Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina

dc.contributor.advisorAragón Novoa, Diana Marcelaspa
dc.contributor.authorCarvajal Barbosa, Lauraspa
dc.contributor.researchgroupSistemas Para Liberación Controlada de Moléculas Biológicamente Activasspa
dc.date.accessioned2024-07-02T18:54:10Z
dc.date.available2024-07-02T18:54:10Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos métodos de disolución in vitro posiblemente predictivos del comportamiento in vivo permiten evidenciar posibles problemas de biodisponibilidad y tomar decisiones oportunas desde las etapas de diseño y desarrollo de nuevas formulaciones. A su vez, las correlaciones in vivo in vitro (CIVIV) son herramientas principalmente útiles en el desarrollo de formulaciones, que consisten en un modelo matemático predictivo construido a partir de la relación entre una característica in vitro de la forma farmacéutica, con una variable respuesta in vivo. El objetivo de este trabajo fue desarrollar un método de disolución predictivo del comportamiento in vivo, empleando el Aparato celda de flujo, para tabletas de carbamazepina de liberación modificada (Tegretol® 200mg Liberación prolongada) en una compañía farmacéutica local interesada en desarrollar productos multifuente de carbamazepina. Con este fin, se empleó un diseño experimental Box-Behnken para optimizar el método de disolución minimizando el error en la predicción del Área Bajo la Curva (AUC0-t) y la Cmax (los datos in vivo se tomaron de la bibliografía). Se evaluaron tres factores en tres niveles: la concentración de laurilsulfato de sodio en el medio de disolución, la cantidad de microesferas de vidrio y la velocidad de flujo; los demás parámetros se mantuvieron constantes. La CIVIV se desarrolló utilizando una deconvolución con la ecuación de Wagner-Nelson, seguida por un escalamiento con enfoque en dos etapas y una reconvolución con la ecuación de Gohel et al. (2009). El enfoque en dos etapas se llevó a cabo construyendo un gráfico de Levy, escalando los perfiles de disolución y representándolos frente al perfil de absorción. Estos modelos CIVIV obtenidos se utilizaron para predecir las fracciones absorbidas. Siguiendo el diseño experimental, se obtuvieron quince perfiles de disolución y modelos CIVIV en diferentes condiciones, con errores de predicción de AUC0-t y Cmax que oscilaron entre -64% y -9%. Con el método de disolución optimizado, se logró una CIVIV con un r2= 0,9905, prediciendo errores de -6,09% para el AUC0-t y -1,94% para la Cmax. El método de disolución desarrollado y optimizado se puso a prueba con tabletas de carbamazepina de liberación inmediata (Tegretol® 200mg) y demostró ser discriminatorio. En conclusión, en una empresa farmacéutica local se desarrolló un método de disolución predictivo del comportamiento in vivo, empleando el Aparato celda de flujo, como herramienta para el desarrollo de productos multifuente de carbamazepina de liberación modificada. (Texto tomado de la fuente).spa
dc.description.abstractIn vitro dissolution methods, possibly predictive of in vivo behavior, make it possible to detect bioavailability problems and make timely decisions early in the design and development stages of new formulations. Furthermore, in vivo in vitro correlations (IVIVC) are mainly useful tools in the development of formulations, which consist of a predictive mathematical model built from the relationship between an in vitro characteristic of the dosage form with an in vivo response variable. The aim of this work was to develop an in vivo predictive flow-through cell dissolution method for a modified release carbamazepine tablet (Tegretol® 200mg prolonged release) in a local pharmaceutical company interested in developing carbamazepine generic products. For this purpose, a Box-Behnken experimental design was employed to optimize the dissolution method minimizing the prediction error of the Area Under the Curve (AUC0-t) and Cmax (in vivo data were taken from the literature). Three factors at three levels were evaluated: sodium lauryl sulfate concentration in dissolution media, the amount of glass beads, and flow rate; the other parameters were kept constant. The IVIVC was developed using a deconvolution with the Wagner-Nelson equation, followed by a two-step scaling approach, and a reconvolution with the equation from Gohel et al. (2009). The two-step approach was carried out by constructing a Levy plot, scaling up the dissolution profiles and plotting them against the absorption profile. The obtained IVIVC models were then used to predict the absorbed fractions. Following the experimental design, fifteen dissolution profiles and IVIVC models were obtained under different conditions, with AUC0-t and Cmax prediction errors ranging from -64% to -9%. With the optimized dissolution method, an IVIVC was achieved with an r2= 0.9905, predicting errors of -6.09% for the AUC0-t and -1.94% for Cmax. The developed and optimized dissolution method was challenged with immediate-release carbamazepine tablets (Tegretol® 200mg) and proved to be discriminative. In conclusion, an in vivo predictive flow-through cell dissolution method was developed in a local pharmaceutical company as a tool for the development of generic modified release carbamazepine products.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.researchareaFarmacocinética y estudios de biodisponibilidad y bioequivalenciaspa
dc.description.sponsorshipPharmetique Labsspa
dc.description.sponsorshipGrupo de Investigación: Sistemas para liberación controlada de moléculas biológicamente activas (SILICOMOBA)spa
dc.format.extentx,x, 111 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86344
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.indexedBiremespa
dc.relation.referencesAguilar Ros, A., Caamaño Somoza, Manuel., Martín Martín, F. R., & Montejo Rubio, M. Consuelo. (2014). Biofarmacia y farmacocinética : ejercicios y problemas resueltos (B. Elsevier, Ed.; 2nd ed.). https://bibliotecadigital.uchile.cl/discovery/fulldisplay?docid=alma991002291699703936&context=L&vid=56UDC_INST:56UDC_INST&lang=es&adaptor=Local%20Search%20Engine&tab=Everything&query=sub,exact,%20Tecnologi%CC%81a%20farmace%CC%81utica,AND&mode=advanced&offset=10spa
dc.relation.referencesAldenkamp, A. P., Alpherts, W. C. J., Moerland, M. C., Ottevanger, N., & Parys, J. A. P. V. (1987). Controlled release carbamazepine: cognitive side effects in patients with epilepsy. Epilepsia, 28(5), 507–514. https://doi.org/10.1111/J.1528-1157.1987.TB03679.Xspa
dc.relation.referencesAlizadeh, M. N., Shayanfar, A., & Jouyban, A. (2018). Solubilization of drugs using sodium lauryl sulfate: Experimental data and modeling. Journal of Molecular Liquids, 268, 410–414. https://doi.org/10.1016/j.molliq.2018.07.065spa
dc.relation.referencesAlvarado, A. T., Muñoz, A. M., Bendezú, M. R., Palomino-Jhong, J. J., García, J. A., Alvarado, C. A., Alvarado, E. A., Ochoa-Pachas, G., Pineda-Pérez, M., & Bolarte, M. (2021). In Vitro Biopharmaceutical Equivalence of Carbamazepine Sodium Tablets Available in Lima, Peru. Dissolution Technologies, 28(2). https://doi.org/10.14227/DT280221PGC2spa
dc.relation.referencesAmbrósio, A. F., Soares-da-Silva, P., Carvalho, C. M., & Carvalho, A. P. (2002). Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochemical Research, 27(1–2), 121–130. https://doi.org/10.1023/A:1014814924965spa
dc.relation.referencesAmidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 12(3), 413–420. https://doi.org/10.1023/A:1016212804288spa
dc.relation.referencesBaena, Y., & Ponce D’León, L. F. (2008). Importancia y fundamentación del sistema de clasificación biofarmacéutico, como base de la exención de estudios de biodisponibilidad y bioequivalencia in vivo. Revista Colombiana de Ciencias Químico - Farmacéuticas, 37(1), 18–32. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74182008000100002spa
dc.relation.referencesBarzegar-Jalali, M., Maleki, N., Garjani, A., Khandar, A. A., Haji-Hosseinloo, M., Jabbari, R., & Dastmalchi, S. (2002). Enhancement of Dissolution Rate and Anti-inflammatory Effects of Piroxicam Using Solvent Deposition Technique. Drug Development and Industrial Pharmacy, 28(6), 681–686. https://doi.org/10.1081/DDC-120003859spa
dc.relation.referencesBermejo, M., Meulman, J., Davanço, M. G., Carvalho, P. de O., Gonzalez-Alvarez, I., & Campos, D. R. (2020). In Vivo Predictive Dissolution (IPD) for Carbamazepine Formulations: Additional Evidence Regarding a Biopredictive Dissolution Medium. Pharmaceutics 2020, Vol. 12, Page 558, 12(6), 558. https://doi.org/10.3390/PHARMACEUTICS12060558spa
dc.relation.referencesBodhe, R., Deshmukh, R., Gorale, A., Shinde, R., & Bodhe, P. (2019). Formulation, Development and Evaluation of Carbamazepine Extended Release Tablet: Dissolution Apparatus USP IV. World Journal of Pharmaceutical Research, 8(9), 1484–1504. https://doi.org/10.20959/wjpr20199-15588spa
dc.relation.referencesBondareva, I. B., Jelliffe, R. W., Gusev, E. I., Guekht, A. B., Melikyan, E. G., & Belousov, Y. B. (2006). Population pharmacokinetic modelling of carbamazepine in epileptic elderly patients: implications for dosage. Journal of Clinical Pharmacy and Therapeutics, 31(3), 211–221. https://doi.org/10.1111/j.1365-2710.2006.00717.xspa
dc.relation.referencesBruschi, M. L. (2015). Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems (pp. 63–86). Elsevier. https://doi.org/10.1016/B978-0-08-100092-2.00005-9spa
dc.relation.referencesCárdenas Cuadros, P. A. (2015). Estudio de la correlación in vitro/ in vivo de la liberación de 6-metilcumarina a partir de un sistema micropartículado [Tesis doctoral, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56673spa
dc.relation.referencesCárdenas, P. A., Jiménez – Kairuz, Á., Verlindo de Araujo, B., & Aragón, D. M. (2019). Development of a dissolution method based on lipase for preclinical level A IVIVC of oral poly(ε-caprolactone) microspheres. Journal of Drug Delivery Science and Technology, 52, 632–641. https://doi.org/10.1016/j.jddst.2019.05.011spa
dc.relation.referencesCarrión Recio, D., González Delgado, C. A., Olivera Ruano, L., & Correa Fernández, A. (1999). Bioequivalencia: Introducción a la correlación in vivo-in vitro. Parte I. Revista Cubana de Farmacia, 33(2), 137-142. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75151999000200010spa
dc.relation.referencesComisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS). (2024). Consulta de Registros Sanitarios . https://tramiteselectronicos02.cofepris.gob.mx/BuscadorPublicoRegistrosSanitarios/BusquedaRegistroSanitario.aspxspa
dc.relation.referencesCosta, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123–133. https://doi.org/10.1016/S0928-0987(01)00095-1spa
dc.relation.referencesDing, A., Zhou, Y., Chen, P., & Nie, W. (2017). Ibuprofen-loaded micelles based on star-shaped erythritol-core PLLA-PEG copolymer: effect of molecular weights of PEG. Colloid and Polymer Science, 295(9), 1609–1619. https://doi.org/10.1007/s00396-017-4141-6spa
dc.relation.referencesDressman, J. B. (Jennifer B. ), & Krämer, J. (2005). Pharmaceutical dissolution testing. Taylor & Francis.spa
dc.relation.referencesEichelbaum, M., Köthe, K. W., Hoffmann, F., & von Unruh, G. E. (1982). Use of stable labelled carbamazepine to study its kinetics during chronic carbamazepine treatment. European Journal of Clinical Pharmacology 1982 23:3, 23(3), 241–244. https://doi.org/10.1007/BF00547561spa
dc.relation.referencesEL-Massik, M. A., Abdallah, O. Y., Galal, S., & Daabis, N. A. (2006). Towards a Universal Dissolution Medium for Carbamazepine. Drug Development and Industrial Pharmacy, 32(7), 893–905. https://doi.org/10.1080/03639040600762677spa
dc.relation.referencesEuropean Medicines Agency (EMEA). (2010). Guideline On The Investigation of Bioequivalence Discussion in the Joint Efficacy and Quality Working Group. http://www.ema.europa.euspa
dc.relation.referencesFigueroa, A. I., Gonzalez, M., Merino, V., & Bermejo, M. del V. (2019). Desarrollo de métodos de disolución con capacidad predictiva del rendimiento in vivo de formulaciones farmacéuticas [Tesis doctoral, Universitat de València]. https://hdl.handle.net/10550/70578spa
dc.relation.referencesFood and Drug Administration (FDA). (1997). Guía para la Industria: Pruebas de disolución de formas de dosificación oral sólidas de liberación inmediata. Centro de Evaluación e Investigación de Drogas. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guia-para-la-industria-pruebas-de-disolucion-de-formas-de-dosificacion-oral-solidas-de-liberacionspa
dc.relation.referencesFood and Drug Administration (FDA). (2018). Guía para la Industria: Formas de dosificación oral de liberación prolongada: elaboración, evaluación y aplicación de correlaciones in vitro/in vivo. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guia-para-la-industria-formas-de-dosificacion-oral-de-liberacion-prolongada-elaboracion-evaluacion-yspa
dc.relation.referencesFood and Drug Administration (FDA). (2021). M9 Biopharmaceutics Classification System-Based Biowaivers. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m9-biopharmaceutics-classification-system-based-biowaiversspa
dc.relation.referencesFotaki, N., & Reppas, C. (2005). The Flow Through Cell Methodology in the Evaluation of Intralumenal Drug Release Characteristics. Dissolution Technologies, 12(2), 17–21. https://doi.org/10.14227/DT120205P17spa
dc.relation.referencesGao, Z. (2009). In Vitro Dissolution Testing with Flow-Through Method: A Technical Note. AAPS PharmSciTech, 10(4), 1401. https://doi.org/10.1208/s12249-009-9339-6spa
dc.relation.referencesGohel, M., Parikh, R., Aghara, P., Nagori, S., Delvadia, R., & Dabhi, M. (2009). Application of Simplex Lattice Design and Desirability Function for the Formulation Development of Mouth Dissolving Film of Salbutamol Sulphate. Current Drug Delivery, 6(5), 486–494. https://doi.org/10.2174/156720109789941696spa
dc.relation.referencesGohel, M., Sarvaiya, K., Shah, A., & Brahmbhatt, B. (2009). Mathematical Approach for the Assessment of Similarity Factor Using a New Scheme for Calculating Weight. Indian Journal of Pharmaceutical Sciences, 71(2), 142. https://doi.org/10.4103/0250-474X.54281spa
dc.relation.referencesGonzález García, I., Mangas Sanjuan, V., Merino Sanjuán, M., Álvarez Álvarez, C., Díaz Garzón, M. J., Rodríguez Bonnín, M. A., Langguth, T., Torrado Durán, J. J., Langguth, P., García Arieta, A., & Bermejo, M. (2017). IVIVC approach based on carbamazepine bioequivalence studies combination. Die Pharmazie, 72(8), 449–455. https://doi.org/10.1691/PH.2017.7011spa
dc.relation.referencesGraves, N. M., Brundage, R. C., Wen, Y., Cascino, G., So, E., Ahman, P., Rarick, J., Krause, S., & Leppik, I. E. (1998). Population Pharmacokinetics of Carbamazepine in Adults with Epilepsy. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 18(2), 273–281. https://doi.org/10.1002/j.1875-9114.1998.tb03853.xspa
dc.relation.referencesGrupo SOTAX. (n.d.). CE 7smart Offline: Disolución con celdas de flujo continuo con recogida de muestras.spa
dc.relation.referencesHann, E., Malagu, K., Stott, A., & Vater, H. (2022). The importance of plasma protein and tissue binding in a drug discovery program to successfully deliver a preclinical candidate (pp. 163–214). https://doi.org/10.1016/bs.pmch.2022.04.002spa
dc.relation.referencesHöpener, R. J., Kuyer, A., Meijer, J. W. A., & Hulsman, J. (1980). Correlation between daily fluctuations of carbamazepine serum levels and intermittent side effects. Epilepsia, 21(4), 341–350. https://doi.org/10.1111/J.1528-1157.1980.TB04081.Xspa
dc.relation.referencesHopfenberg, H. B. (1976). Controlled Release from Erodible Slabs, Cylinders, and Spheres (pp. 26–32). https://doi.org/10.1021/bk-1976-0033.ch003spa
dc.relation.referencesHurtado y de la Peña, M., Vargas Alvarado, Y., Domínguez-Ramírez, A. M., & Cortés Arroyo, A. R. (2003). Comparison of Dissolution Profiles for Albendazole Tablets Using USP Apparatus 2 and 4. Http://Dx.Doi.Org/10.1081/DDC-120021777, 29(7), 777–784. https://doi.org/10.1081/DDC-120021777spa
dc.relation.referencesInstituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA). (2022). Tegretol Retard de 200 mg: Expediente Sanitario 227376, Registro Sanitario INVIMA 2018M-011160-R2. Sistema de Tramites En Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jspspa
dc.relation.referencesInstituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA). (2024). Sistema de Tramites en Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jspspa
dc.relation.referencesJinno, J. ichi, Kamada, N., Miyake, M., Yamada, K., Mukai, T., Odomi, M., Toguchi, H., Liversidge, G. G., Higaki, K., & Kimura, T. (2008). In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol. Journal of Controlled Release, 130(1), 29–37. https://doi.org/10.1016/J.JCONREL.2008.05.013spa
dc.relation.referencesJung Cook, H., de Anda Jáuregui, G., Rubio Carrasco, K., & Mayet Cruz, L. (2013). Comparación de perfiles de disolución: Impacto de los criterios de diferentes agencias regulatorias en el cálculo de ƒ2. Revista Mexicana de Ciencias Farmacéuticas, 43(3). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952012000300007spa
dc.relation.referencesKassaye, L., & Genete, G. (2013). Evaluation and comparison of in-vitro dissolution profiles for different brands of amoxicillin capsules. African Health Sciences, 13(2). https://doi.org/10.4314/ahs.v13i2.25spa
dc.relation.referencesKatzhendler, I., & Friedman, M. (1999). Zero-order sustained release matrix tablet formulations of carbamazepine (Patent No: US5980942A) (Patent US5980942A). United States Patent. https://patents.google.com/patent/US5980942A/enspa
dc.relation.referencesKayali, A., Tuglular, I., & Ertas, M. (1994). Pharmacokinetics of carbamazepine Part I: a new bioequivalency parameter based on a relative bioavailability trial. European Journal of Drug Metabolism and Pharmacokinetics, 19(4), 319–325. https://doi.org/10.1007/BF03188858spa
dc.relation.referencesKiuri, J. N., Maru, S. M., & Ndwigah, S. N. (2020). Product Evaluation of Carbamazepine 200mg Controlled Release Tablets using an in vitro-in vivo Correlation Simulation Model. East and Central African Journal of Pharmaceutical Sciences, 23(2), 60–66. https://www.ajol.info/index.php/ecajps/article/view/200123spa
dc.relation.referencesKovačević, I., Parojčić, J., Homšek, I., Tubić-Grozdanis, M., & Langguth, P. (2009). Justification of Biowaiver for Carbamazepine, a Low Soluble High Permeable Compound, in Solid Dosage Forms Based on IVIVC and Gastrointestinal Simulation. Molecular Pharmaceutics, 6(1), 40–47. https://doi.org/10.1021/mp800128yspa
dc.relation.referencesKuo, C. C., Chen, R. S., Lu, L., & Chen, R. C. (1997). Carbamazepine inhibition of neuronal Na+ currents: quantitative distinction from phenytoin and possible therapeutic implications. Molecular Pharmacology, 51(6), 1077–1083. https://doi.org/10.1124/MOL.51.6.1077spa
dc.relation.referencesLake, O. A., Olling, M., & Barends, D. M. (1999). In vitro/in vivo correlations of dissolution data of carbamazepine immediate release tablets with pharmacokinetic data obtained in healthy volunteers. European Journal of Pharmaceutics and Biopharmaceutics, 48(1), 13–19. https://doi.org/10.1016/S0939-6411(99)00016-8spa
dc.relation.referencesLangenbucher, F. (2011). Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution. Journal of Pharmacy and Pharmacology, 24(12), 979–981. https://doi.org/10.1111/j.2042-7158.1972.tb08930.xspa
dc.relation.referencesLee, S. L., Raw, A. S., & Yu, L. (2008). Dissolution Testing. In Biopharmaceutics Applications in Drug Development (pp. 47–74). Springer US. https://doi.org/10.1007/978-0-387-72379-2_3spa
dc.relation.referencesLindenberg, M., Kopp, S., & Dressman, J. B. (2004). Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 265–278. https://doi.org/10.1016/J.EJPB.2004.03.001spa
dc.relation.referencesLopes, C. M., Lobo, J. M. S., & Costa, P. (2005). Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Revista Brasileira de Ciências Farmacêuticas, 41(2), 143–154. https://doi.org/10.1590/S1516-93322005000200003spa
dc.relation.referencesLu, Y., Kim, S., & Park, K. (2011). In vitro–in vivo correlation: Perspectives on model development. International Journal of Pharmaceutics, 418(1), 142–148. https://doi.org/10.1016/j.ijpharm.2011.01.010spa
dc.relation.referencesMateu López, L., & Herrera LLópiz, A. (2007). Fracturar tabletas de liberación modificada: ¿una práctica adecuada? Revista Cubana de Farmacia, 41(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75152007000100013spa
dc.relation.referencesMcLean, M. J., & Macdonald, R. L. (1983). Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. Journal of Pharmacology and Experimental Therapeutics, 227(3).spa
dc.relation.referencesMedina, J. R., Salazar, D. K., Hurtado, M., Cortés, A. R., & Domínguez-Ramírez, A. M. (2014). Comparative in vitro dissolution study of carbamazepine immediate-release products using the USP paddles method and the flow-through cell system. Saudi Pharmaceutical Journal, 22(2), 141–147. https://doi.org/10.1016/J.JSPS.2013.02.001spa
dc.relation.referencesMedina Lopez, J. R., & Hurtado Y de la Peña, M. (2009). Dissolution of paracetamol suppositories using the flow-through cell system and their absorption in an animal model | Request PDF. Revista Mexicana de Ciencias Farmaceuticas , 40(2), 11–18. https://www.researchgate.net/publication/288673896_Dissolution_of_paracetamol_suppositories_using_the_flow-through_cell_system_and_their_absorption_in_an_animal_modelspa
dc.relation.referencesResolución 1124 de 2016, 1 (2016).spa
dc.relation.referencesMinitab LLC. (2023). Model reduction. https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/regression/supporting-topics/regression-models/model-reduction/spa
dc.relation.referencesMittapalli, P. K., Suresh, B., Hussaini, S. S. Q., Rao, Y. M., & Apte, S. (2008). Comparative In Vitro Study of Six Carbamazepine Products. AAPS PharmSciTech, 9(2), 357. https://doi.org/10.1208/S12249-008-9035-Yspa
dc.relation.referencesMohamed Rizwan, I., & Damodharan, N. (2020). Mathematical Modelling of Dissolution Kinetics in Dosage forms. Research Journal of Pharmacy and Technology, 13(3), 1339. https://doi.org/10.5958/0974-360X.2020.00247.4spa
dc.relation.referencesMoreno, J., Belmont, A., Jaimes, O., Santos, J. A., López, G., Campos, M. G., Amancio, O., Pérez, P., & Heinze, G. (2004). Pharmacokinetic study of carbamazepine and its carbamazepine 10,11-epoxide metabolite in a group of female epileptic patients under chronic treatment. Archives of Medical Research, 35(2), 168–171. https://doi.org/10.1016/j.arcmed.2003.09.016spa
dc.relation.referencesOkumu, A., DiMaso, M., & Löbenberg, R. (2008). Dynamic dissolution testing to establish in vitro/in vivo correlations for montelukast sodium, a poorly soluble drug. Pharmaceutical Research, 25(12), 2778–2785. https://doi.org/10.1007/S11095-008-9642-Zspa
dc.relation.referencesOlling, M., Mensinga, T. T., Barends, D. M., Groen, C., Lake, O. A., & Meulenbelt, J. (1999). Bioavailability of carbamazepine from four different products and the occurrence of side effects. Biopharmaceutics and Drug Disposition, 20(1), 19–28. https://doi.org/10.1002/(SICI)1099-081X(199901)20:1<19::AID-BDD152>3.0.CO;2-Qspa
dc.relation.referencesPalma-Aguirre, J. A., & Barreiro Perera, O. (1992). Biodisponibilidad y bioequivalencia de medicamentos. Revista de La Facultad de Medicina, Universidad Nacional Autónoma de México, 35(1). http://revistas.unam.mx/index.php/rfm/article/view/74573spa
dc.relation.referencesPaschal Iwundu, M., & Cosmos, J. (2022). The Efficiency of Seven-Variable Box-Behnken Experimental Design with Varying Center Runs on Full and Reduced Model Types. Journal of Mathematics and Statistics, 18(1), 196–207. https://doi.org/10.3844/jmssp.2022.196.207spa
dc.relation.referencesPodczeck, F. (1993). Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). International Journal of Pharmaceutics, 97(1–3), 93–100. https://doi.org/10.1016/0378-5173(93)90129-4spa
dc.relation.referencesPolli, J. E., Rekhi, G. S., Augsburger, L. L., & Shah, V. P. (1997). Methods to Compare Dissolution Profiles and a Rationale for Wide Dissolution Specifications for Metoprolol Tartrate tablets†. Journal of Pharmaceutical Sciences, 86(6), 690–700. https://doi.org/10.1021/js960473xspa
dc.relation.referencesPunyawudho, B., Ramsay, E. R., Brundage, R. C., Macias, F. M., Collins, J. F., & Birnbaum, A. K. (2012). Population Pharmacokinetics of Carbamazepine in Elderly Patients. Therapeutic Drug Monitoring, 34(2), 176–181. https://doi.org/10.1097/FTD.0b013e31824d6a4espa
dc.relation.referencesRabti, H., Mohammed Salmani, J. M., Elamin, E. S., Lammari, N., Zhang, J., & Ping, Q. (2014). Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 9(3), 146–154. https://doi.org/10.1016/J.AJPS.2014.04.001spa
dc.relation.referencesRane, Y., Mashru, R., Sankalia, M., & Sankalia, J. (2007). Effect of hydrophilic swellable polymers on dissolution enhancement of carbamazepine solid dispersions studied using response surface methodology. AAPS PharmSciTech, 8(2), E1–E11. https://doi.org/10.1208/pt0802027spa
dc.relation.referencesRawlins, M. D., Collste, P., Bertilsson, L., & Palmér, L. (1975). Distribution and elimination kinetics of carbamazepine in man. European Journal of Clinical Pharmacology 1975 8:2, 8(2), 91–96. https://doi.org/10.1007/BF00561556spa
dc.relation.referencesRiva, R., Albani, F., Ambrosetto, G., Contin, M., Cortelli, P., Perucca, E., & Baruzzi, A. (1984). Diurnal Fluctuations in Free and Total Steady-State Plasma Levels of Carbamazepine and Correlation with Intermittent Side Effects. Epilepsia, 25(4), 476–481. https://doi.org/10.1111/J.1528-1157.1984.TB03446.Xspa
dc.relation.referencesRodriguez, C., Guevara, B. H., & Lobo, G. (2010). Mecanismos de acción de fármacos antiepilépticos. Informe Médico, 12(6), 321–326. https://www.researchgate.net/publication/235769333_Mecanismos_de_accion_de_farmacos_antiepilepticosspa
dc.relation.referencesRoni, M., Kibria, G., & Jalil, R. (2009). Formulation and in vitro Evaluation of Alfuzosin Extended Release Tablets Using Directly Compressible Eudragit. Indian Journal of Pharmaceutical Sciences, 71(3), 252. https://doi.org/10.4103/0250-474X.56019spa
dc.relation.referencesRuiz, A. M., Restrepo, M. M., Cuesta, F., Giraldo, J., Archbold, R., & Holguín, G. (2001). Estudio de bioequivalencia de dos formulaciones de tabletas de carbamazepina de liberación retardada. Iatreia, 13(3), 131–139.spa
dc.relation.referencesSakore, S., & Chakraborty, B. (2011). In Vitro - In Vivo Correlation (IVIVC): A Strategic Tool in Drug Development. Journal of Bioequivalence & Bioavailability, 8(4). https://doi.org/10.4172/JBB.S3-001spa
dc.relation.referencesSánchez-Dengra, B., González-García, I., González-Álvarez, M., González-Álvarez, I., & Bermejo, M. (2021). Two-step in vitro-in vivo correlations: Deconvolution and convolution methods, which one gives the best predictability? Comparison with one-step approach. European Journal of Pharmaceutics and Biopharmaceutics, 158, 185–197. https://doi.org/10.1016/j.ejpb.2020.11.009spa
dc.relation.referencesShargel, L., & Yu, A. B. C. (2016). Applied Biopharmaceutics & Pharmacokinetics (7th ed.). McGraw-Hill. https://accesspharmacy.mhmedical.com/book.aspx?bookID=1592spa
dc.relation.referencesSpringer Boston, M. (2004). Bioavailability and Bioequivalence. In Foundations of Pharmacokinetics (pp. 171–177). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47924-9_17spa
dc.relation.referencesTomson, T. (1984). Interdosage fluctuations in plasma carbamazepine concentration determine intermittent side effects. Archives of Neurology, 41(8), 830–834. https://doi.org/10.1001/ARCHNEUR.1984.04050190036011spa
dc.relation.referencesTunnicliff, G. (1996). Basis of the antiseizure action of phenytoin. General Pharmacology: The Vascular System, 27(7), 1091–1097. https://doi.org/10.1016/S0306-3623(96)00062-6spa
dc.relation.referencesUnited States Pharmacopeia USP-NF. (2015, May 1). <1854> Espectroscopía En El Infrarrojo Medio—Teoría Y Práctica. Online United States Pharmacopeia USP-NF. https://doi.org/10.31003/USPNF_M5512_02_02spa
dc.relation.referencesUnited States Pharmacopeia USP-NF. (2022a, April 1). Monografía oficial Carbamazepina. Online United States Pharmacopeia USP-NF. https://doi.org/https://doi.org/10.31003/USPNF_M12565_04_02spa
dc.relation.referencesUnited States Pharmacopeia USP-NF. (2022b, December 1). Capítulo General <857> Espectroscopía Ultravioleta-Visible. Online United States Pharmacopeia USP-NF. https://doi.org/https://doi.org/10.31003/USPNF_M3209_04_02spa
dc.relation.referencesUnited States Pharmacopeia USP-NF. (2023a, April 1). Monografía oficial Carbamazepina, Tabletas de Liberación Prolongada. https://doi.org/10.31003/USPNF_M12565_04_02spa
dc.relation.referencesUnited States Pharmacopeia USP-NF. (2023b, May 1). Capítulo General <711> Disolución. https://doi.org/10.31003/USPNF_M99470_03_02spa
dc.relation.referencesUnited States Pharmacopeia USP-NF. (2023c, August 1). Capítulo General <905> Uniformidad de Unidades de Dosificación. Online United States Pharmacopeia USP-NF. https://doi.org/10.31003/USPNF_M99694_03_02spa
dc.relation.referencesValbuena Reyes, K. (2018). Estudio de la Cinética de Degradación Bajo Carga Mecánica de un Polímero Implantable [Tesis de maestría]. Universidad Nacional de Colombia .spa
dc.relation.referencesVeng-Pedersen, P., Gobburu, J. V. S., Meyer, M. C., & Straughn, A. B. (2000). Carbamazepine level-Ain vivo-in vitro correlation (IVIVC): a scaled convolution based predictive approach. Biopharmaceutics & Drug Disposition, 21(1), 1–6. https://doi.org/10.1002/1099-081X(200001)21:1<1::AID-BDD207>3.0.CO;2-Dspa
dc.relation.referencesVinayakrao Barabde, U., Kumar Verma, R., & Singh Raghuvanshi, R. (2009). Carbamazepine formulations (Patent US20090143362A1). United States Patent and Trademark Office. https://patents.google.com/patent/US20090143362A1/enspa
dc.relation.referencesVolonté, M. G., Viñas, M. A., de Buschiazzo, P. M., Piersante, M. v., Escales, M. C., & Gorriti, C. E. (2004). Estudio comparativo de comprimidos con 200 mg de carbamacepina para determinar equivalencia farmacéutica. Acta Farmaceutica Bonaerense, 23(3), 391–397.spa
dc.relation.referencesWadher, K., Umekar, M., & Kakde, R. (2011). Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers. Indian Journal of Pharmaceutical Sciences, 73(2), 208. https://doi.org/10.4103/0250-474X.91579spa
dc.relation.referencesWei-Qin, T. (Tony). (2008). Molecular and Physicochemical Properties Impacting OralAbsorptionofDrugs. In Biopharmaceutics Applications in Drug Development (pp. 26–46). Springer US. https://doi.org/10.1007/978-0-387-72379-2_2spa
dc.relation.referencesWennergren, B., Lindberg, J., Nicklasson, M., Nilsson, G., Nyberg, G., Ahlgren, R., Persson, C., & Palm, B. (1989). A collaborative in vitro dissolution study: comparing the flow-through method with the USP paddle method using USP prednisone calibrator tablets. International Journal of Pharmaceutics, 53(1), 35–41. https://doi.org/10.1016/0378-5173(89)90358-Xspa
dc.relation.referencesWorld Health Oranization Collaborating Centre for Drug Statistics Methodology. (2022). ATC/DDD Index: Carbamazepine. Norwegian Institute of Public Health. https://www.whocc.no/atc_ddd_index/?code=N03AF01spa
dc.relation.referencesZadbuke, N., Khan, A. R., Battase, A., & Shahi, S. (2017). Convolution and Deconvolution Based Approach For Prediction of in-vivo Performance. European Journal of Biomedical and Pharmaceutical Sciences, 4(11), 447–453. https://www.ejbps.com/ejbps/abstract_id/3377spa
dc.relation.referencesZhang, G. H., Vadino, W. A., Yang, T. T., Cho, W. P., & Chaudry, I. A. (1994). Evaluation of the Flow-Through Cell Dissolution Apparatus: Effects of Flow Rate, Glass Beads and Tablet Position on Drug Release from Different Type of Tablets. Drug Development and Industrial Pharmacy, 20(13), 2063–2078. https://doi.org/10.3109/03639049409050222spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsCarbamazepina/síntesis químicaspa
dc.subject.decsCarbamazepine/chemical synthesiseng
dc.subject.decsDisoluciónspa
dc.subject.decsDissolutioneng
dc.subject.decsTécnicas In Vitro/métodosspa
dc.subject.decsIn Vitro Techniques/methodseng
dc.subject.proposalCorrelación in vivo in vitrospa
dc.subject.proposalCarbamazepinaspa
dc.subject.proposalMétodo de disoluciónspa
dc.subject.proposalLiberación modificadaspa
dc.subject.proposalAparato de disolución USP 4spa
dc.subject.proposalCelda de flujospa
dc.subject.proposalIn vivo in vitro correlationeng
dc.subject.proposalCarbamazepineeng
dc.subject.proposalDissolution methodeng
dc.subject.proposalModified releaseeng
dc.subject.proposalDissolution apparatus USP 4eng
dc.subject.proposalFlow-through celleng
dc.titleContribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepinaspa
dc.title.translatedTwo-Step In Vitro-In Vivo Correlation for the Development a Predictive Flow Through Cell Dissolution Method for Carbamazepine Modified Release Tableteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernamePharmetique Labsspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1151961385.2024.pdf
Tamaño:
1.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: