Evaluación In vitro de la actividad antimicrobiana de las células estromales mesenquimales de gelatina de Wharton (CEM-GW)

dc.contributor.advisorSalguero López, Gustavo Andresspa
dc.contributor.advisorLozano Moreno, José Manuelspa
dc.contributor.authorMéndez Báez, Leidi Yohanaspa
dc.contributor.corporatenameInstituto Distrital de Ciencia Biotecnología e Innovación en Salud IDCBISspa
dc.contributor.researchgroupUnidad de Terapias Avanzadas - IDCBISspa
dc.date.accessioned2020-07-29T16:11:30Zspa
dc.date.available2020-07-29T16:11:30Zspa
dc.date.issued2020-05-01spa
dc.description.abstractAntimicrobial resistance is a growing problem in global public health and threatens the prevention and effective treatment of infections. The investigation of alternative strategies point to the generation and use of antimicrobial peptides (AMP) given its broad spectrum of antimicrobial activity. A potential source of (AMP) resides in human mesenchymal stromal cells (MSC). MSC have demonstrated potent therapeutic effects in terms of immunomodulation and multilineage differentiation and are actively involved in tissue control and repair. This work focused on exploring the potential antimicrobial effect of MSC isolated from Wharton's jelly (GW) of the umbilical cord upon experimental infection with bacterial strains Escherichia coli 25922, Klebsiella pneumoniae 43816, Staphylococcus aureus 29213 and Staphylococcus epidermidis 12228. Experimental bacterial infection on CEM-GW triggered important antimicrobial activity whose magnitude depended on the inoculated bacterial strain. This observed antimicrobial effect depended strongly on the presence of human platelet lysate (LPh) in MSC growth media. Importantly, based on characterization of RNA expression and secretion of the AMPs β-defensin-1, Lipocalin-2 and Hepcidin in supernatant, the antimicrobial effect of CEM-GW was significantly associated with increased expression and secretion of AMPs, especially β-defensin-1 and Lipocalin-2. These results provide evidence of the antimicrobial effect that CEM-GW exerts on the bacterial strains used, which depends on the presence of LPh and results in the expression and secretion of AMPs, as a potential mechanism of defense against infection.spa
dc.description.abstractLa resistencia a los antimicrobianos es un problema creciente de salud pública mundial y amenaza la prevención y el tratamiento eficaz de las infecciones. La investigación de estrategias alternativas apunta a la generación y uso de péptidos antimicrobianos (AMP) dado su amplio espectro de actividad antimicrobiana. Una potencial fuente de (AMP) reside en células estromales mesenquimales (CEM) humanas. Las CEM han demostrado potentes efectos terapéuticos en términos de inmunomodulación y diferenciación multilinaje y participan activamente en el control y reparación tisular. Este trabajo se enfocó en explorar el potencial efecto antimicrobiano de las CEM aisladas de gelatina de Wharton (GW) del cordón umbilical ante la infección experimental con las cepas bacterianas Escherichia coli 25922, Klebsiella pneumoniae 43816, Staphylococcus aureus 29213 y Staphylococcus epidermidis 12228. A partir de la exposición de inóculos bacterianos a CEM-GW se pudo observar una importante actividad antimicrobiana cuya magnitud dependió de la cepa bacteriana inoculada. Este efecto antimicrobiano observado se relacionó fuertemente con la presencia de lisado plaquetario humano (LPh). De manera importante a partir de la caracterización de la expresión de ARN mensajero y secreción de los AMPs β-defensina-1, Lipocalina-2 y Hepcidina en sobrenadante, el efecto antimicrobiano de las CEM-GW se asoció significativamente al incremento de la expresión y secreción de AMPs, especialmente β-defensina-1 y Lipocalina-2. Estos resultados proveen evidencia del efecto antimicrobiano que ejercen las CEM-GW sobre las cepas bacterianas utilizadas, el cual depende de la presencia de LPh y deriva en la expresión y secreción de AMPs, como mecanismo de defensa a la infección.spa
dc.description.additionalMagíster en Ciencias Microbiología.spa
dc.description.degreelevelMaestríaspa
dc.description.projectEvaluación In vitro de la actividad antimicrobiana de las Células Estromales Mesenquimales de Gelatina de Wharton (CEM-GW)spa
dc.description.sponsorshipInstituto DIsitrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS)spa
dc.format.extent111spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationEvaluación In vitro de la actividad antimicrobiana de las Células Estromales Mesenquimales de Gelatina de Wharton (CEM-GW)spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77872
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.references1. OMS, Organización Mundial de la Salud, OMS, Editor. 2019.spa
dc.relation.references2. OMS, Informe sobre la salud del mundo 2017. Ginebra. 2017, Organización Mundial de la Saludspa
dc.relation.references3. Tabares, V.R. Resistencia bacteriana en la mira de investigadores. 2016 [cited 2018.spa
dc.relation.references4. González García, M., et al., Péptidos antimicrobianos: potencialidades terapéuticas. 2017. Vol. 69. 2017.spa
dc.relation.references5. Meisel, R., et al., Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2, 3-dioxygenase. Leukemia, 2011. 25(4): p. 648.spa
dc.relation.references6. Klimczak, A. and U. Kozlowska, Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Homeostasis. Stem Cells Int, 2016. 2016: p. 4285215.spa
dc.relation.references7. da Silva Meirelles, L., P.C. Chagastelles, and N.B. Nardi, Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci, 2006. 119(Pt 11): p. 2204-13.spa
dc.relation.references8. Wang, H.S., et al., Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem cells, 2004. 22(7): p. 1330-1337.spa
dc.relation.references9. Ariff, B. and F. Chui, The Therapeutic Potential, Challenges and FutureClinical Directions of Stem Cells from the Wharton’s Jellyof the Human Umbilical Cord. Stem Cell, 2015: p. 1-15.spa
dc.relation.references10. Paredes, F. and J.J. Roca, Acción de los antibióticos. Perspectiva de la medicación antimicrobiana. Offarm, 2004. 23(3): p. 116-124.spa
dc.relation.references11. Calvo, J. and L. Martínez-Martínez, Mecanismos de acción de los antimicrobianos. Enfermedades infecciosas y microbiología clínica, 2009. 27(1): p. 44-52.spa
dc.relation.references12. Nguyen, L.T., E.F. Haney, and H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 2011. 29(9): p. 464-72.spa
dc.relation.references13. Casares, D., P.V. Escribá, and C.A. Rosselló, Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. International journal of molecular sciences, 2019. 20(9): p. 2167spa
dc.relation.references14. Kapoor, G., S. Saigal, and A. Elongavan, Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of anaesthesiology, clinical pharmacology, 2017. 33(3): p. 300-305.spa
dc.relation.references15. Yoneyama, H. and R. Katsumata, Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotechnol Biochem, 2006. 70(5): p. 1060-75.spa
dc.relation.references16. Zhang, L.-j. and R.L. Gallo, Antimicrobial peptides. Current Biology, 2016. 26(1): p. R14-R19.spa
dc.relation.references17. Van Epps, H.L., René Dubos: unearthing antibiotics. The Journal of experimental medicine, 2006. 203(2): p. 259-259.spa
dc.relation.references18. Bahar, A.A. and D. Ren, Antimicrobial peptides. Pharmaceuticals (Basel, Switzerland), 2013. 6(12): p. 1543-1575.spa
dc.relation.references19. Aysenur, Y., et al., Natural-based Antibiofilm and Antimicrobial Peptides from Microorganisms. Current Topics in Medicinal Chemistry, 2018. 18(24): p. 2102- 2107.spa
dc.relation.references20. Cassatella, M.A., et al., Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells, 2011. 29(6): p. 1001-11.spa
dc.relation.references21. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature, 2002. 415(6870): p. 389-95.spa
dc.relation.references22. Téllez, G.A. and J.C. Castaño, Péptidos antimicrobianos. Infectio, 2010. 14: p. 55- 67.spa
dc.relation.references23. Shai, Y., Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002. 66(4): p. 236-48.spa
dc.relation.references24. Jenssen, H., P. Hamill, and R.E. Hancock, Peptide antimicrobial agents. Clin Microbiol Rev, 2006. 19(3): p. 491-511.spa
dc.relation.references25. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005. 3(3): p. 238-50.spa
dc.relation.references26. Marchand, C., et al., Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res, 2006. 34(18): p. 5157-65.spa
dc.relation.references27. Meade, K.G. and C. O'Farrelly, β-Defensins: Farming the Microbiome for Homeostasis and Health. Frontiers in Immunology, 2019. 9(3072).spa
dc.relation.references28. da Silva, F.P. and M.C.C. Machado, Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides, 2012. 36(2): p. 308-314.spa
dc.relation.references29. Doss, M., et al., Human defensins and LL‐37 in mucosal immunity. Journal of leukocyte biology, 2010. 87(1): p. 79-92.spa
dc.relation.references30. Park, C.H., et al., Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem, 2001. 276(11): p. 7806-10.spa
dc.relation.references31. Forrellat Barrios, M. and N. Fernández Delgado, Hepcidina: nueva molécula, nuevos horizontes. Revista Cubana de Hematología, Inmunología y Hemoterapia, 2004. 20: p. 0-0.spa
dc.relation.references32. Michels, K., et al., Hepcidin and Host Defense against Infectious Diseases. PLoS pathogens, 2015. 11(8): p. e1004998-e1004998.spa
dc.relation.references33. Lombardi, L., et al., Insights into the antimicrobial properties of hepcidins: advantages and drawbacks as potential therapeutic agents. Molecules, 2015. 20(4): p. 6319-41.spa
dc.relation.references34. Alfonso García, G., et al., Aspectos biomédicos de la familia de las lipocalinas. Universitas Medica, 2007. 48(2): p. 118-128.spa
dc.relation.references35. Borregaard, N. and J.B. Cowland, Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biometals, 2006. 19(2): p. 211-5.spa
dc.relation.references36. Dittrich, A.M., H.A. Meyer, and E. Hamelmann, The role of lipocalins in airway disease. Clin Exp Allergy, 2013. 43(5): p. 503-11.spa
dc.relation.references37. Berger, T., et al., Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A, 2006. 103(6): p. 1834-9.spa
dc.relation.references38. Goetz, D.H., et al., The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell, 2002. 10(5): p. 1033-43.spa
dc.relation.references39. Cederlund, A., G.H. Gudmundsson, and B. Agerberth, Antimicrobial peptides important in innate immunity. Febs j, 2011. 278(20): p. 3942-51.spa
dc.relation.references40. Wang, S., et al., Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int J Mol Sci, 2016. 17(5).spa
dc.relation.references41. Batoni, P., et al., Rational modification of a dendrimeric peptide with antimicrobial activity: Consequences on membrane-binding and biological properties. Amino Acids, 2016. 48: p. 887-900.spa
dc.relation.references42. Kfoury, Y. and D.T. Scadden, Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell, 2015. 16(3): p. 239-53.spa
dc.relation.references43. Flores-Figueroa, E., J.J. Montesinos, and H. Mayani, [Mesenchymal stem cell; history, biology and clinical application]. Rev Invest Clin, 2006. 58(5): p. 498-511.spa
dc.relation.references44. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7.spa
dc.relation.references45. Watson, N., et al., Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy, 2015. 17(1): p. 18-24.spa
dc.relation.references46. Gronthos, S., et al., Stem cell properties of human dental pulp stem cells. J Dent Res, 2002. 81(8): p. 531-5.spa
dc.relation.references47. Panepucci, R.A., et al., Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells, 2004. 22(7): p. 1263- 78.spa
dc.relation.references48. Hua, J., et al., Small Molecule-Based Strategy Promotes Nucleus Pulposus Specific Differentiation of Adipose-Derived Mesenchymal Stem Cells. Mol Cells, 2019. 42(9): p. 661-671.spa
dc.relation.references49. Maurer, M., Proteomic Definitions of Mesenchymal Stem Cells. Stem cells international, 2011. 2011: p. 704256.spa
dc.relation.references50. Alcayaga-Miranda, F., J. Cuenca, and M. Khoury, Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Frontiers in immunology, 2017. 8: p. 339.spa
dc.relation.references51. Krasnodembskaya, A., et al., Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells, 2010. 28(12): p. 2229-38.spa
dc.relation.references52. Gonzalez-Rey, E., et al., Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut, 2009. 58(7): p. 929-39.spa
dc.relation.references53. Lalu, M.M., et al., Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One, 2012. 7(10): p. e47559.spa
dc.relation.references54. Li, Z., et al., Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury. Neural Regen Res, 2013. 8(36): p. 3441-8.spa
dc.relation.references55. Kong, C.M., et al., Manufacturing of human Wharton's jelly stem cells for clinical use: selection of serum is important. Cytotherapy, 2019. 21(4): p. 483-495.spa
dc.relation.references56. Bastawrous, M., et al., Wharton’s Jelly Stem Cells. 2016. p. 257-276.spa
dc.relation.references57. Kim, D.-W., et al., Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. International journal of molecular sciences, 2013. 14(6): p. 11692-11712.spa
dc.relation.references58. Liau, L.L., et al., Characteristics and clinical applications of Wharton’s jelly-derived mesenchymal stromal cells. Current Research in Translational Medicine, 2019.spa
dc.relation.references59. Yoon, J.H., et al., Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. BioMed Research International, 2013. 2013.spa
dc.relation.references60. Loria, C.R., Cinetica Microbiana. 2016.spa
dc.relation.references61. López Vargas, J.A. and L.M. Echeverri Toro, K. pneumoniae: ¿la nueva "superbacteria"? Patogenicidad, epidemiología y mecanismos de resistencia. Iatreia, 2010. 23(2): p. 157-165.spa
dc.relation.references62. Olsen, I., Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis, 2015. 34(5): p. 877-86.spa
dc.relation.references63. Zendejas-Manzo, G.S., H. Avalos-Flores, and M.Y. Soto-Padilla, General microbiology Staphylococcus aureus: Characteristics and methods of identifying pathogenicity. Revista Biomédica, 2014. 25(3): p. 129-143.spa
dc.relation.references64. Ortega-Peña, S. and R. Franco-Cendejas, Importancia médica del biofilm de Staphylococcus epidermidis en las infecciones de prótesis articular. Invest Discap, 2014. 3(3): p. 106-113.spa
dc.relation.references65. Harman, R.M., et al., Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther, 2017. 8(1): p. 157.spa
dc.relation.references66. Hincapié Mejía, G.M., et al., Evaluación de la degradación de E. coli empleando un fotorreactor de discos rotatorios. Ingeniería e Investigación, 2007. 27: p. 65-69.spa
dc.relation.references67. Arias Palacios, J., et al., Comparación de la actividad antimicrobiana de meropenem genérico y meropenem innovador por la técnica de micro dilución en cepas resistentes. Revista Cubana de Farmacia, 2015. 49: p. 0-0.spa
dc.relation.references68. Tao, Z., et al., Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile. BMC microbiology, 2010. 10: p. 287.spa
dc.relation.references69. Biedermann, A., et al., Interactions of anaerobic bacteria with dental stem cells: an in vitro study. PloS one, 2014. 9(11): p. e110616-e110616.spa
dc.relation.references70. Macías-Abraham, C., et al., Características fenotípicas y funcionales de las células madre mesenquimales y endoteliales. Revista Cubana de Hematología, Inmunología y Hemoterapia, 2010. 26(4): p. 256-275.spa
dc.relation.references71. Ranzato, E., et al., Platelet lysate promotes in vitro wound scratch closure of human dermal fibroblasts: different roles of cell calcium, P38, ERK and PI3K/AKT. J Cell Mol Med, 2009. 13(8b): p. 2030-8.spa
dc.relation.references72. Benavente, R., et al., Enantioselective oxidation of galactitol 1-phosphate by galactitol-1-phosphate 5-dehydrogenase from Escherichia coli. Acta Crystallographica Section D, 2015. 71(7): p. 1540-1554.spa
dc.relation.references73. Becherucci, V., et al., Human platelet lysate in mesenchymal stromal cell expansion according to a GMP grade protocol: a cell factory experience. Stem Cell Res Ther, 2018. 9(1): p. 124.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Ciencias de la vidaspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.proposalpéptidos antimicrobianosspa
dc.subject.proposalβ-defensina-1spa
dc.subject.proposallipocalin-2eng
dc.subject.proposalCEM-GWspa
dc.subject.proposalCEM-GWeng
dc.subject.proposalcepas ATCCspa
dc.titleEvaluación In vitro de la actividad antimicrobiana de las células estromales mesenquimales de gelatina de Wharton (CEM-GW)spa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
53040841.2020.pdf
Tamaño:
4.32 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: