Análisis de la secuencia del genoma humano en pacientes con sospecha de enfermedad monogénica empleando tecnologías de secuenciación de nueva generación implementadas en Colombia

dc.contributor.advisorBello Uyaban, Sandra Patriciaspa
dc.contributor.advisorRey Buitrago, Mauriciospa
dc.contributor.authorChavarro Moreno , Diego Alexanderspa
dc.contributor.researchgroupGenuino Gencell – Genética Clínica UNALspa
dc.coverage.countryColombiaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.date.accessioned2025-09-17T21:32:19Z
dc.date.available2025-09-17T21:32:19Z
dc.date.issued2025-09-16
dc.descriptionilustraciones, diagramas, fotografías, mapasspa
dc.description.abstractObjetivo. La presente investigación pretendió caracterizar las variantes genéticas y la relación genotipo fenotipo en una corte de pacientes con sospecha clínica de enfermedad monogénica mediante el análisis del genoma completo empleando tecnologías de secuenciación de siguiente generación implementadas en Colombia. Metodología. Este estudio es de tipo transversal observacional de tipo descriptivo en una corte de 106 pacientes recibidos en el laboratorio de referencia de Gencell sede Bogotá entre el periodo 2023 – 2024 bajo la solicitud médica para el análisis del genoma completo por la alta sospecha de enfermedad monogénica no diagnosticada mediante técnicas convencionales. La metodología incluyó la extracción de ácidos nucleicos, preparación de librerías de MGI, secuenciación en la plataforma DNBSeqT7 de MGI y el análisis bioinformático y clínico de las variantes patogénicas y probablemente patogénicas identificadas. La misma metodología fue aplicada a controles de referencia y muestras previamente caracterizadas para validar la plataforma de secuenciación y respaldar la calidad de los hallazgos diagnósticos. Resultados. Se identificaron un total de 11 variantes clasificadas como patogénicas (18.18%) y probablemente patogénicas (81.81%) en el 9.43% de los casos, estas variantes fueron de tipo Missense (36.36%), Frameshift (36.36%), Nonsense (9.09%) y de sitio canónico del splicing (18.18%); las variantes identificadas permitieron el diagnóstico de los síndromes de estomatocitosis hereditaria, deficiencia primaria de carnitina, ataxia espinocerebelosa tipo 42, síndrome cardio-urogenital, síndrome de Axenfeld – Reiger, síndrome ZTTK, pseudohipoaldosteronismo tipo IIE, retinitis pigmentosa y encefalopatía epiléptica y del desarrollo tipo VIB. Los resultados obtenidos se encuentran respaldados por el proceso de validación de la plataforma de secuenciación DNBSeqT7. Conclusión. Este estudio permitió el diagnóstico de 10 pacientes con sospecha clínica de enfermedad monogénica no diagnosticados mediante otras pruebas diferentes al análisis del genoma completo, demostrando su utilidad como herramienta diagnóstica integral para el diagnóstico de enfermedades monogénicas que cursan con fenotipos complejos en los cuales su aplicación contribuiría a reducir los tiempos de odisea diagnostica y aportará al desarrollo de la medicina personalizada y de precisión. (Texto tomado de la fuente).spa
dc.description.abstractObjective. This research aimed to characterize genetic variants and the genotype-phenotype relationship in a cohort of patients with suspected monogenic diseases through whole-genome analysis using next-generation sequencing technologies implemented in Colombia. Methodology. This study is a descriptive, observational, cross-sectional analysis of a cohort of 106 patients received at the Gencell reference laboratory in Bogotá between 2023 and 2024, under medical request for whole-genome analysis due to high suspicion of undiagnosed monogenic diseases using conventional techniques. The methodology included nucleic acid extraction, preparation of MGI libraries, sequencing on the MGI DNBSeq-T7 platform, and bioinformatic and clinical analysis of the pathogenic and likely pathogenic variants identified. The same methodology was applied to reference controls and previously characterized samples to validate the sequencing platform and support the quality of diagnostic findings. Results. A total of 11 variants classified as pathogenic (18.18%) and likely pathogenic (81.81%) were identified in 9.43% of the cases. These variants included missense (36.36%), frameshift (36.36%), nonsense (9.09%), and canonical splicing site (18.18%) mutations. The identified variants enabled the diagnosis of syndromes such as hereditary stomatocytosis, primary carnitine deficiency, spinocerebellar ataxia type 42, cardio-urogenital syndrome, Axenfeld-Rieger syndrome, ZTTK syndrome, pseudohypoaldosteronism type IIE, retinitis pigmentosa, and epileptic encephalopathy and developmental type VIB. The results are supported by the validation process of the DNBSeq-T7 sequencing platform. Conclusion. This study allowed the diagnosis of 10 patients with suspected monogenic diseases who had not been diagnosed through other tests apart from whole-genome analysis, demonstrating its utility as a comprehensive diagnostic tool for monogenic diseases presenting with complex phenotypes. Its application would contribute to reducing diagnostic odyssey times and advance the development of personalized and precision medicine.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Genética Humanaspa
dc.description.researchareaGenética clínicaspa
dc.format.extent119 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88889
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Genética Humanaspa
dc.relation.indexedBiremespa
dc.relation.referencesAlberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2016). Biología molecular de la célula. (Sexta Edición.). Omega.
dc.relation.referencesAmberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F., & Hamosh, A. (2015). OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Research, 43(D1), D789–D798. https://doi.org/10.1093/nar/gku1205
dc.relation.referencesAmerican College of Medical Genetics and Genomics. (2012). Points to consider in the clinical application of genomic sequencing. Genetics in Medicine, 14(8), 759–761. https://doi.org/10.1038/gim.2012.74
dc.relation.referencesAnderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., & Al., E. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457–465. https://doi.org/10.1038/290457a0
dc.relation.referencesBaird, P. A., Anderson, T. W., Newcombe, H. B., & Lowry, R. B. (1988). Genetic disorders in children and young adults: a population study. American Journal of Human Genetics, 42(5), 677–693.
dc.relation.referencesBanerjee, E., & Bhattacharjee, K. (2022). Genetic Counselling: the biomedical bridge between molecular diagnosis and precision treatment. Egyptian Journal of Medical Human Genetics, 23(1), 85. https://doi.org/10.1186/s43042-022-00297-7
dc.relation.referencesBean, L., Funke, B., Carlston, C. M., Gannon, J. L., Kantarci, S., Krock, B. L., Zhang, S., & BayrakToydemir, P. (2020). Diagnostic gene sequencing panels: from design to report—a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 22(3), 453–461. https://doi.org/10.1038/s41436-019-0666-z
dc.relation.referencesBecirovic, E., Böhm, S., Nguyen, O. N. P., Riedmayr, L. M., Koch, M. A., Schulze, E., Kohl, S., Borsch, O., Santos-Ferreira, T., Ader, M., Michalakis, S., & Biel, M. (2016). In Vivo Analysis of Disease-Associated Point Mutations Unveils Profound Differences in mRNA Splicing of Peripherin-2 in Rod and Cone Photoreceptors. PLoS Genetics, 12(1), e1005811. https://doi.org/10.1371/journal.pgen.1005811
dc.relation.referencesBick, D., Jones, M., Taylor, S. L., Taft, R. J., & Belmont, J. (2019). Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases. Journal of Medical Genetics, 56(12), 783–791. https://doi.org/10.1136/jmedgenet-2019-106111
dc.relation.referencesBiesecker, L. G., & Green, R. C. (2014). Diagnostic Clinical Genome and Exome Sequencing. New England Journal of Medicine, 370(25), 2418–2425. https://doi.org/10.1056/NEJMra1312543
dc.relation.referencesBoycott, K., Hartley, T., Adam, S., Bernier, F., Chong, K., Fernandez, B. A., Friedman, J. M., Geraghty, M. T., Hume, S., Knoppers, B. M., Laberge, A.-M., Majewski, J., MendozaLondono, R., Meyn, M. S., Michaud, J. L., Nelson, T. N., Richer, J., Sadikovic, B., Skidmore, D. L., … Armour, C. M. (2015). The clinical application of genome-wide sequencing for monogenic diseases in Canada: Position Statement of the Canadian College of Medical Geneticists. Journal of Medical Genetics, 52(7), 431–437. https://doi.org/10.1136/jmedgenet-2015-103144
dc.relation.referencesCederbaum, S. D., Koo-McCoy, S., Tein, I., Hsu, B. Y. L., Ganguly, A., Vilain, E., Dipple, K., Cvitanovic-Sojat, L., & Stanley, C. (2002). Carnitine membrane transporter deficiency: a long-term follow up and OCTN2 mutation in the first documented case of primary carnitine deficiency. Molecular Genetics and Metabolism, 77(3), 195–201. https://doi.org/10.1016/s1096-7192(02)00169-5
dc.relation.referencesChan, E. Y. (2005). Advances in sequencing technology. Mutation Research/Fundamental and Molecular Mechanisms of https://doi.org/10.1016/j.mrfmmm.2005.01.004 Mutagenesis, 573(1–2), 13–40.
dc.relation.referencesChiu, C. Y., & Miller, S. A. (2019). Clinical metagenomics. Nature Reviews Genetics, 20(6), 341355. https://doi.org/10.1038/s41576-019-0113-7
dc.relation.referencesChoi, M., Scholl, U. I., Ji, W., Liu, T., Tikhonova, I. R., Zumbo, P., Nayir, A., Bakkaloğlu, A., Özen, S., Sanjad, S., Nelson-Williams, C., Farhi, A., Mane, S., & Lifton, R. P. (2009a). Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proceedings of the National Academy of Sciences, 106(45), 19096–19101. https://doi.org/10.1073/pnas.0910672106
dc.relation.referencesChoi, M., Scholl, U. I., Ji, W., Liu, T., Tikhonova, I. R., Zumbo, P., Nayir, A., Bakkaloğlu, A., Özen, S., Sanjad, S., Nelson-Williams, C., Farhi, A., Mane, S., & Lifton, R. P. (2009b). Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proceedings of. the National Academy of Sciences, 106(45), 19096–19101. https://doi.org/10.1073/pnas.0910672106
dc.relation.referencesChong, J. X., Buckingham, K. J., Jhangiani, S. N., Boehm, C., Sobreira, N., Smith, J. D., Harrell, T. M., McMillin, M. J., Wiszniewski, W., Gambin, T., Coban Akdemir, Z. H., Doheny, K., Scott, A. F., Avramopoulos, D., Chakravarti, A., Hoover-Fong, J., Mathews, D., Witmer, P. D., Ling, H., … Bamshad, M. J. (2015a). The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. The American Journal of Human Genetics, 97(2), 199–215. https://doi.org/10.1016/j.ajhg.2015.06.009
dc.relation.referencesChrystoja, C. C., & Diamandis, E. P. (2014). Whole Genome Sequencing as a Diagnostic Test: Challenges and Opportunities. Clinical Chemistry, 60(5), 724–733. https://doi.org/10.1373/clinchem.2013.209213
dc.relation.referencesCongreso de Colombia. (2010, July 18). Ley 1392 de 2010. Por medio de la cual se reconocen las enfermedades huérfanas como de especial interés y se adoptan normas tendientes a garantizar la protección social por parte del estado colombiano a la población que padece de enfermedades huérfanas y sus cuidadores. [Internet]. Https://Www.Minsalud.Gov.Co/Sites/Rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/Ley-1392-de2010.Pdf.
dc.relation.referencesCongreso de Colombia. (2011, January 19). Ley 1438 de 2011. Https://Www.Minsalud.Gov.Co/Normatividad_Nuevo/LEY%201438%20DE%202011.Pdf.
dc.relation.referencesCooper, Geoffrey., & Hausman, Robert. (2011). La CÉLULA (Quinta). Marban.
dc.relation.referencesCostain, G., Cohn, R. D., Scherer, S. W., & Marshall, C. R. (2021). Genome sequencing as a diagnostic test. Canadian Medical Association Journal, 193(42), E1626–E1629. https://doi.org/10.1503/cmaj.210549
dc.relation.referencesCoutelier, M., Blesneac, I., Monteil, A., Monin, M.-L., Ando, K., Mundwiller, E., Brusco, A., Le Ber, I., Anheim, M., Castrioto, A., Duyckaerts, C., Brice, A., Durr, A., Lory, P., & Stevanin, G. (2015a). A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. American Journal of Human Genetics, 97(5), 726–737. https://doi.org/10.1016/j.ajhg.2015.09.007
dc.relation.referencesCoutelier, M., Blesneac, I., Monteil, A., Monin, M.-L., Ando, K., Mundwiller, E., Brusco, A., Le Ber, I., Anheim, M., Castrioto, A., Duyckaerts, C., Brice, A., Durr, A., Lory, P., & Stevanin, G.(2015b). A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. American Journal of Human Genetics, 97(5), 726–737. https://doi.org/10.1016/j.ajhg.2015.09.007
dc.relation.referencesDallaire, L., & Huret, J.-L. (2002, December). Patrones de herencia mendelianos y atípicos. Https://Atlasgeneticsoncology.Org/Teaching/30025/Mendelian-and-Atypical-Patterns-ofInheritance.
dc.relation.referencesDe Castro, M., & Restrepo, C. M. (2015). Genetics and Genomic Medicine in Colombia. Molecular Genetics & Genomic Medicine, 3(2), 84–91. https://doi.org/10.1002/mgg3.139
dc.relation.referencesDi Resta, C., & Ferrari, M. (2018). Next Generation Sequencing: From Research Area to Clinical Practice. EJIFCC, 29(3), 215–220.
dc.relation.referencesDurmaz, A. A., Karaca, E., Demkow, U., Toruner, G., Schoumans, J., & Cogulu, O. (2015). Evolution of Genetic Techniques: Past, Present, and Beyond. BioMed Research International, 2015, 1–7. https://doi.org/10.1155/2015/461524
dc.relation.referencesEsterling, L., Wijayatunge, R., Brown, K., Morris, B., Hughes, E., Pruss, D., Manley, S., Bowles, K. R., & Ross, T. S. (2020). Impact of a Cancer Gene Variant Reclassification Program Over a 20-Year Period. JCO Precision Oncology, 4, 944–954. https://doi.org/10.1200/PO.20.00020
dc.relation.referencesFélix, T. M., Fischinger Moura de Souza, C., Oliveira, J. B., Rico-Restrepo, M., Zanoteli, E., Zatz, M., & Giugliani, R. (2023). Challenges and recommendations to increasing the use of exome sequencing and whole genome sequencing for diagnosing rare diseases in Brazil: an expert perspective. International Journal for Equity in Health, 22(1), 11. https://doi.org/10.1186/s12939-022-01809-y
dc.relation.referencesFernandez-Marmiesse, A., Gouveia, S., & Couce, M. L. (2018). NGS Technologies as a Turning Point in Rare Disease Research , Diagnosis and Treatment. Current Medicinal Chemistry, 25(3), 404–432. https://doi.org/10.2174/0929867324666170718101946
dc.relation.referencesFeuk, L., Carson, A. R., & Scherer, S. W. (2006). Structural variation in the human genome. Nature Reviews Genetics, 7(2), 85–97. https://doi.org/10.1038/nrg1767
dc.relation.referencesFitch, N., & Kaback, M. (1978). The Axenfeld syndrome and the Rieger syndrome. Journal of Medical Genetics, 15(1), 30–34. https://doi.org/10.1136/jmg.15.1.30
dc.relation.referencesGiles, R. E., Blanc, H., Cann, H. M., & Wallace, D. C. (1980). Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Sciences, 77(11), 6715–6719. https://doi.org/10.1073/pnas.77.11.6715
dc.relation.referencesGonzaga-Jauregui, C., Lupski, J. R., & Gibbs, R. A. (2012). Human Genome Sequencing in Health and Disease. Annual Review of Medicine, 63(1), 35–61. https://doi.org/10.1146/annurev-med-051010-162644
dc.relation.referencesHeather, J. M., & Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics, 107(1), 1–8. https://doi.org/10.1016/j.ygeno.2015.11.003
dc.relation.referencesHood, L., & Rowen, L. (2013). The human genome project: big science transforms biology and medicine. Genome Medicine, 5(9), 79. https://doi.org/10.1186/gm483
dc.relation.referencesHu, T., Chitnis, N., Monos, D., & Dinh, A. (2021). Next-generation sequencing technologies: An overview. Human Immunology, 82(11), 801–811. https://doi.org/10.1016/j.humimm.2021.02.012
dc.relation.referencesInstituto Nacional de Salud. (2024). Informe de Evento 2023. Enfermedades Huérfanas – Raras. https://doi.org/10.33610/infoeventos.19.1
dc.relation.referencesIoannidis, N. M., Rothstein, J. H., Pejaver, V., Middha, S., McDonnell, S. K., Baheti, S., Musolf, A., Li, Q., Holzinger, E., Karyadi, D., Cannon-Albright, L. A., Teerlink, C. C., Stanford, J. L., Isaacs, W. B., Xu, J., Cooney, K. A., Lange, E. M., Schleutker, J., Carpten, J. D., … Sieh, W. (2016). REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. The American Journal of Human Genetics, 99(4), 877–885. https://doi.org/10.1016/j.ajhg.2016.08.016
dc.relation.referencesJohansen Taber, K. A., Dickinson, B. D., & Wilson, M. (2014). The Promise and Challenges of Next-Generation Genome Sequencing for Clinical Care. JAMA Internal Medicine, 174(2), 275. https://doi.org/10.1001/jamainternmed.2013.12048
dc.relation.referencesJohnston, J. J., Williamson, K. A., Chou, C. M., Sapp, J. C., Ansari, M., Chapman, H. M., Cooper, D. N., Dabir, T., Dudley, J. N., Holt, R. J., Ragge, N. K., Schäffer, A. A., Sen, S. K., Slavotinek, A. M., FitzPatrick, D. R., Glaser, T. M., Stewart, F., Black, G. C., & Biesecker, L. G. (2019). NAA10 polyadenylation signal variants cause syndromic microphthalmia. Journal of Medical Genetics, 56(7), 444–452. https://doi.org/10.1136/jmedgenet-2018-105836
dc.relation.referencesKanzi, A. M., San, J. E., Chimukangara, B., Wilkinson, E., Fish, M., Ramsuran, V., & de Oliveira, T. (2020). Next Generation Sequencing and Bioinformatics Analysis of Family Genetic Inheritance. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.544162
dc.relation.referencesKaplan, J. D., Stewart, B., Prasov, L., & Pyle, L. C. (1993). MYRF-Related Cardiac Urogenital Syndrome.
dc.relation.referencesKatsonis, P., Koire, A., Wilson, S. J., Hsu, T.-K., Lua, R. C., Wilkins, A. D., & Lichtarge, O. (2014). Single nucleotide variations: Biological impact and theoretical interpretation. Protein Science, 23(12), 1650–1666. https://doi.org/10.1002/pro.2552
dc.relation.referencesKhoury, M. J., Iademarco, M. F., & Riley, W. T. (2016). Precision Public Health for the Era of Precision Medicine. American Journal of Preventive Medicine, 50(3), 398–401. https://doi.org/10.1016/j.amepre.2015.08.031
dc.relation.referencesKim, J.-H., Shinde, D. N., Reijnders, M. R. F., Hauser, N. S., Belmonte, R. L., Wilson, G. R., Bosch, D. G. M., Bubulya, P. A., Shashi, V., Petrovski, S., Stone, J. K., Park, E. Y., Veltman, J. A., Sinnema, M., Stumpel, C. T. R. M., Draaisma, J. M., Nicolai, J., University of Washington Center for Mendelian Genomics, Yntema, H. G., … Ahn, E.-Y. E. (2016). De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome. American Journal of Human Genetics, 99(3), 711–719. https://doi.org/10.1016/j.ajhg.2016.06.029
dc.relation.referencesKingsmore, S. F., & Cole, F. S. (2022). The Role of Genome Sequencing in Neonatal Intensive Care Units. Annual Review of Genomics and Human Genetics, 23(1), 427–448. https://doi.org/10.1146/annurev-genom-120921-103442
dc.relation.referencesKingsmore, S. F., Nofsinger, R., & Ellsworth, K. (2024). Rapid genomic sequencing for genetic disease diagnosis and therapy in intensive care units: a review. Npj Genomic Medicine, 9(1), 17. https://doi.org/10.1038/s41525-024-00404-0
dc.relation.referencesKoboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K., & Mardis, E. R. (2013). The NextGeneration Sequencing Revolution and Its Impact on Genomics. Cell, 155(1), 27–38. https://doi.org/10.1016/j.cell.2013.09.006
dc.relation.referencesKotze, M. J., Lückhoff, H. K., Peeters, A. V., Baatjes, K., Schoeman, M., van der Merwe, L., Grant, K. A., Fisher, L. R., van der Merwe, N., Pretorius, J., van Velden, D. P., Myburgh, E. J., Pienaar, F. M., van Rensburg, S. J., Yako, Y. Y., September, A. V., Moremi, K. E., Cronje, F.J., Tiffin, N., … Schneider, J. W. (2015). Genomic medicine and risk prediction across the disease spectrum. Critical Reviews in Clinical Laboratory Sciences, 52(3), 120–137. https://doi.org/10.3109/10408363.2014.997930
dc.relation.referencesKovalenko, T. F., & Patrushev, L. I. (2018). Pseudogenes as Functionally Significant Elements of the Genome. Biochemistry (Moscow), 83(11), 1332–1349. https://doi.org/10.1134/S0006297918110044
dc.relation.referencesLee, C. E., Singleton, K. S., Wallin, M., & Faundez, V. (2020). Rare Genetic Diseases: Nature’s Experiments on Human Development. IScience, 23(5), 101123. https://doi.org/10.1016/j.isci.2020.101123
dc.relation.referencesLevy, S. E., & Myers, R. M. (2016). Advancements in Next-Generation Sequencing. Annual Review of Genomics and Human Genetics, 17(1), 95–115. https://doi.org/10.1146/annurevgenom-083115-022413
dc.relation.referencesLi, C., Vandersluis, S., Holubowich, C., Ungar, W. J., Goh, E. S., Boycott, K. M., Sikich, N., Dhalla, I., & Ng, V. (2021). Cost-effectiveness of genome-wide sequencing for unexplained developmental disabilities and multiple congenital anomalies. Genetics in Medicine, 23(3), 451–460. https://doi.org/10.1038/s41436-020-01012-w
dc.relation.referencesLiascovich, R., Rittler, M., & Castilla, E. E. (2001). Consanguinity in South America: Demographic Aspects. Human Heredity, 51(1–2), 27–34. https://doi.org/10.1159/000022956
dc.relation.referencesLinderman, M. D., Brandt, T., Edelmann, L., Jabado, O., Kasai, Y., Kornreich, R., Mahajan, M., Shah, H., Kasarskis, A., & Schadt, E. E. (2014). Analytical validation of whole exome and whole genome sequencing for clinical applications. BMC Medical Genomics, 7(1). https://doi.org/10.1186/1755-8794-7-20
dc.relation.referencesLines, M., Hartley, T., MacDonald, S. K., & Boycott, K. M. (1993). Mandibulofacial Dysostosis with Microcephaly.
dc.relation.referencesLiu, Z., Zhu, L., Roberts, R., & Tong, W. (2019). Toward Clinical Implementation of Next Generation Sequencing-Based Genetic Testing in Rare Diseases: Where Are We? Trends in Genetics, 35(11), 852–867. https://doi.org/10.1016/j.tig.2019.08.006
dc.relation.referencesLordănescu, I. I., Catana, A., Cuzmici, Z. B., Chelu, I., Dragomir, C., Militaru, M., Severin, E., & Militaru, M. S. (2024). Microduplication and Microdeletion Syndromes Diagnosed PrenatallyUsing Single Nucleotide Polymorphism Array. Journal of Personalized Medicine, 14(3), 290. https://doi.org/10.3390/jpm14030290
dc.relation.referencesLuo, S., Valencia, C. A., Zhang, J., Lee, N.-C., Slone, J., Gui, B., Wang, X., Li, Z., Dell, S., Brown, J., Chen, S. M., Chien, Y.-H., Hwu, W.-L., Fan, P.-C., Wong, L.-J., Atwal, P. S., & Huang, T. (2018). Biparental Inheritance of Mitochondrial DNA in Humans. Proceedings of the National Academy of Sciences, 115(51), 13039–13044. https://doi.org/10.1073/pnas.1810946115
dc.relation.referencesMagrinelli, F., Balint, B., & Bhatia, K. P. (2021). Challenges in Clinicogenetic Correlations: One Gene – Many Phenotypes. Movement Disorders Clinical Practice, 8(3), 299–310. https://doi.org/10.1002/mdc3.13165
dc.relation.referencesMaston, G. A., Evans, S. K., & Green, M. R. (2006). Transcriptional Regulatory Elements in the Human Genome. Annual Review of Genomics and Human Genetics, 7(1), 29–59. https://doi.org/10.1146/annurev.genom.7.080505.115623
dc.relation.referencesMaxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences, 74(2), 560–564. https://doi.org/10.1073/pnas.74.2.560
dc.relation.referencesMeienberg, J., Bruggmann, R., Oexle, K., & Matyas, G. (2016). Clinical sequencing: is WGS the better WES? Human Genetics, 135(3), 359–362. https://doi.org/10.1007/s00439-015-16319
dc.relation.referencesMersch, J., Brown, N., Pirzadeh-Miller, S., Mundt, E., Cox, H. C., Brown, K., Aston, M., Esterling, L., Manley, S., & Ross, T. (2018). Prevalence of Variant Reclassification Following Hereditary Cancer Genetic Testing. JAMA, 320(12), 1266. https://doi.org/10.1001/jama.2018.13152
dc.relation.referencesMGI Tech. (2023). DNBSEQ-G400RS System guide.
dc.relation.referencesMiller, D. T., Lee, K., Abul-Husn, N. S., Amendola, L. M., Brothers, K., Chung, W. K., Gollob, M. H., Gordon, A. S., Harrison, S. M., Hershberger, R. E., Klein, T. E., Richards, C. S., Stewart, D. R., & Martin, C. L. (2023). ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 25(8), 100866. https://doi.org/10.1016/j.gim.2023.100866
dc.relation.referencesMinisterio de Salud y Protección Social. (2018). Resolución 5857 de 2018. / Por Medio de La Cual Se Actualiza Integralmente El Plan de Beneficios En Salud Con Cargo a La Unidad dePago Por Capitacion (UPC). Ministerio de Salud y Protección Social. https://www.minsalud.gov.co/Normatividad_Nuevo/Forms/DispForm.aspx?ID=5450
dc.relation.referencesMinisterio de Salud y protección Social. (2021, November 19). Resolución 1871 de 2021. Https://Www.Minsalud.Gov.Co/Normatividad_Nuevo/Resoluci%C3%B3n%20No.%201871 %20de%202021.Pdf.
dc.relation.referencesMolster, C. M., Bowman, F. L., Bilkey, G. A., Cho, A. S., Burns, B. L., Nowak, K. J., & Dawkins, H. J. S. (2018). The Evolution of Public Health Genomics: Exploring Its Past, Present, and Future. Frontiers in Public Health, 6. https://doi.org/10.3389/fpubh.2018.00247
dc.relation.referencesMonkhorst, K., Samsom, K., Schipper, L., Roepman, P., Bosch, L., de Bruijn, E., Hoes, L. R., Riethorst, I., Schoenmaker, L., van der Kolk, L., Buffart, T., van der Hoeven, K., Voest, E. E., Cuppen, E., & Meijer, G. (2020). Validation of whole genome sequencing in routine clinical practice. Annals of Oncology, 31, S784. https://doi.org/10.1016/j.annonc.2020.08.083
dc.relation.referencesMorganti, S., Tarantino, P., Ferraro, E., D’Amico, P., Viale, G., Trapani, D., Duso, B. A., & Curigliano, G. (2020). Role of Next-Generation Sequencing Technologies in Personalized Medicine. In P5 eHealth: An Agenda for the Health Technologies of the Future (pp. 125154). Springer International Publishing. https://doi.org/10.1007/978-3-030-27994-3_8
dc.relation.referencesMorino, H., Matsuda, Y., Muguruma, K., Miyamoto, R., Ohsawa, R., Ohtake, T., Otobe, R., Watanabe, M., Maruyama, H., Hashimoto, K., & Kawakami, H. (2015). A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Molecular Brain, 8, 89. https://doi.org/10.1186/s13041-0150180-4
dc.relation.referencesNass, S., & Nass, M. M. K. (1963). INTRAMITOCHONDRIAL FIBERS WITH DNA CHARACTERISTICS II. Enzymatic and Other Hydrolytic Treatments. II. Enzymatic and Other Hydrolytic Treatments .
dc.relation.referencesNational Human Genome Research Institute. (2022, August 24). Human Genome Project.
dc.relation.referencesNavarre (Spain). Departamento de Salud., D., & García Fuentes, M. (2008). Anales del sistema sanitario de Navarra. In Anales del Sistema Sanitario de Navarra (Vol. 31). Gobierno de Navarra, Departamento de Salud. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S113766272008000400008&lng=es&nrm=iso&tlng=es
dc.relation.referencesNewman, S., Hermetz, K. E., Weckselblatt, B., & Rudd, M. K. (2015). Next -Generation Sequencing of Duplication CNVs Reveals that Most Are Tandem and Some Create Fusion Genes at Breakpoints. The American Journal of Human Genetics, 96(2), 208–220. https://doi.org/10.1016/j.ajhg.2014.12.017
dc.relation.referencesNgo, K., Aker, M., Petty, L. E., Chen, J., Cavalcanti, F., Nelson, A. B., Hassin-Baer, S., Geschwind, M. D., Perlman, S., Italiano, D., Laganà, A., Cavallaro, S., Coppola, G., Below, J. E., & Fogel, B. L. (2018). Expanding the global prevalence of spinocerebellar ataxia type 42. Neurology. Genetics, 4(3), e232. https://doi.org/10.1212/NXG.0000000000000232
dc.relation.referencesNguengang Wakap, S., Lambert, D. M., Olry, A., Rodwell, C., Gueydan, C., Lanneau, V., Murphy, D., Le Cam, Y., & Rath, A. (2020a). Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. European Journal of Human Genetics, 28(2), 165–173. https://doi.org/10.1038/s41431-019-0508-0
dc.relation.referencesNguengang Wakap, S., Lambert, D. M., Olry, A., Rodwell, C., Gueydan, C., Lanneau, V., Murphy, D., Le Cam, Y., & Rath, A. (2020b). Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. European Journal of Human Genetics, 28(2), 165–173. https://doi.org/10.1038/s41431-019-0508-0
dc.relation.referencesNguengang Wakap, S., Lambert, D. M., Olry, A., Rodwell, C., Gueydan, C., Lanneau, V., Murphy, D., Le Cam, Y., & Rath, A. (2020c). Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. European Journal of Human Genetics, 28(2), 165–173. https://doi.org/10.1038/s41431-019-0508-0
dc.relation.referencesNguengang Wakap, S., Lambert, D. M., Olry, A., Rodwell, C., Gueydan, C., Lanneau, V., Murphy, D., Le Cam, Y., & Rath, A. (2020d). Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. European Journal of Human Genetics, 28(2), 165–173. https://doi.org/10.1038/s41431-019-0508-0
dc.relation.referencesNormand, E. A., Alaimo, J. T., & Van den Veyver, I. B. (2018). Exome and genome sequencing in reproductive medicine. Fertility and Sterility, 109(2), 213–220. https://doi.org/10.1016/j.fertnstert.2017.12.010
dc.relation.referencesNurchis, M. C., Altamura, G., Riccardi, M. T., Radio, F. C., Chillemi, G., Bertini, E. S., Garlasco, J., Tartaglia, M., Dallapiccola, B., & Damiani, G. (2023). Whole genome sequencing diagnostic yield for paediatric patients with suspected genetic disorders: systematic reviewmeta-analysis, and GRADE assessment. https://doi.org/10.1186/s13690-023-01112-4 Archives of Public Health, 81(1), 93.
dc.relation.referencesOlfson, E., Cottrell, C. E., Davidson, N. O., Gurnett, C. A., Heusel, J. W., Stitziel, N. O., Chen, L.S., Hartz, S., Nagarajan, R., Saccone, N. L., & Bierut, L. J. (2015). Identification of Medically Actionable Secondary Findings in the 1000 Genomes. PLOS ONE, 10(9), e0135193. https://doi.org/10.1371/journal.pone.0135193
dc.relation.referencesOliver, G. R., Hart, S. N., & Klee, E. W. (2015). Bioinformatics for Clinical Next Generation Sequencing. Clinical Chemistry, 61(1), 124–135. https://doi.org/10.1373/clinchem.2014.224360
dc.relation.referencesPatel, C. J., Sivadas, A., Tabassum, R., Preeprem, T., Zhao, J., Arafat, D., Chen, R., Morgan, A. A., Martin, G. S., Brigham, K. L., Butte, A. J., & Gibson, G. (2013). Whole genome sequencing in support of wellness and health maintenance. Genome Medicine, 5(6), 58. https://doi.org/10.1186/gm462
dc.relation.referencesPereira, R., Oliveira, J., & Sousa, M. (2020). Bioinformatics and Computational Tools for NextGeneration Sequencing Analysis in Clinical Genetics. Journal of Clinical Medicine, 9(1), 132. https://doi.org/10.3390/jcm9010132
dc.relation.referencesPosada De la Paz, M., Alonso-Ferreira, V., & Bermejo-Sanchez, E. (2016). Enfermedades raras. Instituto de Salud Carlos III. https://doi.org/10.4321/repisalud.7277
dc.relation.referencesPrakash, V., Moore, M., & Yáñez-Muñoz, R. J. (2016). Current Progress in Therapeutic Gene Editing for Monogenic Diseases. Molecular Therapy, 24(3), 465–474. https://doi.org/10.1038/mt.2016.5
dc.relation.referencesPrior-de Castro, C., Gómez-González, C., Rodríguez-López, R., Macher, H. C., & Prenatal Diagnosis Commission and the Genetics Commission of the Spanish Society of Laboratory Medicine. (2023). Prenatal genetic diagnosis of monogenic diseases. Advances in Laboratory Medicine, 4(1), 28–51. https://doi.org/10.1515/almed-2023-0024
dc.relation.referencesPromega Corporation. (2023). GloMax ® Discover System Instructions for Use of Product GM3000 OPERATING MANUAL. www.promega.com
dc.relation.referencesRehder, C., Bean, L. J. H., Bick, D., Chao, E., Chung, W., Das, S., O’Daniel, J., Rehm, H., Shashi, V., & Vincent, L. M. (2021). Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of MedicalGenetics and Genomics (ACMG). Genetics https://doi.org/10.1038/s41436-021-01139-4 in Medicine, 23(8), 1399–1415.
dc.relation.referencesResta, R., Biesecker, B. B., Bennett, R. L., Blum, S., Estabrooks Hahn, S., Strecker, M. N., & Williams, J. L. (2006). A New Definition of Genetic Counseling: National Society of Genetic Counselors’ Task Force Report. Journal of Genetic Counseling, 15(2), 77–83. https://doi.org/10.1007/s10897-005-9014-3
dc.relation.referencesReyna, B., & Pickler, R. (1999). Patterns of Genetic Inheritance. Neonatal Network, 18(1), 7–10. https://doi.org/10.1891/0730-0832.18.1.7
dc.relation.referencesRichard, G.-F., Kerrest, A., & Dujon, B. (2008). Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes. Microbiology and Molecular Biology Reviews, 72(4), 686727. https://doi.org/10.1128/MMBR.00011-08
dc.relation.referencesRichards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015a). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–424. https://doi.org/10.1038/gim.2015.30
dc.relation.referencesRichards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015b). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–424. https://doi.org/10.1038/gim.2015.30
dc.relation.referencesR.L. Nussbaum, R.R. Mclnnes, & H.F. Willard. (2007). Genética en Medicina (Thompson & Thompson, Ed.; 7a. Edición). Elsevier Masson.
dc.relation.referencesRobinson, P. N., Köhler, S., Bauer, S., Seelow, D., Horn, D., & Mundlos, S. (2008). The Human Phenotype Ontology: A Tool for Annotating and Analyzing Human Hereditary Disease. The American Journal of Human Genetics, 83(5), 610–615. https://doi.org/10.1016/j.ajhg.2008.09.017
dc.relation.referencesRodriguez, P. E. (2023). Rendimiento diagnóstico de la secuenciación de exomas completos en trio e individual en una cohorte de pacientes colombianos con sospecha de enfermedadgenética [Universidad https://repositorio.unal.edu.co/handle/unal/84751 de origen monogénico Nacional de Colombia].
dc.relation.referencesRubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020a). Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/Javeriana.umed61-2.sngs
dc.relation.referencesRubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020b). Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/Javeriana.umed61-2.sngs
dc.relation.referencesSanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3), 441–448. https://doi.org/10.1016/0022-2836(75)90213-2
dc.relation.referencesSchadt, E. E., Turner, S., & Kasarskis, A. (2010). A window into third-generation sequencing. Human Molecular Genetics, 19(R2), R227–R240. https://doi.org/10.1093/hmg/ddq416
dc.relation.referencesSeal, R. L., Chen, L., Griffiths‐Jones, S., Lowe, T. M., Mathews, M. B., O’Reilly, D., Pierce, A. J., Stadler, P. F., Ulitsky, I., Wolin, S. L., & Bruford, E. A. (2020). A guide to naming human noncoding RNA genes. The EMBO Journal, 39(6). https://doi.org/10.15252/embj.2019103777
dc.relation.referencesShibbani, K., Fahed, A. C., Al-Shaar, L., Arabi, M., Nemer, G., Bitar, F., & Majdalani, M. (2014a). Primary carnitine deficiency: novel mutations and insights into the cardiac phenotype. Clinical Genetics, 85(2), 127–137. https://doi.org/10.1111/cge.12112
dc.relation.referencesShibbani, K., Fahed, A. C., Al-Shaar, L., Arabi, M., Nemer, G., Bitar, F., & Majdalani, M. (2014b). Primary carnitine deficiency: novel mutations and insights into the cardiac phenotype. Clinical Genetics, 85(2), 127–137. https://doi.org/10.1111/cge.12112
dc.relation.referencesShieh, J. T., Penon-Portmann, M., Wong, K. H. Y., Levy-Sakin, M., Verghese, M., Slavotinek, A., Gallagher, R. C., Mendelsohn, B. A., Tenney, J., Beleford, D., Perry, H., Chow, S. K., Sharo, A. G., Brenner, S. E., Qi, Z., Yu, J., Klein, O. D., Martin, D., Kwok, P.-Y., & Boffelli, D. (2021). Application of full-genome analysis to diagnose rare monogenic disorders. Npj Genomic Medicine, 6(1), 77. https://doi.org/10.1038/s41525-021-00241-5
dc.relation.referencesSouche, E., Beltran, S., Brosens, E., Belmont, J. W., Fossum, M., Riess, O., Gilissen, C., Ardeshirdavani, A., Houge, G., van Gijn, M., Clayton-Smith, J., Synofzik, M., de Leeuw, N., Deans, Z. C., Dincer, Y., Eck, S. H., van der Crabben, S., Balasubramanian, M., Graessner,H., … Weiss, M. M. (2022). Recommendations for whole genome sequencing in diagnostics for rare diseases. European Journal of Human Genetics, 30(9), 1017–1021. https://doi.org/10.1038/s41431-022-01113-x
dc.relation.referencesStark, Z., Schofield, D., Martyn, M., Rynehart, L., Shrestha, R., Alam, K., Lunke, S., Tan, T. Y., Gaff, C. L., & White, S. M. (2019). Does genomic sequencing early in the diagnostic trajectory make a difference? A follow-up study of clinical outcomes and cost-effectiveness. Genetics in Medicine, 21(1), 173–180. https://doi.org/10.1038/s41436-018-0006-8
dc.relation.referencesStefano, G. B., Bjenning, C., Wang, F., Wang, N., & Kream, R. M. (2017). Mitochondrial Heteroplasmy (pp. 577–594). https://doi.org/10.1007/978-3-319-55330-6_30
dc.relation.referencesStenton, S. L., & Prokisch, H. (2020a). Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine, 56, 102784. https://doi.org/10.1016/j.ebiom.2020.102784
dc.relation.referencesStenton, S. L., & Prokisch, H. (2020b). Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine, 56, 102784. https://doi.org/10.1016/j.ebiom.2020.102784
dc.relation.referencesSun, Y. H., Wu, Y.-L., & Liao, B.-Y. (2023). Phenotypic heterogeneity in human genetic diseases: ultrasensitivity-mediated threshold effects as a unifying molecular mechanism. Journal of Biomedical Science, 30(1), 58. https://doi.org/10.1186/s12929-023-00959-7
dc.relation.referencesSutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., & Schatten, G. (1999). Ubiquitin tag for sperm mitochondria. Nature, 402, 371. https://doi.org/10.1038/46466
dc.relation.referencesTamura, K., & Nei, M. (1993). Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and. 10(3).
dc.relation.referencesTan, T. Y., Dillon, O. J., Stark, Z., Schofield, D., Alam, K., Shrestha, R., Chong, B., Phelan, D., Brett, G. R., Creed, E., Jarmolowicz, A., Yap, P., Walsh, M., Downie, L., Amor, D. J., Savarirayan, R., McGillivray, G., Yeung, A., Peters, H., … White, S. M. (2017). Diagnostic Impact and Cost-effectiveness of Whole-Exome Sequencing for Ambulant Children With Suspected Monogenic Conditions. JAMA Pediatrics, 171(9), 855. https://doi.org/10.1001/jamapediatrics.2017.1755
dc.relation.referencesTavtigian, S. V., Greenblatt, M. S., Harrison, S. M., Nussbaum, R. L., Prabhu, S. A., Boucher, K. M., & Biesecker, L. G. (2018a). Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genetics in Medicine, 20(9), 1054–1060. https://doi.org/10.1038/gim.2017.210
dc.relation.referencesTavtigian, S. v., Greenblatt, M. S., Harrison, S. M., Nussbaum, R. L., Prabhu, S. A., Boucher, K. M., & Biesecker, L. G. (2018b). Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genetics in Medicine, 20(9), 1054–1060. https://doi.org/10.1038/gim.2017.210
dc.relation.referencesTavtigian, S. v., Harrison, S. M., Boucher, K. M., & Biesecker, L. G. (2020). Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines. Human Mutation, 41(10), 1734–1737. https://doi.org/10.1002/humu.24088
dc.relation.referencesTaylor, J. C., Martin, H. C., Lise, S., Broxholme, J., Cazier, J.-B., Rimmer, A., Kanapin, A., Lunter, G., Fiddy, S., Allan, C., Aricescu, A. R., Attar, M., Babbs, C., Becq, J., Beeson, D., Bento, C., Bignell, P., Blair, E., Buckle, V. J., … McVean, G. (2015). Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nature Genetics, 47(7), 717–726. https://doi.org/10.1038/ng.3304
dc.relation.referencesThe National Academies of Sciences Engineering Medicine. (2017). An Evidence Framework for Genetic Testing. National Academies Press. https://doi.org/10.17226/24632
dc.relation.referencesThermo Fisher Scientific. (2009). NanoDrop 2000/2000c Spectrophotometer V1.0 User Manual. www.nanodrop.com
dc.relation.referencesTian, Y., Pesaran, T., Chamberlin, A., Fenwick, R. B., Li, S., Gau, C.-L., Chao, E. C., Lu, H.-M., Black, M. H., & Qian, D. (2019a). REVEL and BayesDel outperform other in silico metapredictors for clinical variant classification. Scientific Reports, 9(1), 12752. https://doi.org/10.1038/s41598-019-49224-8
dc.relation.referencesTian, Y., Pesaran, T., Chamberlin, A., Fenwick, R. B., Li, S., Gau, C.-L., Chao, E. C., Lu, H.-M., Black, M. H., & Qian, D. (2019b). REVEL and BayesDel outperform other in silico metapredictors for clinical variant classification. Scientific Reports, 9(1), 12752. https://doi.org/10.1038/s41598-019-49224-8
dc.relation.referencesUniversidad Johns Hopkins. (2023, September 3). OMIM - Online Mendelian Inheritance in Man. 1966.
dc.relation.referencesUra, H., Togi, S., & Niida, Y. (2021). Targeted Double-Stranded cDNA Sequencing-Based Phase Analysis to Identify Compound Heterozygous Mutations and Differential Allelic Expression. Biology, 10(4). https://doi.org/10.3390/biology10040256
dc.relation.referencesvan Dijk, E. L., Jaszczyszyn, Y., Naquin, D., & Thermes, C. (2018). The Third Revolution in Sequencing Technology. Trends in Genetics, 34(9), 666–681. https://doi.org/10.1016/j.tig.2018.05.008
dc.relation.referencesVelasco, H. M., Bertoli-Avella, A., Jaramillo, C. J., Cardona, D. S., González, L. A., Vanegas, M. N., Arango, J. P. V., Buitrago, C. A., González, J. A. G., Marcello, J., Bauer, P., & Moncada, J. E. (2024). Facing the challenges to shorten the diagnostic odyssey: first Whole Genome Sequencing experience of a Colombian cohort with suspected rare diseases. European Journal of Human Genetics, 32(10), 1327–1337. https://doi.org/10.1038/s41431-024-016098
dc.relation.referencesVerma, I. C., & Puri, R. D. (2015a). Global burden of genetic disease and the role of genetic screening. Seminars in Fetal and Neonatal Medicine, 20(5), 354–363. https://doi.org/10.1016/j.siny.2015.07.002
dc.relation.referencesVerma, I. C., & Puri, R. D. (2015b). Global burden of genetic disease and the role of genetic screening. Seminars in Fetal and Neonatal Medicine, 20(5), 354–363. https://doi.org/10.1016/j.siny.2015.07.002
dc.relation.referencesWallace, D. C. (2018). Mitochondrial genetic medicine. Nature Genetics, 50(12), 1642–1649. https://doi.org/10.1038/s41588-018-0264-z
dc.relation.referencesWalsh, N., Cooper, A., Dockery, A., & O’Byrne, J. J. (2024). Variant reclassification and clinical implications. Journal of Medical Genetics, 61(3), 207–211. https://doi.org/10.1136/jmg-2023109488
dc.relation.referencesWright, C. F., FitzPatrick, D. R., & Firth, H. V. (2018). Paediatric genomics: diagnosing rare disease in children. Nature Reviews Genetics, 19(5), 253–268. https://doi.org/10.1038/nrg.2017.116
dc.relation.referencesYeung, A., Tan, N. B., Tan, T. Y., Stark, Z., Brown, N., Hunter, M. F., Delatycki, M., Stutterd, C., Savarirayan, R., Mcgillivray, G., Stapleton, R., Kumble, S., Downie, L., Regan, M., Lunke, S., Chong, B., Phelan, D., Brett, G. R., Jarmolowicz, A., … White, S. M. (2020). A costeffectiveness analysis of genomic sequencing in a prospective versus historical cohort of complex pediatric patients. Genetics in Medicine, 22(12), 1986–1993. https://doi.org/10.1038/s41436-020-0929-8
dc.relation.referencesZarychanski, R., Schulz, V. P., Houston, B. L., Maksimova, Y., Houston, D. S., Smith, B., Rinehart, J., & Gallagher, P. G. (2012). Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood, 120(9), 1908–1915. https://doi.org/10.1182/blood-2012-04-422253
dc.relation.referencesZhong, Y., Xu, F., Wu, J., Schubert, J., & Li, M. M. (2020). Application of Next Generation Sequencing in Laboratory Medicine. Annals of Laboratory Medicine, 41(1), 25–43. https://doi.org/10.3343/alm.2021.41.1.25
dc.relation.referencesZybio, Inc. (2020). [Zybio] Nucleic Acid Isolator EXM3000 brochure. https://dmec.moh.gov.vn/documents/10182/25831604/upload_00033149_1642565320378. pdf?version=1.0&fileId=25854302
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::611 - Anatomía humana, citología, histologíaspa
dc.subject.decsGenomaspa
dc.subject.decsGenomeeng
dc.subject.decsFenotipospa
dc.subject.decsPhenotypeeng
dc.subject.decsGenotipospa
dc.subject.decsGenotypeeng
dc.subject.proposalEnfermedad monogénicaspa
dc.subject.proposalAnálisis del genoma completospa
dc.subject.proposalSecuenciación de siguiente generación (NGS)spa
dc.subject.proposalVariantes genéticasspa
dc.subject.proposalFenotipos complejosspa
dc.subject.proposalOdisea diagnósticaspa
dc.subject.proposalDiagnóstico molecularspa
dc.subject.proposalRelación genotipo – fenotipo.spa
dc.subject.proposalMonogenic diseaseeng
dc.subject.proposalWhole-genome analysiseng
dc.subject.proposalNext-generation sequencing (NGS)eng
dc.subject.proposalGenetic variantseng
dc.subject.proposalComplex phenotypeseng
dc.subject.proposalDiagnostic odysseyeng
dc.subject.proposalMolecular diagnosiseng
dc.subject.proposalGenotype-phenotype relationshipeng
dc.titleAnálisis de la secuencia del genoma humano en pacientes con sospecha de enfermedad monogénica empleando tecnologías de secuenciación de nueva generación implementadas en Colombiaspa
dc.title.translatedAnalysis of the human genome sequence in patients with suspected monogenic disease using next-generation sequencing technologies implemented in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012394740.2025. (2).pdf
Tamaño:
2.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Genética Humana

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: