Contribución al desarrollo de formulaciones micelares de anfotericina B, con miras a su aplicación en sistemas de liberación modificada
dc.contributor.advisor | Baena Aristizábal, Yolima | |
dc.contributor.advisor | Pérez Pérez, León Darío | |
dc.contributor.author | Güiza Suárez, Michael Alejandro | |
dc.contributor.researchgroup | Sistemas Para Liberación Controlada de Moléculas Biológicamente Activas | spa |
dc.date.accessioned | 2025-09-10T19:48:11Z | |
dc.date.available | 2025-09-10T19:48:11Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, gráficos | spa |
dc.description.abstract | La anfotericina B (AmB) es un antifúngico macrólido de amplio espectro, utilizado como tratamiento de primera línea en infecciones fúngicas invasivas (EFI), especialmente en pacientes inmunosuprimidos. No obstante, su empleo clínico se encuentra severamente restringido por su elevada toxicidad, particularmente la nefrotoxicidad, así como por su escasa biodisponibilidad oral, lo que obliga a una administración intravenosa exclusiva en contextos hospitalarios. Aunque en las últimas décadas han surgido formulaciones lipídicas, incluyendo liposomas y complejos lipídicos, que han logrado reducir significativamente estos efectos adversos, estas estrategias presentan limitaciones importantes relacionadas con su alto costo, dificultades de producción, estabilidad limitada y accesibilidad restringida. Ante esta problemática, numerosas investigaciones se han enfocado en desarrollar alternativas farmacéuticas que reduzcan la toxicidad, mejoren la estabilidad y permitan vías alternativas de administración, particularmente la vía oral. En este contexto, el presente estudio aborda el desarrollo y evaluación de formulaciones nanoparticuladas utilizando copolímeros biodegradables conjugados con fosfolípidos de varios bloques para encapsular AmB. La metodología implicó la síntesis y caracterización de micelas poliméricas cargadas con AmB, incluyendo técnicas analíticas para su estudio como espectroscopía UV-Visible, cromatografía líquida de alta resolución (HPLC), dispersión dinámica de luz (DLS) y microscopía electrónica, entre otras. Adicionalmente, se llevaron a cabo estudios de estabilidad de los sistemas nanoparticulados en condiciones simuladas del tracto gastrointestinal, evaluando su resistencia frente a la degradación en fluidos gástricos e intestinales simulados, y su comportamiento de liberación en estas condiciones. Los resultados indicaron que las micelas desarrolladas proporcionan mejoras en la estabilidad química de la AmB, favorecen perfiles de liberación sostenida que pueden llegar a prolongar los tiempos de acción terapéutica y reducir potencialmente los efectos tóxicos característicos de este antifúngico. Estos hallazgos resaltan el potencial de estas formulaciones para constituir la base de futuras formas farmacéuticas orales más seguras, efectivas y accesibles, ampliando el alcance clínico del tratamiento antifúngico con AmB (Texto tomado de la fuente). | spa |
dc.description.abstract | Amphotericin B (AmB) is a broad-spectrum macrolide antifungal agent used as a firstline treatment for invasive fungal infections (IFIs), particularly in immunocompromised patients. However, its clinical use is severely restricted due to its high toxicity, especially nephrotoxicity, as well as its poor oral bioavailability, which necessitates exclusive intravenous administration in hospital settings. Although lipid-based formulations, including liposomes and lipid complexes, have emerged in recent decades, significantly reducing these adverse effects, these strategies present notable limitations such as high cost, production difficulties, limited stability, and restricted accessibility. In response to these issues, numerous studies have focused on developing pharmaceutical alternatives that reduce toxicity, improve stability, and enable alternative routes of administration, particularly the oral route. In this context, the present study addresses the development and evaluation of nanoparticulate formulations using biodegradable copolymers conjugated with multi-block phospholipids for encapsulating AmB. The methodology involved the synthesis and characterization of polymeric micelles loaded with AmB, employing analytical techniques such as UV-Visible spectroscopy, high-performance liquid chromatography (HPLC), dynamic light scattering (DLS), and electron microscopy, among others. Additionally, stability studies of the nanoparticulate systems were conducted under simulated gastrointestinal tract conditions, evaluating their resistance to degradation in simulated gastric and intestinal fluids, as well as their release behavior under these conditions. The results indicated that the developed micelles provide improvements in the chemical stability of AmB, promote sustained release profiles that may extend therapeutic action times, and potentially reduce the toxic effects typically associated with this antifungal agent. These findings highlight the potential of these formulations to serve as the basis for future, safer, more effective, and accessible oral pharmaceutical forms, thereby expanding the clinical reach of AmB antifungal treatment. | eng |
dc.description.curriculararea | Farmacia.Sede Bogotá | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias (MSc.) Farmacéuticas | spa |
dc.description.researcharea | Sistemas micro y nanoparticulados | spa |
dc.format.extent | xiii, 95 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88701 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas | spa |
dc.relation.references | Berta Fernández Ledesma, Natalia A. Mendoza Palomar, and José Tomás Ramos Amador. Infección fúngica invasiva (ifi). Asociación Española de Pediatría, 2023. Guía/consenso AEP. | |
dc.relation.references | C. Figueras Nadal, C. Díaz de Heredia Rubio, and M. L. Navarro. Infección fúngica invasiva (ifi): actualización. Comité de Medicamentos de la Asociación Española de Pediatría, 2011. Documento en línea. Accedido el: 08-sep-2025. | |
dc.relation.references | Diana Rey Sánchez, Laura Bernal Vaca, Melva Yomary Linares Linares, Claudia Marcela Parra Giraldo, Javier Ricardo Garzón Erazo, Sandra Liliana Valderrama Beltrán, Alejandra Cañas Arboleda, et al. Infección fúngica invasiva en pacientes inmunosuprimidos atendidos en un hospital de tercer nivel. Revista Colombiana de Neumología, 28(1):10--16, 2016. | |
dc.relation.references | Jose Sifuentes-Osornio, Dora E Corzo-León, and L Alfredo Ponce-de León. Epidemiology of invasive fungal infections in latin america. Current fungal infection reports, 6(1):23--34, 2012. | |
dc.relation.references | Gilbert Deray. Amphotericin b nephrotoxicity. Journal of antimicrobial chemotherapy, 49(suppl_1):37--41, 2002. | |
dc.relation.references | Richard J Hamill. Amphotericin b formulations: a comparative review of efficacy and toxicity. Drugs, 73:919--934, 2013. | |
dc.relation.references | INVIMA. Información para profesionales de la salud, pacientes y cuidadores: Anfotericina b, Aug 2017. Documento oficial (boletín de seguridad). Accedido el: 08-sep-2025. | |
dc.relation.references | JA Diaz, JR Urrego-Novoa, JA Moreno, C Huérfano, and VA Prieto. Análisis de costo-efectividad de anidulafungina en el tratamiento de la candidiasis invasiva en colombia. Value in Health, 18(7):A870, 2015. | |
dc.relation.references | Celeste Alvarez, Dae Hwan Shin, and Glen S Kwon. Reformulation of fungizone by peg-dspe micelles: deaggregation and detoxification of amphotericin b. Pharmaceutical research, 33:2098--2106, 2016. | |
dc.relation.references | Ivonne L Diaz and Leon D Perez. Synthesis and micellization properties of triblock copolymers pdmaema-b-pcl-bpdmaema and their applications in the fabrication of amphotericin b-loaded nanocontainers. Colloid and Polymer Science, 293:913--923, 2015. | |
dc.relation.references | Dolores R Serrano and Aikaterini Lalatsa. Oral amphotericin b: The journey from bench to market. Journal of Drug Delivery Science and Technology, 42:75--83, 2017. | |
dc.relation.references | Xiaochun Wang, Imran Shair Mohammad, Lifang Fan, Zongmin Zhao, Md Nurunnabi, Marwa A Sallam, Jun Wu, Zhongjian Chen, Lifang Yin, and Wei He. Delivery strategies of amphotericin b for invasive fungal infections. Acta Pharmaceutica Sinica B, 11(8):2585--2604, 2021. | |
dc.relation.references | Martin Hoenigl, Volker Strenger, Walter Buzina, Thomas Valentin, Christoph Koidl, Albert Wölfler, Katharina Seeber, Angelika Valentin, Anna T Strohmeier, Ines Zollner-Schwetz, et al. European organization for the research and treatment of cancer/mycoses study group (eortc/msg) host factors and invasive fungal infections in patients with haematological malignancies. Journal of antimicrobial chemotherapy, 67(8):2029--2033, 2012. | |
dc.relation.references | Patricia Escandón, Catalina de Bedout, Jairo Lizarazo, Clara Inés Agudelo, Ángela Tobón, Solmara Bello, Ángela Restrepo, and Elizabeth Castañeda. Cryptococcosis in colombia: Results of the national surveillance program for the years 2006-2010. Biomédica, 32(3):386--398, 2012. | |
dc.relation.references | Amalia del Palacio, Julia Villar, and Almudena Alhambra. Epidemiología de las candidiasis invasoras en población pediátrica y adulta. Revista Iberoamericana de Micología, 26(1):2--7, 2009. | |
dc.relation.references | Isabel Ruiz-Camps and Manuel Cuenca-Estrella. Antifúngicos para uso sistémico. Enfermedades infecciosas y microbiología clínica, 27(6):353--362, 2009. | |
dc.relation.references | Ihor Bekersky, Robert M Fielding, Dawna E Dressler, JeanWLee, Donald N Buell, and Thomas J Walsh. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin b (ambisome) and amphotericin b deoxycholate in humans. Antimicrobial agents and chemotherapy, 46(3):828--833, 2002. | |
dc.relation.references | Luis Thompson Moya, Hélio Sader, Marcelo Wolff Reyes, C Larrañaga, and Luis Bavestrello Fernández. Nuevas alternativas en el armamento anti infeccioso que el clínico debe conocer. Rev. chil. infectol, pages S26--S27, 2002 | |
dc.relation.references | Helene Vogelsinger, Stefan Weiler, Angela Djanani, Jordan Kountchev, Rosa Bellmann-Weiler, Christian J Wiedermann, and Romuald Bellmann. Amphotericin b tissue distribution in autopsy material after treatment with liposomal amphotericin b and amphotericin b colloidal dispersion. Journal of Antimicrobial Chemotherapy, 57(6):1153--1160, 2006 | |
dc.relation.references | Laurence H Wang, Robert M Fielding, Philip C Smith, and Luke SS Guo. Comparative tissue distribution and elimination of amphotericin b colloidal dispersion (amphocil®) and fungizone® after repeated dosing in rats. Pharmaceutical research, 12:275--283, 1995. | |
dc.relation.references | Mercedes Catalán and Juan Carlos Montejo. Antifúngicos sistémicos. farmacodinamia y farmacocinética. Revista iberoamericana de micología, 23(1):39--49, 2006. | |
dc.relation.references | Elsa Ruth Arias Patrón. Caracterización de copolímeros en bloque conjugados como vehículos nanoestructurados para anfotericina b. Master’s thesis, Universidad Nacional de Colombia, Facultad de Ciencias, Maestría en Ciencias--Química, Bogotá, Colombia, 2020. | |
dc.relation.references | DrugBank. Uses, interactions, mechanism of action amphotericin b, Jun 2005. Accedido el: 08-oct-2024. | |
dc.relation.references | Dolores R. Serrano López. Nuevas formulaciones orales, tópicas y parenterales de anfotericina B con acción antifúngica y antiparasitaria. PhD thesis, Universidad Complutense de Madrid, Madrid, España, 2013. | |
dc.relation.references | Arthur J Atkinson Jr and John E Bennett. Amphotericin b pharmacokinetics in humans. Antimicrobial Agents and Chemotherapy, 13(2):271--276, 1978. | |
dc.relation.references | Ana C Mesa-Arango, Liliana Scorzoni, and Oscar Zaragoza. It only takes one to do many jobs: Amphotericin b as antifungal and immunomodulatory drug. Frontiers in microbiology, 3:286, 2012. | |
dc.relation.references | Thomas M Anderson, Mary C Clay, Alexander G Cioffi, Katrina A Diaz, Grant S Hisao, Marcus D Tuttle, Andrew J Nieuwkoop, Gemma Comellas, Nashrah Maryum, Shu Wang, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nature chemical biology, 10(5):400--406, 2014. | |
dc.relation.references | Raquel Fernández-García, Esther de Pablo, María Paloma Ballesteros, and Dolores R Serrano. Unmet clinical needs in the treatment of systemic fungal infections: The role of amphotericin b and drug targeting. International journal of pharmaceutics, 525(1):139--148, 2017. | |
dc.relation.references | Jodi M Lestner, Susan J Howard, Joanne Goodwin, Lea Gregson, Jayesh Majithiya, Thomas J Walsh, Gerard M Jensen, and William W Hope. Pharmacokinetics and pharmacodynamics of amphotericin b deoxycholate, liposomal amphotericin b, and amphotericin b lipid complex in an in vitro model of invasive pulmonary aspergillosis. Antimicrobial agents and chemotherapy, 54(8):3432--3441, 2010. | |
dc.relation.references | Min Liu, Meiwan Chen, and Zhiwen Yang. Design of amphotericin b oral formulation for antifungal therapy. Drug delivery, 24(1):1--9, 2017. | |
dc.relation.references | Avnesh Kumari, Rubbel Singla, Anika Guliani, and Sudesh Kumar Yadav. Nanoencapsulation for drug delivery. EXCLI journal, 13:265, 2014. | |
dc.relation.references | PN Ezhilarasi, P Karthik, Narayansing Chhanwal, and C Anandharamakrishnan. Nanoencapsulation techniques for food bioactive components: a review. Food and bioprocess technology, 6:628--647, 2013. | |
dc.relation.references | Seid Mahdi Jafari. An overview of nanoencapsulation techniques and their classification. Nanoencapsulation technologies for the food and nutraceutical industries, pages 1--34, 2017. | |
dc.relation.references | C Anandharamakrishnan and C Anandharamakrishnan. Nanoencapsulation of food bioactive compounds. Techniques for nanoencapsulation of food ingredients, pages 1--6, 2014. | |
dc.relation.references | Hugo Espinosa Andrews and Eristeo García Márquez. Tecnologías de nano/microencapsulación de compuestos bioactivos, 2017. | |
dc.relation.references | Juan Manuel Llabot, Santiago Daniel Palma, and D Allemandi. Nanopartículas poliméricas sólidas. Nuestra Farmacia, 53:40--47, 2008. | |
dc.relation.references | C Anandharamakrishnan and C Anandharamakrishnan. Characterization of nanoparticles. Techniques for Nanoencapsulation of Food Ingredients, pages 65--67, 2014. | |
dc.relation.references | J Batalla Mayoral, A Cuadros Moreno, and E San Martín Martínez. Potencial zeta en la determinación de carga superficial de liposomas. Latin-American Journal of Physics Education, 8(4):19, 2014. | |
dc.relation.references | SANDRA YASMIN RODRIGUEZ GONZALEZ. Técnicas de análisis para evaluación de materiales nanoestructurados y su aplicación en nanomedicina, 2011. | |
dc.relation.references | Claudia Luengo-Alonso, Juan José Torrado, Maria Paloma Ballesteros, Alessio Malfanti, Sara Bersani, Stefano Salmaso, and Paolo Caliceti. A novel performing peg-cholane nanoformulation for amphotericin b delivery. International journal of pharmaceutics, 495(1):41--51, 2015. | |
dc.relation.references | Costas Demetzos. Biophysics and thermodynamics: the scientific building blocks of bio-inspired drug delivery nano systems. AAPS PharmSciTech, 16(3):491--495, 2015. | |
dc.relation.references | A Vila, A Sanchez, M Tobıo, P Calvo, and MJ Alonso. Design of biodegradable particles for protein delivery. Journal of controlled release, 78(1-3):15--24, 2002. | |
dc.relation.references | JMT Hamilton-Miller. The effect of ph and of temperature on the stability and bioactivity of nystatin and amphotericin b. Journal of Pharmacy and Pharmacology, 25(5):401--407, 1973. | |
dc.relation.references | United States Pharmacopeia. United States Pharmacopeia 38 --- National Formulary 33 (USP 38--NF 33). United States Pharmacopeial Convention, Rockville, MD, USA, 2015. | |
dc.relation.references | F Rocha Formiga. Nanosistemas a base de poliésteres. Monografías de la Real Academia Nacional de Farmacia, 2009. | |
dc.relation.references | Blanca Inés y Ganem Adriana y Quintanar David Chávez, Fabiola y Olvera. Liberación de sustancias lipofílicas a partir de nanocápsulas poliméricas. Revista de la Sociedad Química de México, 46(4):349--356, 2002. | |
dc.relation.references | Marcos Luciano Bruschi. 5 - mathematical models of drug release. In Marcos Luciano Bruschi, editor, Strategies to Modify the Drug Release from Pharmaceutical Systems, pages 63--86. Woodhead Publishing, 2015. | |
dc.relation.references | Richard W Korsmeyer, Robert Gurny, Eric Doelker, Pierre Buri, and Nikolaos A Peppas. Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, 15(1):25--35, 1983. | |
dc.relation.references | Kosmas Kosmidis and George Dassios. Monte carlo simulations in drug release. Journal of pharmacokinetics and pharmacodynamics, 46:165--172, 2019. | |
dc.relation.references | Carla Soares de Souza, Victor Ropke da Cruz Lopes, Gabriel Barcellos, Francisco Alexandrino-Junior, Patrícia Cristina da Costa Neves, Beatriz Ferreira de Carvalho Patricio, Helvécio Vinícius Antunes Rocha, Ana Paula Dinis Ano Bom, and Alexandre Bezerra Conde Figueiredo. Unleashing fungicidal forces: Exploring the synergistic power of amphotericin b-loaded nanoparticles and monoclonal antibodies. Journal of Fungi, 10(5):344, 2024. | |
dc.relation.references | MA Dasilva, KF Crespo Andrada, M Maldonado Torales, I Manrrique Hughes, P Pez, JC García-Martínez, and María Gabriela Paraje. Synergistic activity of gold nanoparticles with amphotericin b on persister cells of candida tropicalis biofilms. Journal of Nanobiotechnology, 22(1):254, 2024. | |
dc.relation.references | Khadijeh Rajablou, Hossein Attar, Seyyed Kazem Sadjady, and Amir Heydarinasab. Dspc based polymeric micelles loaded with amphotericin b: synthesis, characterization, and in vitro study. Nanomedicine Research Journal, 8(1):37--49, 2023. | |
dc.relation.references | Nandha Joyson, Anchal Pathak, and Keerti Jain. One platform comparison of polymeric and lipidic nanoparticles for the delivery of amphotericin b. AAPS PharmSciTech, 24(8):226, 2023. | |
dc.relation.references | Songul Ulag, Sureyya Elif Celik, Mustafa Sengor, and Oguzhan Gunduz. Fabrication of amphotericin-b-loaded sodium alginate nanoparticles for biomedical applications. BioNanoScience, 12(4):1230--1237, 2022. | |
dc.relation.references | Phyo Darli Maw, Prompong Pienpinijtham, Patamaporn Pruksakorn, and Phatsawee Jansook. Cyclodextrin-based pickering nanoemulsions containing amphotericin b: Part ii. formulation, antifungal activity, and chemical stability. Journal of Drug Delivery Science and Technology, 69:103174, 2022. | |
dc.relation.references | Aamir Sohail, Rahat Ullah Khan, Momin Khan, Mehvish Khokhar, Safat Ullah, Arshad Ali, Hazrat Bilal, Saadullah Khattak, Mirwaise Khan, and Baseer Ahmad. Comparative efficacy of amphotericin b-loaded chitosan nanoparticles and free amphotericin b drug against leishmania tropica. Bulletin of the National Research Centre, 45:1--9, 2021. | |
dc.relation.references | Elsa R Arias, Vivian Angarita-Villamizar, Yolima Baena, Claudia Parra-Giraldo, and Leon D Perez. Phospholipidconjugated peg-b-pcl copolymers as precursors of micellar vehicles for amphotericin b. Polymers, 13(11):1747, 2021. | |
dc.relation.references | Pratthana Chomchalao, Pataranapa Nimtrakul, Duy Toan Pham, and Waree Tiyaboonchai. Development of amphotericin b-loaded fibroin nanoparticles: a novel approach for topical ocular application. Journal of Materials Science, 55(12):5268- -5279, 2020. | |
dc.relation.references | Yeimy J Rodriguez, Luis F Quejada, Jean C Villamil, Yolima Baena, Claudia M Parra-Giraldo, and Leon D Perez. Development of amphotericin b micellar formulations based on copolymers of poly (ethylene glycol) and poly (ε- caprolactone) conjugated with retinol. Pharmaceutics, 12(3):196, 2020. | |
dc.relation.references | Benedikt Göttel, Henrike Lucas, Frank Syrowatka, Wolfgang Knolle, Judith Kuntsche, Joana Heinzelmann, Arne Viestenz, and Karsten Mäder. In situ gelling amphotericin b nanofibers: a new option for the treatment of keratomycosis. Frontiers in bioengineering and biotechnology, 8:600384, 2020. | |
dc.relation.references | Célia Faustino and Lídia Pinheiro. Lipid systems for the delivery of amphotericin b in antifungal therapy. Pharmaceutics, 12(1):29, 2020. | |
dc.relation.references | Shabi Parvez, Ganesh Yadagiri, Mallikarjuna Rao Gedda, Aakriti Singh, Om Prakash Singh, Anurag Verma, Shyam Sundar, and Shyam Lal Mudavath. Modified solid lipid nanoparticles encapsulated with amphotericin b and paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Scientific Reports, 10(1):12243, 2020. | |
dc.relation.references | Pataranapa Nimtrakul, Waree Tiyaboonchai, and Supaporn Lamlertthon. Amphotericin b loaded nanostructured lipid carriers for parenteral delivery: characterization, antifungal and in vitro toxicity assessment. Current drug delivery, 16(7):645--653, 2019. | |
dc.relation.references | Aiman Abu Ammar, Abed Nasereddin, Suheir Ereqat, Mary Dan-Goor, Charles L Jaffe, Eyal Zussman, and Ziad Abdeen. Amphotericin b-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Delivery and Translational Research, 9:76--84, 2019. | |
dc.relation.references | MD Ashraf, Javed Abrar Farooqi, and Kalim Javed. Evaluation of macrophage injury and activation by amphotericin bloaded polymeric nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(5):297--306, 2018. | |
dc.relation.references | Hafiz Shoaib Sarwar, Muhammad Farhan Sohail, Noushin Saljoughian, Anees Ur Rehman, Sohail Akhtar, Akhtar Nadhman, Masoom Yasinzai, Howard E Gendelman, Abhay R Satoskar, and Gul Shahnaz. Design of mannosylated oral amphotericin b nanoformulation: Efficacy and safety in visceral leishmaniasis. Artificial cells, nanomedicine, and biotechnology, 46(sup1):521--531, 2018. | |
dc.relation.references | Claudia Luengo Alonso. Nuevas formulaciones para la liberación de anfotericina B. PhD thesis, Universidad Complutense de Madrid, Madrid, España, 2018. | |
dc.relation.references | Mahasen A Radwan, Bushra T AlQuadeib, Lidija Šiller, Matthew C Wright, and Benjamin Horrocks. Oral administration of amphotericin b nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Delivery, 24(1):40--50, 2017. | |
dc.relation.references | TC Moraes Moreira Carraro, C Altmeyer, N Maissar Khalil, and R Mara Mainardes. Assessment of in vitro antifungal efficacy and in vivo toxicity of amphotericin b-loaded plga and plga-peg blend nanoparticles. Journal de mycologie medicale, 27(4):519--529, 2017. | |
dc.relation.references | Tessa Rui Min Tan, Kong Meng Hoi, Peiqing Zhang, and Say Kong Ng. Characterization of a polyethylene glycolamphotericin b conjugate loaded with free amb for improved antifungal efficacy. PLoS One, 11(3):e0152112, 2016. | |
dc.relation.references | Ivonne L Diaz, Claudia Parra, Melva Linarez, and Leon D Perez. Design of micelle nanocontainers based on pdmaemab- pcl-b-pdmaema triblock copolymers for the encapsulation of amphotericin b. AAPS PharmSciTech, 16:1069--1078, 2015. | |
dc.relation.references | Xiaolong Tang, Jingjing Dai, Jun Xie, Yongqiang Zhu, Ming Zhu, Zhi Wang, Chunmei Xie, Aixia Yao, Tingting Liu, Xiaoyu Wang, et al. Enhanced antifungal activity by ab-modified amphotericin b-loaded nanoparticles using a ph-responsive block copolymer. Nanoscale Research Letters, 10:1--11, 2015. | |
dc.relation.references | Ying-Chen Chen, Chia-Yu Su, Hua-Jun Jhan, Hsiu-O Ho, and Ming-Thau Sheu. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin b-loaded lecithin-based mixed polymeric micelles. International Journal of Nanomedicine, pages 7265--7274, 2015. | |
dc.relation.references | Jing Zhou and Xue-hua Jiang. Formulation conditions on the drug loading properties of polymeric micelles. Pakistan Journal of Pharmaceutical Sciences, 32(2), 2019. | |
dc.relation.references | Jennifer B Dressman, Gordon L Amidon, Christos Reppas, and Vinod P Shah. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharmaceutical research, 15:11--22, 1998. | |
dc.relation.references | United States Pharmacopeia. United States Pharmacopeia 41 --- National Formulary 36 (USP 41--NF 36): Test Solutions and Indicator Solutions. United States Pharmacopeial Convention, Rockville, MD, USA, 2024. | |
dc.relation.references | Eleftheria Nicolaides, Moira Symillides, Jennifer B Dressman, and Christos Reppas. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharmaceutical research, 18:380--388, 2001. | |
dc.relation.references | Milo Gibaldi and Stuart Feldman. Establishment of sink conditions in dissolution rate determinations. theoretical considerations and application to nondisintegrating dosage forms. Journal of pharmaceutical sciences, 56(10):1238--1242, 1967. | |
dc.relation.references | Diego Rafael Monterroza Hernandez. Desarrollo y validación de un método para evaluar la disolución de progesterona en suspensión oleosa contenida en una cápsula blanda de gelatina. PhD thesis, Universidad Nacional de Colombia, 2016. | |
dc.relation.references | Diego R Monterroza, Claudia M Baena-Aristizábal, Yolima Baena, et al. Development of a method to assess the dissolution of soft gelatin capsules containing progesterone in oily suspension. Journal of Applied Pharmaceutical Science, 14(4):163--170, 2024. | |
dc.relation.references | Juan José Carrascal Sánchez. Evaluación del comportamiento fisicoquímico y antimicrobiano de complejos con polielectrolitos. PhD thesis, Universidad Nacional de Colombia, 2021. | |
dc.relation.references | Surbhi Mundra, Jay Kumar, Diva Maheshwari, Vaibhav K Shukla, Rahul Yadav, SVS Rama Krishna Pulavarti, and Ashish Arora. Protein labeling and structure determination by nmr spectroscopy. In Biophysical and Computational Tools in Drug Discovery, pages 65--131. Springer, 2021. | |
dc.relation.references | Jing Che, Chukwunweike I Okeke, Zhong-Bo Hu, and Jing Xu. Dspe-peg: a distinctive component in drug delivery system. Current pharmaceutical design, 21(12):1598--1605, 2015. | |
dc.relation.references | Mahdi Karimi, Amir Ghasemi, Parham Sahandi Zangabad, Reza Rahighi, S Masoud Moosavi Basri, H Mirshekari, M Amiri, Z Shafaei Pishabad, A Aslani, M Bozorgomid, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical Society Reviews, 45(5):1457--1501, 2016. | |
dc.relation.references | Robert Langer and Nicholas A Peppas. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE Journal, 49(12):2990--3006, 2003. | |
dc.relation.references | Fabienne Danhier, Eduardo Ansorena, Joana M Silva, Régis Coco, Aude Le Breton, and Véronique Préat. Plga-based nanoparticles: an overview of biomedical applications. Journal of controlled release, 161(2):505--522, 2012. | |
dc.relation.references | Vladimir P Torchilin. Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery, 4(2):145--160, 2005. | |
dc.relation.references | May M Eid. Characterization of nanoparticles by ftir and ftir-microscopy. In Handbook of consumer nanoproducts, pages 1--30. Springer, 2022. | |
dc.relation.references | Barbara H Stuart. Infrared spectroscopy: fundamentals and applications. John Wiley & Sons, 2004. | |
dc.relation.references | S PURI. Techniques for nanoparticles characterization. Modern physics: concepts and applications, 2004. | |
dc.relation.references | Sourav Bhattacharjee. Dls and zeta potential--what they are and what they are not? Journal of controlled release, 235:337--351, 2016. | |
dc.relation.references | MRMM Danaei, Mahvash Dehghankhold, Somayeh Ataei, F Hasanzadeh Davarani, R Javanmard, A Dokhani, S Khorasani, and MR Mozafari. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2):57, 2018. | |
dc.relation.references | Jean C Villamil, Claudia M Parra-Giraldo, and León D Pérez. Enhancing the performance of peg-b-pcl copolymers as precursors of micellar vehicles for amphotericin b through its conjugation with cholesterol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572:79--87, 2019. | |
dc.relation.references | Belén Begines, Tamara Ortiz, María Pérez-Aranda, Guillermo Martínez, Manuel Merinero, Federico Argüelles-Arias, and Ana Alcudia. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 10(7):1403, 2020. | |
dc.relation.references | Bibiana Margarita Rojas Cortés, Manuel Guillermo y Vallejo Díaz and Jairo Ernesto Perilla. Los biopolímeros como materiales para el desarrollo de productos en aplicaciones farmacéuticas y de uso biomédico. Ingeniería e Investigación, 28(1):57--71, 2008. | |
dc.relation.references | U.S. Food and Drug Administration (FDA). Dissolution testing and acceptance criteria for immediate-release solid oral dosage form drug products containing high solubility drug substances: Guidance for industry, 1997. Accessed: October 10, 2024. | |
dc.relation.references | René Holm, Anette Müllertz, and Huiling Mu. Bile salts and their importance for drug absorption. International Journal of Pharmaceutics, 453(1):44--55, 2013. | |
dc.relation.references | Phawanan Sawangchan, Francisco Alexandrino Júnior, Éverton N Alencar, Eryvaldo ST Egito, and Lee E Kirsch. The role of aggregation and ionization in the chemical instability of amphotericin b in aqueous methanol. International Journal of Pharmaceutics, 632:122586, 2023. | |
dc.relation.references | VD Daniels and NH Rees. Analysis of the ultraviolet/visible spectrum of degraded poly (vinyl chloride) to determine polyene concentrations. Journal of Polymer Science: Polymer Chemistry Edition, 12(9):2115--2122, 1974. | |
dc.relation.references | Éverton N Alencar, Phawanan Sawangchan, Lee E Kirsch, and Eryvaldo Sócrates T Egito. Unveiling the amphotericin b degradation pathway and its kinetics in lipid-based solutions. Journal of Pharmaceutical Sciences, 110(3):1248--1258, 2021. | |
dc.relation.references | Marciela B Montenegro, Stefânia P de Souza, Raquel AC Leão, Helvécio VA Rocha, Claudia M de Rezende, and Rodrigo OMA de Souza. Methodology development and validation of amphotericin b stability by hplc-dad. Journal of the Brazilian Chemical Society, 31(5):916--926, 2020. | |
dc.relation.references | Phawanan Sawangchan. The effect of aggregation state on the degradation kinetics of Amphotericin B in aqueous solution. The University of Iowa, 2017. | |
dc.relation.references | John D Cleary, Stanley W Chapman, Edwin Swiatlo, and Robert Kramer. High purity amphotericin b. Journal of antimicrobial chemotherapy, 60(6):1331--1340, 2007. | |
dc.relation.references | Soheyla Honary and Foruhe Zahir. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 1). Tropical journal of pharmaceutical research, 12(2):255--264, 2013. | |
dc.relation.references | Rina Takayama, Yutaka Inoue, Isamu Murata, and Ikuo Kanamoto. Characterization of nanoparticles using dspe-peg2000 and soluplus. Colloids and Interfaces, 4(3):28, 2020. | |
dc.relation.references | Fei Yu, Mingtao Ao, Xiao Zheng, Nini Li, Junjie Xia, Yang Li, Donghui Li, Zhenqing Hou, Zhongquan Qi, and Xiao Dong Chen. Peg--lipid--plga hybrid nanoparticles loaded with berberine--phospholipid complex to facilitate the oral delivery efficiency. Drug delivery, 24(1):825--833, 2017. | |
dc.relation.references | Kavita R Gajbhiye, Rajesh Salve, Mahavir Narwade, Afsana Sheikh, Prashant Kesharwani, and Virendra Gajbhiye. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Molecular Cancer, 22(1):160, 2023. | |
dc.relation.references | Jennifer Cuellar, Lorena Parada-Díaz, Jorge Garza, and Sol M Mejía. A theoretical analysis of interaction energies and intermolecular interactions between amphotericin b and potential bioconjugates used in the modification of nanocarriers for drug delivery. Molecules, 28(6):2674, 2023. | |
dc.relation.references | Bushra T Al-Quadeib, Mahasen A Radwan, Lidija Siller, Benjamin Horrocks, and Matthew C Wright. Stealth amphotericin b nanoparticles for oral drug delivery: In vitro optimization. Saudi Pharmaceutical Journal, 23(3):290--302, 2015. | |
dc.relation.references | Marcos Luciano Bruschi. Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, 2015. | |
dc.relation.references | Shama Parveen, Pratishtha Gupta, Saurabh Kumar, and Monisha Banerjee. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Medicine in Drug Discovery, 20:100165, 2023. | |
dc.relation.references | Philip Grossen, Dominik Witzigmann, Sandro Sieber, and Jörg Huwyler. Peg-pcl-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 260:46--60, 2017. | |
dc.relation.references | Xiaoming Zhong, Jianqiong Yang, Hongyan Liu, Zhiwen Yang, and Ping Luo. Potential lipid-based strategies of amphotericin b designed for oral administration in clinical application. Drug Delivery, 30(1):2161671, 2023. | |
dc.relation.references | Francelise B Cavassin, João Luiz Baú-Carneiro, Rogério R Vilas-Boas, and Flávio Queiroz-Telles. Sixty years of amphotericin b: an overview of the main antifungal agent used to treat invasive fungal infections. Infectious Diseases and Therapy, 10(1):115--147, 2021. | |
dc.relation.references | Vasiliki Papadopoulou, Kosmas Kosmidis, Marilena Vlachou, and Panos Macheras. On the use of the weibull function for the discernment of drug release mechanisms. International journal of pharmaceutics, 309(1-2):44--50, 2006. | |
dc.relation.references | Monica Boffito, Paolo Sirianni, Anna Maria Di Rienzo, and Valeria Chiono. Thermosensitive block copolymer hydrogels based on poly (-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives. Journal of Biomedical Materials Research Part A, 103(3):1276--1290, 2015. | |
dc.relation.references | Maria Chountoulesi, Dimitrios Selianitis, Stergios Pispas, and Natassa Pippa. Recent advances on peo-pcl block and graft copolymers as nanocarriers for drug delivery applications. Materials, 16(6):2298, 2023. | |
dc.relation.references | Barbora Tomalova, Milada Sirova, Pavel Rossmann, Robert Pola, Jiri Strohalm, Petr Chytil, Viktor Cerny, Jakub Tomala, Martina Kabesova, Blanka Rihova, et al. The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of hpma copolymer conjugates in the treatment of solid tumours and leukaemia. Journal of Controlled Release, 223:1--10, 2016. | |
dc.relation.references | Tang Li, David Cipolla, Thomas Rades, and Ben J Boyd. Drug nanocrystallisation within liposomes. Journal of Controlled Release, 288:96--110, 2018. | |
dc.relation.references | TJJOPS Higuchi. Mechanism of sustained-action medication. theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of pharmaceutical sciences, 52(12):1145--1149, 1963. | |
dc.relation.references | NA Peppas. Analysis of fickian and non-fickian drug release from polymers. Pharmaceutica Acta Helvetiae, 60(4):110--111, 1985. | |
dc.relation.references | Antoine Tardy, Julien Nicolas, Didier Gigmes, Catherine Lefay, and Yohann Guillaneuf. Radical ring-opening polymerization: Scope, limitations, and application to (bio) degradable materials. Chemical reviews, 117(3):1319--1406, 2017. | |
dc.relation.references | IHT Guideline. Validation of analytical procedures q2 (r2). ICH: Geneva, Switzerland, 2024. | |
dc.relation.references | Julio Collazos, Eduardo Martínez, Jose Mayo, and Ibarra Sofía. Pulmonary reactions during treatment with amphotericin b: review of published cases and guidelines for management. Clinical Infectious Diseases, 33(7):e75--e82, 2001. | |
dc.relation.references | Zhiwen Yang, Min Liu, Jian Chen, Weijun Fang, Yanli Zhang, Man Yuan, and Jie Gao. Development and characterization of amphotericin b nanosuspensions for oral administration through a simple top-down method. Current Pharmaceutical Biotechnology, 15(6):569--576, 2014. | |
dc.relation.references | Liam M Dalton, Carol A Kauffman, and Marisa H Miceli. Oral lipid nanocrystal amphotericin b (mat2203) for the treatment of invasive fungal infections. In Open Forum Infectious Diseases, volume 11, page ofae346. Oxford University Press US, 2024. | |
dc.relation.references | Zeyad AlMajed, Najla M Salkho, Hana Sulieman, and Ghaleb A Husseini. Modeling of the in vitro release kinetics of sonosensitive targeted liposomes. Biomedicines, 10(12):3139, 2022. | |
dc.relation.references | KH Ramteke, PA Dighe, AR Kharat, SV Patil, et al. Mathematical models of drug dissolution: a review. Sch. Acad. J. Pharm, 3(5):388--396, 2014 | |
dc.relation.references | Theresa M Allen and Pieter R Cullis. Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews, 65(1):36--48, 2013. | |
dc.relation.references | ITW Reagents. Amfotericina B Biochemica. https://itwreagents.com/iberia/es/product/amfotericina+b+ biochemica/A1907, 2024. Accedido el: 07-oct-2024. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.lemb | Antifúngicos | spa |
dc.subject.lemb | Antifungal agents | eng |
dc.subject.lemb | Copolímeros | spa |
dc.subject.lemb | Copolymers | eng |
dc.subject.lemb | Micelas | spa |
dc.subject.lemb | Micelles | eng |
dc.subject.proposal | Anfotericina B | spa |
dc.subject.proposal | Formulaciones micelares | spa |
dc.subject.proposal | Sistemas de liberación modificada | spa |
dc.subject.proposal | Nanopartículas poliméricas | spa |
dc.subject.proposal | Biodisponibilidad | spa |
dc.subject.proposal | Estabilidad | spa |
dc.subject.proposal | Amphotericin B | eng |
dc.subject.proposal | Micellar formulations | eng |
dc.subject.proposal | Modified-release systems | eng |
dc.subject.proposal | Polymeric nanoparticles | eng |
dc.subject.proposal | Bioavailability | eng |
dc.subject.proposal | Stability | eng |
dc.title | Contribución al desarrollo de formulaciones micelares de anfotericina B, con miras a su aplicación en sistemas de liberación modificada | spa |
dc.title.translated | Contribution to the development of micellar formulations of amphotericin B, with a view to its application in modified release systems | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Contribución al desarrollo de formulaciones micelares de anfotericina B, con miras a su aplicación en sistemas de liberación modificada.pdf
- Tamaño:
- 30.61 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: