer, and T. N. Bethea, “Health Disparities and Cancer: Racial Disparities in Cancer Mortality in the United States, 2000–2010,” Front. Public Heal., vol. 3, no. April, pp. 1–15, 2015, doi: 10.3389/fpubh.2015.00051.spa
dc.relation.references[48] G. K. Panigrahi et al., “Exosome proteomic analyses identify inflammatory phenotype and novel biomarkers in African American prostate cancer patients,” Cancer Med., vol. 8, no. 3, pp. 1110–1123, 2019, doi: 10.1002/cam4.1885.spa
dc.relation.references[49] I. J. Powell, C. H. Bock, J. J. Ruterbusch, and W. Sakr, “Evidence Supports a Faster Growth Rate and/or Earlier Transformation to Clinically Significant Prostate Cancer in Black Than in White American Men, and Influences Racial Progression and Mortality Disparity,” J. Urol., vol. 183, no. 5, pp. 1792–1797, May 2010, doi: 10.1016/j.juro.2010.01.015.spa
dc.relation.references[50] S. D. Brookman-May et al., “Latest Evidence on the Impact of Smoking, Sports, and Sexual Activity as Modifiable Lifestyle Risk Factors for Prostate Cancer Incidence, Recurrence, and Progression: A Systematic Review of the Literature by the European Association of Urology Section of ,” Eur. Urol. Focus, vol. 5, no. 5, pp. 756–787, 2019, doi: 10.1016/j.euf.2018.02.007.spa
dc.relation.references[51] E. Giovannucci, Y. Liu, E. A. Platz, M. J. Stampfer, and W. C. Willett, “Risk factors for prostate cancer incidence and progression in the health professionals follow-up study NIH Public Access,” 2007.spa
dc.relation.references[52] F. Islami, D. M. Moreira, P. Boffetta, and S. J. Freedland, “A Systematic Review and Meta-analysis of Tobacco Use and Prostate Cancer Mortality and Incidence in Prospective Cohort Studies HHS Public Access,” Eur Urol, vol. 66, no. 6, pp. 1054–1064, 2014, doi: 10.1016/j.eururo.2014.08.059.spa
dc.relation.references[53] J. M. Genkinger et al., “Measures of body fatness and height in early and mid-to-late adulthood and prostate cancer: risk and mortality in The Pooling Project of Prospective Studies of Diet and Cancer,” Ann. Oncol., vol. 31, no. 1, pp. 103–114, 2020, doi: 10.1016/j.annonc.2019.09.007.spa
dc.relation.references[54] N. Shah and V. Ioffe, “The Association Between Hypertension and Prostate Cancer,” Rev. Urol. •, vol. 19, no. 2, pp. 113–118, 2017, doi: 10.3909/riu0758.spa
dc.relation.references[55] Z. Liang et al., “Hypertension and risk of prostate cancer: a systematic review and meta-analysis OPEN,” 2016, doi: 10.1038/srep31358.spa
dc.relation.references[56] Y. C. Chen, J. H. Page, R. Chen, and E. Giovannucci, “Family history of prostate and breast cancer and the risk of prostate cancer in the PSA era,” Prostate, vol. 68, no. 14, pp. 1582–1591, 2008, doi: 10.1002/pros.20825.spa
dc.relation.references[57] O. Bratt, L. Drevin, O. Akre, H. Garmo, and P. Stattin, “Family History and Probability of Prostate Cancer, Differentiated by Risk Category: A Nationwide Population-Based Study,” J. Natl. Cancer Inst., vol. 108, no. 10, pp. 1–7, 2016, doi: 10.1093/jnci/djw110.spa
dc.relation.references[58] C. H. Lee, O. Akin-Olugbade, and A. Kirschenbaum, “Overview of Prostate Anatomy, Histology, and Pathology,” Endocrinol. Metab. Clin. North Am., vol. 40, no. 3, pp. 565–575, 2011, doi: 10.1016/j.ecl.2011.05.012.spa
dc.relation.references[59] K. H. Hammerich, G. E. Ayala, and T. M. Wheeler, “Anatomy of the prostate gland and surgical pathology of prostate cancer,” in Prostate Cancer, Cambridge University Press, 2008, pp. 1–14.spa
dc.relation.references[60] E. Shtivelman, T. M. Beer, and C. P. Evans, “Oncotarget 7217 www.impactjournals.com/oncotarget Molecular pathways and targets in prostate cancer,” 2014. Accessed: May 14, 2020. [Online]. Available: www.impactjournals.com/oncotarget/.spa
dc.relation.references[61] P. Y. Tan, C. W. Chang, K. R. Chng, K. D. S. A. Wansa, W.-K. Sung, and E. Cheung, “Integration of Regulatory Networks by NKX3-1 Promotes Androgen-Dependent Prostate Cancer Survival,” Mol. Cell. Biol., vol. 32, no. 2, pp. 399–414, Jan. 2012, doi: 10.1128/mcb.05958-11.spa
dc.relation.references[62] S. A. Tomlins et al., “Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer,” Nature, vol. 448, no. 7153, pp. 595–599, 2007, doi: 10.1038/nature06024.spa
dc.relation.references[63] M. J. Linja and T. Visakorpi, “Alterations of androgen receptor in prostate cancer,” J. Steroid Biochem. Mol. Biol., vol. 92, no. 4, pp. 255–264, 2004, doi: 10.1016/j.jsbmb.2004.10.012.spa
dc.relation.references[64] P. Lonergan and D. Tindall, “Androgen receptor signaling in prostate cancer development and progression,” J. Carcinog., vol. 10, 2011, doi: 10.4103/1477-3163.83937.spa
dc.relation.references[65] M. E. Grossmann, H. Huang, and D. J. Tindall, “Androgen Receptor Signaling in Androgen-Refractory Prostate Cancer.” Accessed: May 15, 2020. [Online]. Available: https://academic.oup.com/jnci/article-abstract/93/22/1687/2519589.spa
dc.relation.references[66] J. Seidenfeld et al., “Single-therapy androgen suppression in men with advanced prostate cancer: A systematic review and meta-analysis,” Annals of Internal Medicine, vol. 132, no. 7. American College of Physicians, pp. 566–577, Apr. 04, 2000, doi: 10.7326/0003-4819-132-7-200004040-00009.spa
dc.relation.references[67] P. Koivisto et al., “Androgen receptor gene amplification: A possible molecular mechanism for androgen deprivation therapy failure in prostate cancer,” Cancer Res., vol. 57, no. 2, pp. 314–319, 1997.spa
dc.relation.references[68] P. A. Koivisto and I. Rantala, “Amplification of the androgen receptor gene is associated with P53 mutation in hormone-refractory recurrent prostate cancer,” J. Pathol., vol. 187, no. 2, pp. 237–241, 1999, doi: 10.1002/(SICI)1096-9896(199901)187:2<237::AID-PATH224>3.0.CO;2-I.spa
dc.relation.references[69] M. E. Taplin et al., “Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer,” N. Engl. J. Med., vol. 332, no. 21, pp. 1393–1398, May 1995, doi: 10.1056/NEJM199505253322101.spa
dc.relation.references[70] M. J. McPhaul, “Mechanisms of prostate cancer progression to androgen independence,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 22, no. 2. pp. 373–388, Apr. 2008, doi: 10.1016/j.beem.2008.02.006.spa
dc.relation.references[71] S. Araki et al., “Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer,” Cancer Res., vol. 67, no. 14, pp. 6854–6862, Jul. 2007, doi: 10.1158/0008-5472.CAN-07-1162.spa
dc.relation.references[72] Z. Culig et al., “Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-1, keratinocyte growth factor and epidermal growth factor,” Eur. Urol., vol. 54, no. 20, pp. 5474–5478, 1994, doi: 10.1159/000475232.spa
dc.relation.references[73] A. Hobisch et al., “Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor,” Cancer Res., vol. 58, no. 20, pp. 4640–4645, Oct. 1998.spa
dc.relation.references[74] O. L. Soo, E. Pinder, Y. C. Jae, W. Lou, M. Sun, and A. C. Gao, “Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells,” Prostate, vol. 68, no. 1, pp. 85–91, Jan. 2008, doi: 10.1002/pros.20691.spa
dc.relation.references[75] G. J. Wise, V. K. Marella, G. Talluri, and D. Shirazian, “Cytokine variations in patients with hormone treated prostate cancer,” J. Urol., vol. 164, no. 3 I, pp. 722–725, 2000, doi: 10.1097/00005392-200009010-00024.spa
dc.relation.references[76] V. M. Velonas, H. H. Woo, C. G. Dos Remedios, and S. J. Assinder, “Current Status of Biomarkers for Prostate Cancer,” Int. J. Mol. Sci, vol. 14, pp. 11034–11060, 2013, doi: 10.3390/ijms140611034.spa
dc.relation.references[77] J. I. Epstein, L. Egevad, M. B. Amin, B. Delahunt, J. R. Srigley, and P. A. Humphrey, “The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma definition of grading patterns and proposal for a new grading system,” Am. J. Surg. Pathol., vol. 40, no. 2, pp. 244–252, 2016, doi: 10.1097/PAS.0000000000000530.spa
dc.relation.references[78] N. Lawrentschuk, G. Trottier, C. Kuk, and A. Zlotta, “Role of surgery in high-risk localized prostate cancer,” vol. 17, no. 2, pp. 25–32, 2010.spa
dc.relation.references[79] A. J. Hayden, C. Catton, and T. Pickles, “Radiation therapy in prostate cancer: A risk-adapted strategy,” Curr. Oncol., vol. 17, no. SUPPL. 2, p. S18, 2010, doi: 10.3747/co.v17i0.704.spa
dc.relation.references[80] M. A. Perlmutter and H. Lepor, “Androgen deprivation therapy in the treatment of advanced prostate cancer.,” Rev. Urol., vol. 9 Suppl 1, no. Suppl 1, pp. S3-8, 2007, Accessed: May 15, 2020. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/17387371.spa
dc.relation.references[81] F. Z. Chen and X. K. Zhao, “Prostate cancer: Current treatment and prevention strategies,” Iranian Red Crescent Medical Journal, vol. 15, no. 4. Iranian Red Crescent Society, pp. 279–284, 2013, doi: 10.5812/ircmj.6499.spa
dc.relation.references[82] Y. Lotan and C. G. Roehrborn, “Clearance rates of total prostate specific antigen (PSA) after radical prostatectomy in African-Americans and Caucasians,” Prostate Cancer Prostatic Dis., vol. 5, no. 2, pp. 111–114, Jun. 2002, doi: 10.1038/sj.pcan.4500567.spa
dc.relation.references[83] O. Yossepowitch et al., “Positive surgical margins after radical prostatectomy: A systematic review and contemporary update,” European Urology, vol. 65, no. 2. Elsevier, pp. 303–313, Feb. 01, 2014, doi: 10.1016/j.eururo.2013.07.039.spa
dc.relation.references[84] P. H. Lange, C. J. Ercole, D. J. Lightner, E. E. Fraley, and R. Vessella, “The value of serum prostate specific antigen determinations before and after radical prostatectomy,” J. Urol., vol. 141, no. 4 I, pp. 873–879, Apr. 1989, doi: 10.1016/S0022-5347(17)41037-8.spa
dc.relation.references[85] D. A. Leach and G. Buchanan, “Stromal androgen receptor in prostate cancer development and progression,” Cancers (Basel)., vol. 9, no. 1, pp. 1–24, 2017, doi: 10.3390/cancers9010010.spa
dc.relation.references[86] P. G. Corn, “The tumor microenvironment in prostate cancer: elucidating molecular pathways for therapy development,” Cancer Manag. Res., vol. 4, pp. 183–193, 2012, doi: 10.2147/CMAR.S32839.spa
dc.relation.references[87] D. A. Leach et al., “Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome,” Oncotarget, vol. 6, no. 18, pp. 16135–16150, 2015, doi: 10.18632/oncotarget.3873.spa
dc.relation.references[88] S. L. Shiao, G. C.-Y. Chu, and L. W. K. Chung, “Regulation of Prostate Cancer Progression by the Tumor Microenvironment,” Cancer Lett., vol. 380, no. 1, pp. 340–348, 2016, doi: 0.1016/j.canlet.2015.12.022.spa
dc.relation.references[89] D. W. Powell, R. C. Mifflin, J. D. Valentich, S. E. Crowe, J. I. Saada, and A. B. West, “Myofibroblasts. I. Paracrine cells important in health and disease,” American Journal of Physiology - Cell Physiology, vol. 277, no. 1 46-1. American Physiological SocietyBethesda, MD , 1999, doi: 10.1152/ajpcell.1999.277.1.c1.spa
dc.relation.references[90] A. Desmouliere, C. Guyot, and G. Gabbiani, “The stroma reaction myofibroblast: a key player in the control of tumor cell behavior,” Int. J. Dev. Biol., vol. 48, no. 5–6, pp. 509–517, Sep. 2004, doi: 10.1387/ijdb.041802ad.spa
dc.relation.references[91] J. A. Tuxhorn, G. E. Ayala, and D. R. Rowley, “Reactive stroma in prostate cancer progression,” Clin. Cancer Res., vol. 8, no. 9, pp. 2912–2923, 2002, doi: 10.1016/S0022-5347(05)65620-0.spa
dc.relation.references[92] B. Bagalad, K. Mohan Kumar, and H. Puneeth, “Myofibroblasts: Master of disguise,” Journal of Oral and Maxillofacial Pathology, vol. 21, no. 3. Medknow Publications, pp. 462–463, Sep. 01, 2017, doi: 10.4103/jomfp.JOMFP_146_15.spa
dc.relation.references[93] S. Hendry et al., “Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasi,” Advances in Anatomic Pathology, vol. 24, no. 5. Lippincott Williams and Wilkins, pp. 235–251, 2017, doi: 10.1097/PAP.0000000000000162.spa
dc.relation.references[94] K. S. Sfanos, S. Yegnasubramanian, W. G. Nelson, and A. M. De Marzo, “The inflammatory microenvironment and microbiome in prostate cancer development,” Nat. Rev. Urol., vol. 15, no. 1, pp. 11–24, 2018, doi: 10.1038/nrurol.2017.167.spa
dc.relation.references[95] A. M. De Marzo and Elizabeth A. Platz, “Inflammation in prostate carcinogenesis,” Nat Rev Cancer, vol. 7, no. 4, pp. 256–269, 2007, doi: 10.1038/nrc2090.spa
dc.relation.references[96] R. S. Mani, Mohammad A. Amin, X. Li, and S. Kalyana-Sundaram, “Inflammation induced oxidative stress mediates gene fusion formation in prostate cancer,” Cell Rep, vol. 17, no. 10, pp. 2620–2631, 2016, doi: 10.1016/j.celrep.2016.11.019.spa
dc.relation.references[97] G. J. L. H. Van Leenders et al., “Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy,” Am. J. Pathol., vol. 162, no. 5, pp. 1529–1537, 2003, doi: 10.1016/S0002-9440(10)64286-1.spa
dc.relation.references[98] W. H. Fridman, F. Pagès, C. Saut̀s-Fridman, and J. Galon, “The immune contexture in human tumours: Impact on clinical outcome,” Nature Reviews Cancer, vol. 12, no. 4. Nat Rev Cancer, pp. 298–306, Apr. 2012, doi: 10.1038/nrc3245.spa
dc.relation.references[99] J. Galon et al., “Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours,” J. Pathol., vol. 232, no. 2, pp. 199–209, 2014, doi: 10.1002/path.4287.spa
dc.relation.references[100] M. Capone et al., “Immunoscore: a new possible approach for melanoma classification,” J. Immunother. Cancer, vol. 2, no. S3, pp. 2–3, 2014, doi: 10.1186/2051-1426-2-s3-p193.spa
dc.relation.references[101] I. F. Lissbrant, P. Stattin, P. Wikstrom, J. E. Damber, L. Egevad, and A. Bergh, “Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival.,” Int. J. Oncol., vol. 17, no. 3, pp. 445–451, 2000, doi: 10.3892/ijo.17.3.445.spa
dc.relation.references[102] W. Wang, A. Bergh, and J. E. Damber, “Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer,” Clin. Cancer Res., vol. 11, no. 9, pp. 3250–3256, 2005, doi: 10.1158/1078-0432.CCR-04-2405.spa
dc.relation.references[103] N. Nonomura et al., “Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer,” BJU Int., vol. 107, no. 12, pp. 1918–1922, 2011, doi: 10.1111/j.1464-410X.2010.09804.x.spa
dc.relation.references[104] E. Richardsen, R. D. Uglehus, J. Due, C. Busch, and L. T. R. Busund, “The prognostic impact of M-CSF, CSF-1 receptor, CD68 and CD3 in prostatic carcinoma,” Histopathology, vol. 53, no. 1, pp. 30–38, 2008, doi: 10.1111/j.1365-2559.2008.03058.x.spa
dc.relation.references[105] J. Irani et al., “High-grade inflammation in prostate cancer as a prognostic factor for biochemical recurrence after radical prostatectomy,” Urology, vol. 54, no. 3, pp. 467–472, 1999, doi: 10.1016/S0090-4295(99)00152-1.spa
dc.relation.references[106] P. A. McArdle, K. Canna, D. C. McMillan, A. H. McNicol, R. Campbell, and M. A. Underwood, “The relationship between T-lymphocyte subset infiltration and survival in patients with prostate cancer,” Br. J. Cancer, vol. 91, no. 3, pp. 541–543, 2004, doi: 10.1038/sj.bjc.6601943.spa
dc.relation.references[107] M. Lanciotti et al., “The role of M1 and M2 macrophages in prostate cancer in relation to extracapsular tumor extension and biochemical recurrence after radical prostatectomy,” Biomed Res. Int., vol. 2014, 2014, doi: 10.1155/2014/486798.spa
dc.relation.references[108] K. S. Sfanos, T. C. Bruno, A. K. Meeker, A. M. De Marzo, W. B. Isaacs, and C. G. Drake, “Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+,” Prostate, vol. 69, no. 15, pp. 1694–1703, 2009, doi: 10.1002/pros.21020.spa
dc.relation.references[109] S. Davidsson et al., “CD4 helper T cells, CD8 cytotoxic T cells, and FOXP3 + regulatory T cells with respect to lethal prostate cancer,” Mod. Pathol., vol. 26, no. 3, pp. 448–455, 2013, doi: 10.1038/modpathol.2012.164.spa
dc.relation.references[110] J. Woo et al., “Mp49-03 Tumor Infiltrating B-Cells Are Increased in Prostate Cancer Tissue,” J. Urol., vol. 191, no. 4S, pp. 1–9, 2014, doi: 10.1016/j.juro.2014.02.1104.spa
dc.relation.references[111] A. Flammiger et al., “Intratumoral T but not B lymphocytes are related to clinical outcome in prostate cancer,” Apmis, vol. 120, no. 11, pp. 901–908, 2012, doi: 10.1111/j.1600-0463.2012.02924.x.spa
dc.relation.references[112] V. Kärjä, S. Aaltomaa, P. Lipponen, T. Isotalo, M. Talja, and R. Mokka, “Tumour-infiltrating lymphocytes: A prognostic factor of psa-free survival in patients with local prostate carcinoma treated by radical prostatectomy,” Anticancer Res., vol. 25, no. 6 C, pp. 4435–4438, 2005.spa
dc.relation.references[113] H. A. Hempel et al., “Low Intratumoral Mast Cells Are Associated With a Higher Risk of Prostate Cancer Recurrence,” Prostate, vol. 77, no. 4, pp. 412–424, 2017, doi: 10.1002/pros.23280.spa
dc.relation.references[114] B. Gurel et al., “Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial,” Cancer Epidemiol. Biomarkers Prev., vol. 23, no. 5, pp. 847–856, 2014, doi: 10.1158/1055-9965.EPI-13-1126.spa
dc.relation.references[115] R. Kennedy, “Multiple roles for CD4 T cells in anti‐tumor immune responses_KennedyCelisImmRev08.pdf,” Immunol. Rev., vol. 222, pp. 129–144, 2008.spa
dc.relation.references[116] M. Beyer and J. L. Schultze, “Regulatory T cells in cancer,” Blood, vol. 108, no. 3, pp. 804–811, 2006, doi: 10.1182/blood-2006-02-002774.spa
dc.relation.references[117] T. F. Gajewski, H. Schreiber, and Y. X. Fu, “Innate and adaptive immune cells in the tumor microenvironment,” Nature Immunology, vol. 14, no. 10. NIH Public Access, pp. 1014–1022, 2013, doi: 10.1038/ni.2703.spa
dc.relation.references[118] K. S. Sfanos et al., “Phenotypic analysis of prostate-infiltrating lymphocytes reveals T H17 and Treg skewing,” Clin. Cancer Res., vol. 14, no. 11, pp. 3254–3261, 2008, doi: 10.1158/1078-0432.CCR-07-5164.spa
dc.relation.references[119] B. Samuelsson, R. Morgenstern, and P. J. Jakobsson, “Membrane prostaglandin E synthase-1: A novel therapeutic target,” Pharmacological Reviews, vol. 59, no. 3. American Society for Pharmacology and Experimental Therapeutics, pp. 207–224, Sep. 01, 2007, doi: 10.1124/pr.59.3.1.spa
dc.relation.references[120] A. Madrigal-Martínez, V. Constâncio, F. J. Lucio-Cazaña, and A. B. Fernández-Martínez, “PROSTAGLANDIN E 2 stimulates cancer-related phenotypes in prostate cancer PC3 cells through cyclooxygenase-2,” J. Cell. Physiol., vol. 234, no. 5, pp. 7548–7559, May 2019, doi: 10.1002/jcp.27515.spa
dc.relation.references[121] K. Yoshimatsu et al., “Inducible microsomal prostaglandin E synthase is overexpressed in colorectal adenomas and cancer,” Clin. Cancer Res., vol. 7, no. 12, pp. 3971–3976, Dec. 2001.spa
dc.relation.references[122] F. Finetti, C. Travelli, J. Ercoli, G. Colombo, E. Buoso, and L. Trabalzini, “Prostaglandin E2 and cancer: Insight into tumor progression and immunity,” Biology (Basel)., vol. 9, no. 12, pp. 1–26, 2020, doi: 10.3390/biology9120434.spa
dc.relation.references[123] R. Parra-Medina and S. Ramírez-Clavijo, “Why not to use punch biopsies in formalin-fixed paraffin-embedded samples of prostate cancer tissue for DNA and RNA extraction?,” African J. Urol., vol. 27, no. 1, 2021, doi: 10.1186/s12301-021-00257-4.spa
dc.relation.references[124] L. Collado-Torres et al., “Reproducible RNA-seq analysis using recount2,” Nat. Biotechnol., vol. 35, no. 4, pp. 319–321, Apr. 2017, doi: 10.1038/nbt.3838.spa
dc.relation.references[125] E. Afgan et al., “The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update,” Nucleic Acids Res., vol. 44, no. W1, pp. W3–W10, Jul. 2016, doi: 10.1093/nar/gkw343.spa
dc.relation.references[126] TheHumanProteinAtlas:HPGD, “Tissue expression of HPGD - The Human Protein Atlas,” Tissue expression of HPD The Human Protein Atlas. [Online]. Available: https://www.proteinatlas.org/ENSG00000164120-HPGD/tissue.spa
dc.relation.references[127] D. Lodygin, A. Epanchintsev, A. Menssen, J. Diebold, and H. Hermeking, “Functional epigenomics identifies genes frequently silenced in prostate cancer,” Cancer Res., vol. 65, no. 10, pp. 4218–4227, 2005, doi: 10.1158/0008-5472.CAN-04-4407.spa
dc.relation.references[128] H. T. Purayil, Y. Zhang, J. B. Black, R. Gharaibeh, and Y. Daaka, “Nuclear βArrestin1 regulates androgen receptor function in castration resistant prostate cancer,” Oncogene, vol. 40, no. 14, pp. 2610–2620, 2021, doi: 10.1038/s41388-021-01730-8.spa
dc.relation.references[129] H. Liu, J. Shi, M. Wilkerson, X. J. Yang, and F. Lin, “Immunohistochemical evaluation of ERG expression in various benign and malignant tissues,” Ann. Clin. Lab. Sci., vol. 43, no. 1, pp. 3–9, 2013.spa
dc.relation.references[130] J. Baohong, J. Sedarsky, S. Srivastava, I. Sesterhenn, A. Dobi, and L. Quanlin, “ERG tumor type is less frequent in high grade and high stage prostate cancers of Chinese men,” J. Cancer, vol. 10, no. 9, pp. 1991–1996, 2019, doi: 10.7150/jca.30025.spa
dc.relation.references[131] A. D. Darnel, C. J. LaFargue, R. T. Vollmer, J. Corcos, and T. A. Bismar, “TMPRSS2-ERG fusion is frequently observed in gleason pattern 3 prostate cancer in a canadian cohort,” Cancer Biol. Ther., vol. 8, no. 2, pp. 125–130, 2009, doi: 10.4161/cbt.8.2.7134.spa
dc.relation.references[132] J. Galon et al., “Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome,” Science (80-. )., vol. 313, no. 5795, pp. 1960–1964, Sep. 2006, doi: 10.1126/science.1129139.spa
dc.relation.references[133] M. J. M. Gooden, G. H. de Bock, N. Leffers, T. Daemen, and H. W. Nijman, “The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis,” Br. J. Cancer, vol. 105, no. 1, pp. 93–103, Jun. 2011, doi: 10.1038/bjc.2011.189.spa
dc.relation.references[134] K. Ebelt et al., “Dominance of CD4+ lymphocytic infiltrates with disturbed effector cell characteristics in the tumor microenvironment of prostate carcinoma,” Prostate, vol. 68, no. 1, pp. 1–10, Jan. 2008, doi: 10.1002/pros.20661.spa
dc.relation.references[135] C. Sorrentino, P. Musiani, P. Pompa, G. Cipollone, and E. Di Carlo, “Androgen Deprivation Boosts Prostatic Infiltration of Cytotoxic and Regulatory T Lymphocytes and Has No Effect on Disease-Free Survival in Prostate Cancer Patients,” Clin. Cancer Res., vol. 17, no. 6, pp. 1571–1581, Mar. 2011, doi: 10.1158/1078-0432.CCR-10-2804.spa
dc.relation.references[136] A. Flammiger et al., “High tissue density of FOXP3+ T cells is associated with clinical outcome in prostate cancer,” Eur. J. Cancer, vol. 49, no. 6, pp. 1273–1279, Apr. 2013, doi: 10.1016/j.ejca.2012.11.035.spa
dc.relation.references[137] K. Park et al., “Antibody-Based Detection of ERG Rearrangement-Positive Prostate Cancer,” Neoplasia, vol. 12, no. 7, pp. 590-IN21, Jul. 2010, doi: 10.1593/neo.10726.spa
dc.relation.references[138] A. Flammiger et al., “Intratumoral T but not B lymphocytes are related to clinical outcome in prostate cancer,” APMIS, vol. 120, no. 11, pp. 901–908, Nov. 2012, doi: 10.1111/j.1600-0463.2012.02924.x.spa
dc.relation.references[139] G. Petrovics et al., “Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome,” Oncogene, vol. 24, no. 23, pp. 3847–3852, May 2005, doi: 10.1038/sj.onc.1208518.spa
dc.relation.references[140] R. K. Nam et al., “Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer,” Br. J. Cancer, vol. 97, no. 12, pp. 1690–1695, Dec. 2007, doi: 10.1038/sj.bjc.6604054.spa
dc.relation.references[141] A. VALDMAN et al., “Distribution of Foxp3-, CD4- and CD8-positive lymphocytic cells in benign and malignant prostate tissue,” APMIS, vol. 118, no. 5, pp. 360–365, May 2010, doi: 10.1111/j.1600-0463.2010.02604.x.spa
dc.relation.references[142] M. H. M. Barros, F. Hauck, J. H. Dreyer, B. Kempkes, and G. Niedobitek, “Macrophage Polarisation: an Immunohistochemical Approach for Identifying M1 and M2 Macrophages,” PLoS One, vol. 8, no. 11, p. e80908, Nov. 2013, doi: 10.1371/journal.pone.0080908.spa
dc.relation.references[143] H. Kared, S. Martelli, T. P. Ng, S. L. F. Pender, and A. Larbi, “CD57 in human natural killer cells and T-lymphocytes,” Cancer Immunol. Immunother., vol. 65, no. 4, pp. 441–452, Apr. 2016, doi: 10.1007/s00262-016-1803-z.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsHidroxiprostaglandina Deshidrogenasasspa
dc.subject.decsHydroxyprostaglandin Dehydrogenaseseng
dc.subject.decsT-Lymphocyteseng
dc.subject.decsLinfocitos Tspa
dc.subject.decsNeoplasias de la Próstataspa
dc.subject.decsProstatic Neoplasmseng
dc.subject.proposalMicroambiente tumoralspa
dc.subject.proposalInmunorregulaciónspa
dc.subject.proposalImmunoregulationeng
dc.subject.proposalCáncer de próstataspa
dc.subject.proposalInfiltración linfocitariaspa
dc.subject.proposalRecurrencia bioquímicaspa
dc.subject.proposalProstate cancereng
dc.subject.proposalLymphocytic infiltrationeng
dc.subject.proposalBiochemical recurrenceeng
dc.subject.proposalTumor microenvironmenteng
dc.titleRelación entre niveles de expresión de HPGD con la densidad y el fenotipo de linfocitos T en tejido tumoral de pacientes con cáncer de próstata y su asociación con recurrencia bioquímicaspa
dc.title.translatedRelationship between HPGD expression levels with the density and phenotype of T lymphocytes in tumor tissue of patients with prostate cancer and its association with biochemical recurrenceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCaracterización de perfiles de expresión génica en los grupos de riesgo de recurrencia bioquímica en adenocarcinoma de próstataspa
oaire.fundernameInstituto Nacional de Cancerologíaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Documento Final Tesis.pdf
Tamaño:
2.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Inmunología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: