Consideraciones acerca de la conjetura de Artin sobre raíces primitivas.

dc.contributor.advisorToro Villegas, Margarita María
dc.contributor.authorAlzate Restrepo, Juan David
dc.date.accessioned2021-10-16T17:35:21Z
dc.date.available2021-10-16T17:35:21Z
dc.date.issued2021-10-11
dc.descriptiondiagramas, tablasspa
dc.description.abstractEn este trabajo, nos centramos en estudiar la conjetura de Artin sobre raíces primitivas, hablamos sobre los argumentos heurísticos de Artin para plantear su idea, y estudiamos los teoremas más importantes referente a la conjetura hasta la fecha: El teorema de Hooley donde demuestra la conjetura bajo la hipótesis extendida de Riemann, el teorema de Gupta y Murty, que establece incondicionalmente la validez de la conjetura para al menos un a en S, donde S es un conjunto de 13 elementos perteneciente a cierta familia de conjuntos, y el teorema de Heath-Brown, donde mejora este resultado a una familia de conjuntos S de 3 elementos. También realizamos un estudio de familias específicas de primos F, donde pensamos en la conjetura en el contexto particular de esa familia, donde logramos demostrar qué condiciones debe cumplir p en F para que a = 2; 3; 5 sea raíz primitiva. Por otro lado, realizamos cómputos para los primos p = 2qr+1, de donde se verifica una densidad estable de primos para los cuales a es raíz primitiva, para ciertos valores de a; y a su vez también planteamos algunas conjeturas. (Texto tomado de la fuente)spa
dc.description.abstractIn this paper, we focused on studying the Artin’s conjecture on primitive roots, we discussed about the heuristic arguments thought by Artin to propose his idea, and we studied the most important theorems related to the conjecture till the date: Hooley’s theorem in which he proves the conjecture under the assumption of the extended Riemann hypothesis , Gupta and Murty’s theorem, which proves unconditionally that the conjecture holds for at least an 𝑎 ∈ 𝑆, where 𝑆 is a set of 13 elements, belonging to a particular set family, and Heath-Brown’s theorem, where this result is improved to a particular set family of sets 𝑆 of size 3 . We also studied some specific prime families 𝐹 and thought about the conjecture in the particular context of that family, we discussed about necessary conditions of 𝑝 ∈ 𝐹 in order to 𝑎 = 2, 3, 5 be a primitive root. In other hand, we performed computations for primes of the form 𝑝 = 2𝑞𝑟 + 1, and according to those computations it’s verified a estable density for primes 𝑝 for which 𝑎 is a primitive root, for some values of de 𝑎; also based on the computations we proposed some conjectures.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaTeoría de Númerosspa
dc.format.extentxii, 91 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80569
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesE. Artin, Collected papers. Reading, Mass. Addison-Wesley (1965).spa
dc.relation.referencesA.R. Booker, Artins conjecture, Turings method, and the riemann hypothesis. Exp. Math. 15(4), (2006) 385-407.spa
dc.relation.referencesE. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18, Societé Mathematique de France, (1974).spa
dc.relation.referencesN.A. Carella, Corrigendum The Generalized Artin Primitive Root Conjecture, European J. of pure and applied math. Vol. 11, No. 1, (2018), 23-34.spa
dc.relation.referencesH. Cohen, A Course in Computational Algebraic Number Theory (3rd ed). Springer-Verlag, New York (1996).spa
dc.relation.referencesH. Cohen, Number Theory Volume I: Tools and Diophantine Equiations. Springer-Verlag, New York (2007).spa
dc.relation.referencesJ.R. Goldman, The Queen of mathematics A historically Motivated Guide to Number Theory. A K Peters, Natick, Massachusetts. (1997).spa
dc.relation.referencesL.J. Goldstein, Density questions in algebraic number theory. Amer. math. Monthly78, (1971) 342-351.spa
dc.relation.referencesR. Gupta, M. Ram Murty. A remark on Artins conjecture, Inventiones Math. 78 (1984) 127-130.spa
dc.relation.referencesR. Gupta, V. Kumar Murty y M. Ram Murty. The euclidean algorithm for S integers, CMS Conference Proceedings, volume 7, (1985) 189-202.spa
dc.relation.referencesS. S. Gupta, Artin s Conjecture: Unconditional Approach and Elliptic Analogue, UWSpace(2008).spa
dc.relation.referencesG.H. Hardy , E.M. Wright, An introduction to the theory of numbers, OUP (2008).spa
dc.relation.referencesD.R. Heath-Brown. Artin s conjecture for primitive roots, Quart. J. Math. Oxford, (2) 37(1986) 27-38.spa
dc.relation.referencesC. Hooley, On Artin s conjecture, J. reine angnew. Math, 226. (1967) 209-220.spa
dc.relation.referencesH. Iwaniech. Primes of type phi(x; y)+A, where phi is a quadratic form. Acta Arith. 21(1972) 203-224.spa
dc.relation.referencesH. Iwaniec, Rosser s sieve, Acta Arith, 36:, (1980). 171-202.spa
dc.relation.referencesH. Iwaniec. A new form of error term in the linear sieve. Acta Arith., 37:, (1980). 307-320.spa
dc.relation.referencesJ. C. Lagarias, A. M. Odlyzko, Efective versions of the Chebotarev density theorem,Algebraic Number Fields (A. Frohlich, ed.) New York, Academic Press,(1977), 409-464.spa
dc.relation.referencesS. Lang, On the zeta function of number fields, Invent. Math. 12 (1971), 337-345.spa
dc.relation.referencesD.H. Lehmer, E. Lehmer, Heuristics, anyone?, Studies in Mathematical Analysis and Related Topics, Stanford Univ. Press, Stanford, (1962), 202-210.spa
dc.relation.referencesH.L. Montgomery, R.C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge, 2007.spa
dc.relation.referencesP. Moree, Artins Primitive Root Conjecture A Survey. Integers, (2012).spa
dc.relation.referencesP. Moree, Approximation of singular series and automata. manuscripta mathematica 101,(2000) 385-399.spa
dc.relation.referencesM.R. Murty, Artins conjecture for primitive roots. The Mathematical Intelligencer 10, (1988) 59-67.spa
dc.relation.referencesD. Pallab, B. Kumar. An Analogue Of Artins primitive root conjecture. Integers.16 (2016).spa
dc.relation.referencesW. Raji, An Introductory Course in Elementary Number Theory. Saylor Foundation,Washington. (2013).spa
dc.relation.referencesD. Shanks - Review of: R. Baillie, Data on Artins conjecture. Math. Comp.29, 1164-1165 (1975).spa
dc.relation.referencesD. Shanks - Solved and unsolved problems in number theory- Chelsea Publishing Company (1978).spa
dc.relation.referencesP. Stevenhagen, H.W. Lenstra, jr., Chebotarev and his density theorem, Math. Intelligencer 18 (1996), 26-37.spa
dc.relation.referencesR. Wilson, J. Gray-Mathematical Conversations. (p. 113-127) M. Ram Murty-Artin´s Conjecture for primitive roots. Springer, New York, (2001).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembMathematicseng
dc.subject.lembMatemáticasspa
dc.subject.proposalConjetura de Artinspa
dc.subject.proposalRaíz primitivaspa
dc.subject.proposalHipótesis de Riemannspa
dc.subject.proposalPrimos segurosspa
dc.subject.proposalTeorema de Hooleyspa
dc.subject.proposalTeorema de Gupta y Murtyspa
dc.subject.proposalTeorema de Heath-Brownspa
dc.subject.proposalArtin’s Conjectureeng
dc.subject.proposalPrimitive rooteng
dc.subject.proposalSafe primeseng
dc.subject.proposalRiemann hypothesiseng
dc.subject.proposalHooley’s theoremeng
dc.subject.proposalGupta and Murty’s theoremeng
dc.subject.proposalHeath-Brown’s theoremeng
dc.titleConsideraciones acerca de la conjetura de Artin sobre raíces primitivas.spa
dc.title.translatedA remark on Artin's primitive root conjecture.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleFP44842-013-2018spa
oaire.awardtitleHermes, código 50652spa
oaire.fundernameFondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación.spa
oaire.fundernameCOLCIENCIASspa
oaire.fundernameUniversidad Nacional de Colombia-Sede Medellínspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152446073.2021.pdf
Tamaño:
63.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: