Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study

dc.contributor.advisorFranco Ariza, Camilo Andres
dc.contributor.advisorCortes Correa, Farid Bernard
dc.contributor.authorViveros Acosta, Edgar Frank
dc.contributor.researchgroupFenómenos de Superficie Michael Polanyispa
dc.date.accessioned2024-05-09T15:27:54Z
dc.date.available2024-05-09T15:27:54Z
dc.date.issued2024-05-08
dc.descriptionilustraciones, gráficosspa
dc.description.abstractThis work presents the evaluation of a mixture of gases (H2 and CH4) as Cushion gas in a depleted gas reservoir. Where the flow behaviors and the different interactions between these gases are studied. The experimental tests were performed to pore scale using a micromodel that simulated a sandstone reservoir saturated with deionized water at a pressure of 30 bar. The injection dynamics used were drainage (gas injection) and imbibition (water injection) observed in geological formations. The amount of gas injected corresponds to fifty pore volumes of each of the gases (CH4, H2 and H2-CH4 in a ratio of 1:1) at room temperature (20 °C) at three injection rates (0.1, 1, 10 mL·h-1). Data collection was carried out using a videographic record and using a MATLAB algorithm for an image segmentation and analysis was carried out, this analysis was complemented with ImageJ software for the comparison of methods, ensuring precision. The main results are found in the increase in gas saturation for high Capillary Numbers NCa) and among them a greater saturation of H2-CH4 compared to individual gas systems. As capillary number increases, dissolution times become similar, with significant differences observed at lower capillary numbers. The contact angles demonstrated minimal variation, indicating weak wettability toward gases. While the gas retention capacity in the imbibition stage is affected by the capillary pressure that varies with the pore throats, favoring the presence of gases such as Cushion Gas. The study pioneers the investigation of hydrogen flow behavior in a multiphase system at the pore scale under high pressure conditions. These insights contribute to addressing the knowledge gap, advancing the potential implementation of hydrogen in diverse geological formations for energy storage. (Tomado de la fuente)eng
dc.description.abstractEste trabajo presenta la evaluación de una mezcla de gases (H2 y CH4) como Cushion Gas en un yacimiento de gas depletado. Donde se estudian los comportamientos de flujo de y las diferentes interacciones entre estos gases. Las pruebas experimentales utilizaron a escala de poro usando un micromodelo que imita un yacimiento de arenisca saturado con agua desionizada a una presión de 30 bar. Las dinámicas de inyección usada fueron de drenaje (inyección de gas) e imbibición (inyección de agua) observadas en formaciones geológicas. La cantidad de gas inyectado corresponde a cincuenta volúmenes porosos de cada uno de los gases (CH4, H2 y H2-CH4 en una proporción de 1:1) a temperatura ambiente (20 °C) y a tres tasas de inyección (0.1, 1, 10 m·h-1). La recolección de datos se realizó mediante un registro videográfico y usando un algoritmo de MATLAB se realizó la segmentación y análisis de imágenes, complementado con el software ImageJ para la comparación de métodos, asegurando precisión. Los principales resultados se encuentran en el aumento de la saturación de gases para altos Números Capilares NCa) y entre ellos una mayor saturación de H2-CH4 en comparación con sistemas de gas individuales. A medida que aumenta el número capilar, los tiempos de disolución se vuelven similares, con diferencias significativas observadas en números capilares más bajos. Los ángulos de contacto demostraron una variación mínima, indicando una débil humectabilidad hacia los gases. Mientras que la capacidad de retención de gases en la etapa de imbibición es afectada por la presión capilar que varía con las gargantas de poro favoreciendo la presencia de gases como Cushion Gas. Así, este estudio investiga el comportamiento del flujo de hidrógeno en un sistema multifásico a escala de poro bajo condiciones de alta presión. Estos conocimientos contribuyen a abordar la brecha de conocimiento, avanzando en la implementación potencial del hidrógeno en diversas formaciones geológicas para el almacenamiento de energía.spa
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaEnergy transitionspa
dc.description.sponsorshipFenomenos de Superficie Michael Polanyi - NORAD Norwayspa
dc.format.extent77 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86059
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesN.F. Jariah, M.A. Hassan, Y.H. Taufiq-Yap, A.M. Roslan, Technological Advancement for Efficiency Enhancement of Biodiesel and Residual Glycerol Refining: A Mini Review, 9 (2021) 1198.spa
dc.relation.referencesM. Padilla, K. Swamygowda, R. Sheoran, Designing Waste Management Systems in the City of The Future, in: CITIES 20.50–Creating Habitats for the 3rd Millennium: Smart–Sustainable–Climate Neutral. Proceedings of REAL CORP 2021, 26th International Conference on Urban Development, Regional Planning and Information Society, CORP–Competence Center of Urban and Regional Planning, 2021, pp. 241-249.spa
dc.relation.referencesV. Mirchi, M. Dejam, V. Alvarado, Interfacial tension and contact angle measurements for hydrogen-methane mixtures/brine/oil-wet rocks at reservoir conditions, International Journal of Hydrogen Energy, 47 (2022) 34963-34975.spa
dc.relation.referencesA. Al-Yaseri, L. Esteban, N. Yekeen, A. Giwelli, J. Sarout, M. Sarmadivaleh, The effect of clay on initial and residual saturation of Hydrogen in clay-rich sandstone formation: Implications for underground hydrogen storage, International Journal of Hydrogen Energy, 48 (2023) 5175-5185.spa
dc.relation.referencesE.I. Epelle, W. Obande, G.A. Udourioh, I.C. Afolabi, K.S. Desongu, U. Orivri, B. Gunes, J.A.J.S.E. Okolie, Fuels, Perspectives and prospects of underground hydrogen storage and natural hydrogen, (2022).spa
dc.relation.referencesJ.J.G.P.P. Speight, Recovery, storage, and transportation. Speight JG (ed.) Natural Gas, 149 (2019) 186.spa
dc.relation.referencesJ. Mouli-Castillo, N. Heinemann, K. Edlmann, Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study, Applied Energy, 283 (2021) 116348.spa
dc.relation.referencesJ. Miocic, N. Heinemann, K. Edlmann, J. Scafidi, F. Molaei, J. Alcalde, Underground hydrogen storage: a review, 528 (2023) 73-86.spa
dc.relation.referencesS. Bauer, M. Pichler, Underground Sun Storage, Energ. Wasser-Prax, 8 (2017) 64-69.spa
dc.relation.referencesA. Pérez, E. Pérez, S. Dupraz, J. Bolcich, Patagonia wind-hydrogen project: Underground storage and methanation, in: 21st world hydrogen energy conference, 2016.spa
dc.relation.referencesR.A. Bartolomeu, L.F. Franco, Thermophysical properties of supercritical H2 from Molecular Dynamics simulations, International Journal of Hydrogen Energy, 45 (2020) 16372-16380.spa
dc.relation.referencesN.S. Muhammed, B. Haq, D. Al Shehri, Role of methane as a cushion gas for hydrogen storage in depleted gas reservoirs, International Journal of Hydrogen Energy, (2023).spa
dc.relation.referencesH. Al-Mukainah, A. Al-Yaseri, N. Yekeen, J. Al Hamad, M. Mahmoud, Wettability of shale–brine–H2 system and H2-brine interfacial tension for assessment of the sealing capacities of shale formations during underground hydrogen storage, Energy Reports, 8 (2022) 8830-8843.spa
dc.relation.referencesA. Alanazi, N. Yekeen, M. Ali, M. Ali, I.S. Abu-Mahfouz, A. Keshavarz, S. Iglauer, H. Hoteit, Influence of organics and gas mixing on hydrogen/brine and methane/brine wettability using Jordanian oil shale rocks: Implications for hydrogen geological storage, Journal of Energy Storage, 62 (2023) 106865.spa
dc.relation.referencesQ.T. Doan, A. Keshavarz, C.R. Miranda, P. Behrenbruch, S. Iglauer, Molecular dynamics simulation of interfacial tension of the CO2-CH4-water and H2-CH4-water systems at the temperature of 300 K and 323 K and pressure up to 70 MPa, Journal of Energy Storage, 66 (2023) 107470.spa
dc.relation.referencesM. Lysyy, G. Ersland, M. Fernø, Pore-scale dynamics for underground porous media hydrogen storage, Advances in Water Resources, 163 (2022) 104167.spa
dc.relation.referencesG. Wang, G. Pickup, K. Sorbie, E. Mackay, Scaling analysis of hydrogen flow with carbon dioxide cushion gas in subsurface heterogeneous porous media, International Journal of Hydrogen Energy, 47 (2022) 1752-1764.spa
dc.relation.referencesW. van Rooijen, L. Hashemi, M. Boon, R. Farajzadeh, H. Hajibeygi, Microfluidics-based analysis of dynamic contact angles relevant for underground hydrogen storage, Advances in Water Resources, 164 (2022) 104221.spa
dc.relation.referencesH. Song, J. Lao, L. Zhang, C. Xie, Y. Wang, Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency, Applied Energy, 337 (2023) 120901.spa
dc.relation.referencesM. Lysyy, N. Liu, C.M. Solstad, M.A. Fernø, G. Ersland, Microfluidic hydrogen storage capacity and residual trapping during cyclic injections: Implications for underground storage, International Journal of Hydrogen Energy, (2023).spa
dc.relation.referencesN. Liu, A.R. Kovscek, M.A. Fernø, N. Dopffel, Pore-scale study of microbial hydrogen consumption and wettability alteration during underground hydrogen storage, 11 (2023).spa
dc.relation.referencesM. Buchgraber, M. Al-Dossary, C.M. Ross, A.R. Kovscek, Creation of a dual-porosity micromodel for pore-level visualization of multiphase flow, Journal of Petroleum Science and Engineering, 86-87 (2012) 27-38.spa
dc.relation.referencesJ.W. Hornbrook, L.M. Castanier, P.A. Pettit, Observation of Foam/Oil Interactions in a New, High-Resolution Micromodel, in: SPE Annual Technical Conference and Exhibition, 1991.spa
dc.relation.referencesB. Benali, Quantitative Pore-Scale Analysis of CO2 Foam for CCUS, in: Department of Physics and Technology, University of Bergen, Norway, 2019, pp. 142.spa
dc.relation.referencesA. Hassanpouryouzband, E. Joonaki, K. Edlmann, R.S. Haszeldine, Offshore geological storage of hydrogen: is this our best option to achieve net-zero?, ACS Energy Letters, 6 (2021) 2181-2186.spa
dc.relation.referencesG.M. Hale, M.R.J.A.o. Querry, Optical constants of water in the 200-nm to 200-μm wavelength region, 12 (1973) 555-563.spa
dc.relation.referencesE.R. Peck, S.J.J. Huang, Refractivity and dispersion of hydrogen in the visible and near infrared, 67 (1977) 1550-1554.spa
dc.relation.referencesJ. Jin, J.W. Kim, C.-S. Kang, J.-A. Kim, T.B.J.O.e. Eom, Thickness and refractive index measurement of a silicon wafer based on an optical comb, 18 (2010) 18339-18346.spa
dc.relation.referencesC. Chomsurin, C.J. Werth, Analysis of pore‐scale nonaqueous phase liquid dissolution in etched silicon pore networks, Water resources research, 39 (2003).spa
dc.relation.referencesX. Zhao, H. Jin, Investigation of hydrogen diffusion in supercritical water: A molecular dynamics simulation study, International Journal of Heat and Mass Transfer, 133 (2019) 718-728.spa
dc.relation.referencesP. Witherspoon, D. Saraf, Diffusion of Methane, Ethane, Propane, and n-Butane in Water from 25 to 43, The Journal of Physical Chemistry, 69 (1965) 3752-3755.spa
dc.relation.referencesS. Peng, Q. He, D. Peng, X. Ouyang, X. Zhang, C. Chai, L. Zhang, X. Sun, H. Deng, W. Hu, Equilibrium distribution and diffusion of mixed hydrogen-methane gas in gravity field, arXiv preprint arXiv:2304.03948, (2023).spa
dc.relation.referencesR. Lenormand, E. Touboul, C.J.J.o.f.m. Zarcone, Numerical models and experiments on immiscible displacements in porous media, 189 (1988) 165-187.spa
dc.relation.referencesC. Zhang, M. Oostrom, T.W. Wietsma, J.W. Grate, M.G.J.E. Warner, Fuels, Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering, 25 (2011) 3493-3505.spa
dc.relation.referencesS. Harsha Bhimineni, T. Zhou, S. Mahmoodpour, M. Singh, W. Li, S. Bag, I. Sass, F. Müller-Plathe, Machine-Learning-Assisted Investigation of the Diffusion of Hydrogen in Brine by Performing Molecular Dynamics Simulation, in, 2022, pp. arXiv:2207.02966.spa
dc.relation.referencesR. Conrad, W. Seiler, Methane and hydrogen in seawater (Atlantic Ocean), Deep Sea Research Part A. Oceanographic Research Papers, 35 (1988) 1903-1917.spa
dc.relation.referencesF. Lang, P. Servio, Solubility measurements for the CH4 + C2H6 + H2O system under hydrate-liquid-vapour equilibrium, Journal of Natural Gas Science and Engineering, 26 (2015) 130-134.spa
dc.relation.referencesN.K. Jha, A. Al-Yaseri, M. Ghasemi, D. Al-Bayati, M. Lebedev, M. Sarmadivaleh, Pore scale investigation of hydrogen injection in sandstone via X-ray micro-tomography, International Journal of Hydrogen Energy, 46 (2021) 34822-34829.spa
dc.relation.referencesM. Boon, H. Hajibeygi, Experimental characterization of H 2/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS), Scientific reports, 12 (2022) 14604.spa
dc.relation.referencesA. Al-Yaseri, M. Ali, G.R. Abbasi, H.R. Abid, N.K. Jha, Enhancing CO2 storage capacity and containment security of basaltic formation using silica nanofluids, International Journal of Greenhouse Gas Control, 112 (2021) 103516.spa
dc.relation.referencesE.M. Thaysen, I.B. Butler, A. Hassanpouryouzband, D. Freitas, F. Alvarez-Borges, S. Krevor, N. Heinemann, R. Atwood, K. Edlmann, Pore-scale imaging of hydrogen displacement and trapping in porous media, International Journal of Hydrogen Energy, 48 (2023) 3091-3106.spa
dc.relation.referencesZ. Jangda, H. Menke, A. Busch, S. Geiger, T. Bultreys, H. Lewis, K. Singh, Pore-scale visualization of hydrogen storage in a sandstone at subsurface pressure and temperature conditions: Trapping, dissolution and wettability, Journal of Colloid and Interface Science, 629 (2023) 316-325.spa
dc.relation.referencesH.-J. Butt, J. Liu, K. Koynov, B. Straub, C. Hinduja, I. Roismann, R. Berger, X. Li, D. Vollmer, W. Steffen, M. Kappl, Contact angle hysteresis, Current Opinion in Colloid & Interface Science, 59 (2022) 101574.spa
dc.relation.referencesM.S.A. Perera, A review of underground hydrogen storage in depleted gas reservoirs: Insights into various rock-fluid interaction mechanisms and their impact on the process integrity, Fuel, 334 (2023) 126677.spa
dc.relation.referencesN.S. Muhammed, M.B. Haq, D.A. Al Shehri, A. Al-Ahmed, M.M. Rahman, E. Zaman, S. Iglauer, Hydrogen storage in depleted gas reservoirs: A comprehensive review, Fuel, 337 (2023) 127032.spa
dc.relation.referencesM. Bai, K. Song, Y. Sun, M. He, Y. Li, J. Sun, An overview of hydrogen underground storage technology and prospects in China, Journal of Petroleum Science and Engineering, 124 (2014) 132-136.spa
dc.relation.referencesW. Li, Z. Jin, Effect of ion concentration and multivalence on methane-brine interfacial tension and phenomena from molecular perspectives, Fuel, 254 (2019) 115657.spa
dc.relation.referencesJ.J. Taber, Research on Enhanced Oil Recovery: Past, Present and Future, in: D.O. Shah (Ed.) Surface Phenomena in Enhanced Oil Recovery, Springer US, Boston, MA, 1981, pp. 13-52.spa
dc.relation.referencesN.S. Muhammed, B. Haq, D. Al Shehri, CO2 rich cushion gas for hydrogen storage in depleted gas reservoirs: Insight on contact angle and surface tension, International Journal of Hydrogen Energy, (2023).spa
dc.relation.referencesL. Ji, F. Xu, M. Lin, W. Jiang, G. Cao, S. Wu, X. Jiang, Rapid evaluation of capillary pressure and relative permeability for oil–water flow in tight sandstone based on a physics-informed neural network, Journal of Petroleum Exploration and Production Technology, 13 (2023) 2499-2517.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.ddc660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesspa
dc.subject.lembYacimientos de gas
dc.subject.lembMetano
dc.subject.lembDinámica molecular
dc.subject.lembGases de combustión - Mediciones
dc.subject.proposalDepleted gas reservoireng
dc.subject.proposalMethane cushion gaseng
dc.subject.proposalMolecular dynamic simulationeng
dc.subject.proposalPore-scale analysiseng
dc.subject.proposalUnderground hydrogen storageeng
dc.subject.proposalYacimiento de gas depletadospa
dc.subject.proposalMetano como Cushion Gasspa
dc.subject.proposalSimulación dinámica molecularspa
dc.subject.proposalAnálisis a escala de porospa
dc.subject.proposalAlmacenamiento de hidrógenospa
dc.titleHydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale studyeng
dc.title.translatedAlmacenamiento de hidrogeno en yacimientos de gas depletados usando metano como cushion gas : un estudio de tensión interfacial y escala de porospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCO2-EOR for CCUS in Colombia and Ecuador: Norwegian energy initiativespa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1123311292.2024.pdf
Tamaño:
2.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: