Contribución al desarrollo de formulaciones micelares de anfotericina B, con miras a su aplicación en sistemas de liberación modificada

dc.contributor.advisorBaena Aristizábal, Yolima
dc.contributor.advisorPérez Pérez, León Darío
dc.contributor.authorGüiza Suárez, Michael Alejandro
dc.contributor.researchgroupSistemas Para Liberación Controlada de Moléculas Biológicamente Activasspa
dc.date.accessioned2025-09-10T19:48:11Z
dc.date.available2025-09-10T19:48:11Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, gráficosspa
dc.description.abstractLa anfotericina B (AmB) es un antifúngico macrólido de amplio espectro, utilizado como tratamiento de primera línea en infecciones fúngicas invasivas (EFI), especialmente en pacientes inmunosuprimidos. No obstante, su empleo clínico se encuentra severamente restringido por su elevada toxicidad, particularmente la nefrotoxicidad, así como por su escasa biodisponibilidad oral, lo que obliga a una administración intravenosa exclusiva en contextos hospitalarios. Aunque en las últimas décadas han surgido formulaciones lipídicas, incluyendo liposomas y complejos lipídicos, que han logrado reducir significativamente estos efectos adversos, estas estrategias presentan limitaciones importantes relacionadas con su alto costo, dificultades de producción, estabilidad limitada y accesibilidad restringida. Ante esta problemática, numerosas investigaciones se han enfocado en desarrollar alternativas farmacéuticas que reduzcan la toxicidad, mejoren la estabilidad y permitan vías alternativas de administración, particularmente la vía oral. En este contexto, el presente estudio aborda el desarrollo y evaluación de formulaciones nanoparticuladas utilizando copolímeros biodegradables conjugados con fosfolípidos de varios bloques para encapsular AmB. La metodología implicó la síntesis y caracterización de micelas poliméricas cargadas con AmB, incluyendo técnicas analíticas para su estudio como espectroscopía UV-Visible, cromatografía líquida de alta resolución (HPLC), dispersión dinámica de luz (DLS) y microscopía electrónica, entre otras. Adicionalmente, se llevaron a cabo estudios de estabilidad de los sistemas nanoparticulados en condiciones simuladas del tracto gastrointestinal, evaluando su resistencia frente a la degradación en fluidos gástricos e intestinales simulados, y su comportamiento de liberación en estas condiciones. Los resultados indicaron que las micelas desarrolladas proporcionan mejoras en la estabilidad química de la AmB, favorecen perfiles de liberación sostenida que pueden llegar a prolongar los tiempos de acción terapéutica y reducir potencialmente los efectos tóxicos característicos de este antifúngico. Estos hallazgos resaltan el potencial de estas formulaciones para constituir la base de futuras formas farmacéuticas orales más seguras, efectivas y accesibles, ampliando el alcance clínico del tratamiento antifúngico con AmB (Texto tomado de la fuente).spa
dc.description.abstractAmphotericin B (AmB) is a broad-spectrum macrolide antifungal agent used as a firstline treatment for invasive fungal infections (IFIs), particularly in immunocompromised patients. However, its clinical use is severely restricted due to its high toxicity, especially nephrotoxicity, as well as its poor oral bioavailability, which necessitates exclusive intravenous administration in hospital settings. Although lipid-based formulations, including liposomes and lipid complexes, have emerged in recent decades, significantly reducing these adverse effects, these strategies present notable limitations such as high cost, production difficulties, limited stability, and restricted accessibility. In response to these issues, numerous studies have focused on developing pharmaceutical alternatives that reduce toxicity, improve stability, and enable alternative routes of administration, particularly the oral route. In this context, the present study addresses the development and evaluation of nanoparticulate formulations using biodegradable copolymers conjugated with multi-block phospholipids for encapsulating AmB. The methodology involved the synthesis and characterization of polymeric micelles loaded with AmB, employing analytical techniques such as UV-Visible spectroscopy, high-performance liquid chromatography (HPLC), dynamic light scattering (DLS), and electron microscopy, among others. Additionally, stability studies of the nanoparticulate systems were conducted under simulated gastrointestinal tract conditions, evaluating their resistance to degradation in simulated gastric and intestinal fluids, as well as their release behavior under these conditions. The results indicated that the developed micelles provide improvements in the chemical stability of AmB, promote sustained release profiles that may extend therapeutic action times, and potentially reduce the toxic effects typically associated with this antifungal agent. These findings highlight the potential of these formulations to serve as the basis for future, safer, more effective, and accessible oral pharmaceutical forms, thereby expanding the clinical reach of AmB antifungal treatment.eng
dc.description.curricularareaFarmacia.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias (MSc.) Farmacéuticasspa
dc.description.researchareaSistemas micro y nanoparticuladosspa
dc.format.extentxiii, 95 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88701
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.referencesBerta Fernández Ledesma, Natalia A. Mendoza Palomar, and José Tomás Ramos Amador. Infección fúngica invasiva (ifi). Asociación Española de Pediatría, 2023. Guía/consenso AEP.
dc.relation.referencesC. Figueras Nadal, C. Díaz de Heredia Rubio, and M. L. Navarro. Infección fúngica invasiva (ifi): actualización. Comité de Medicamentos de la Asociación Española de Pediatría, 2011. Documento en línea. Accedido el: 08-sep-2025.
dc.relation.referencesDiana Rey Sánchez, Laura Bernal Vaca, Melva Yomary Linares Linares, Claudia Marcela Parra Giraldo, Javier Ricardo Garzón Erazo, Sandra Liliana Valderrama Beltrán, Alejandra Cañas Arboleda, et al. Infección fúngica invasiva en pacientes inmunosuprimidos atendidos en un hospital de tercer nivel. Revista Colombiana de Neumología, 28(1):10--16, 2016.
dc.relation.referencesJose Sifuentes-Osornio, Dora E Corzo-León, and L Alfredo Ponce-de León. Epidemiology of invasive fungal infections in latin america. Current fungal infection reports, 6(1):23--34, 2012.
dc.relation.referencesGilbert Deray. Amphotericin b nephrotoxicity. Journal of antimicrobial chemotherapy, 49(suppl_1):37--41, 2002.
dc.relation.referencesRichard J Hamill. Amphotericin b formulations: a comparative review of efficacy and toxicity. Drugs, 73:919--934, 2013.
dc.relation.referencesINVIMA. Información para profesionales de la salud, pacientes y cuidadores: Anfotericina b, Aug 2017. Documento oficial (boletín de seguridad). Accedido el: 08-sep-2025.
dc.relation.referencesJA Diaz, JR Urrego-Novoa, JA Moreno, C Huérfano, and VA Prieto. Análisis de costo-efectividad de anidulafungina en el tratamiento de la candidiasis invasiva en colombia. Value in Health, 18(7):A870, 2015.
dc.relation.referencesCeleste Alvarez, Dae Hwan Shin, and Glen S Kwon. Reformulation of fungizone by peg-dspe micelles: deaggregation and detoxification of amphotericin b. Pharmaceutical research, 33:2098--2106, 2016.
dc.relation.referencesIvonne L Diaz and Leon D Perez. Synthesis and micellization properties of triblock copolymers pdmaema-b-pcl-bpdmaema and their applications in the fabrication of amphotericin b-loaded nanocontainers. Colloid and Polymer Science, 293:913--923, 2015.
dc.relation.referencesDolores R Serrano and Aikaterini Lalatsa. Oral amphotericin b: The journey from bench to market. Journal of Drug Delivery Science and Technology, 42:75--83, 2017.
dc.relation.referencesXiaochun Wang, Imran Shair Mohammad, Lifang Fan, Zongmin Zhao, Md Nurunnabi, Marwa A Sallam, Jun Wu, Zhongjian Chen, Lifang Yin, and Wei He. Delivery strategies of amphotericin b for invasive fungal infections. Acta Pharmaceutica Sinica B, 11(8):2585--2604, 2021.
dc.relation.referencesMartin Hoenigl, Volker Strenger, Walter Buzina, Thomas Valentin, Christoph Koidl, Albert Wölfler, Katharina Seeber, Angelika Valentin, Anna T Strohmeier, Ines Zollner-Schwetz, et al. European organization for the research and treatment of cancer/mycoses study group (eortc/msg) host factors and invasive fungal infections in patients with haematological malignancies. Journal of antimicrobial chemotherapy, 67(8):2029--2033, 2012.
dc.relation.referencesPatricia Escandón, Catalina de Bedout, Jairo Lizarazo, Clara Inés Agudelo, Ángela Tobón, Solmara Bello, Ángela Restrepo, and Elizabeth Castañeda. Cryptococcosis in colombia: Results of the national surveillance program for the years 2006-2010. Biomédica, 32(3):386--398, 2012.
dc.relation.referencesAmalia del Palacio, Julia Villar, and Almudena Alhambra. Epidemiología de las candidiasis invasoras en población pediátrica y adulta. Revista Iberoamericana de Micología, 26(1):2--7, 2009.
dc.relation.referencesIsabel Ruiz-Camps and Manuel Cuenca-Estrella. Antifúngicos para uso sistémico. Enfermedades infecciosas y microbiología clínica, 27(6):353--362, 2009.
dc.relation.referencesIhor Bekersky, Robert M Fielding, Dawna E Dressler, JeanWLee, Donald N Buell, and Thomas J Walsh. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin b (ambisome) and amphotericin b deoxycholate in humans. Antimicrobial agents and chemotherapy, 46(3):828--833, 2002.
dc.relation.referencesLuis Thompson Moya, Hélio Sader, Marcelo Wolff Reyes, C Larrañaga, and Luis Bavestrello Fernández. Nuevas alternativas en el armamento anti infeccioso que el clínico debe conocer. Rev. chil. infectol, pages S26--S27, 2002
dc.relation.referencesHelene Vogelsinger, Stefan Weiler, Angela Djanani, Jordan Kountchev, Rosa Bellmann-Weiler, Christian J Wiedermann, and Romuald Bellmann. Amphotericin b tissue distribution in autopsy material after treatment with liposomal amphotericin b and amphotericin b colloidal dispersion. Journal of Antimicrobial Chemotherapy, 57(6):1153--1160, 2006
dc.relation.referencesLaurence H Wang, Robert M Fielding, Philip C Smith, and Luke SS Guo. Comparative tissue distribution and elimination of amphotericin b colloidal dispersion (amphocil®) and fungizone® after repeated dosing in rats. Pharmaceutical research, 12:275--283, 1995.
dc.relation.referencesMercedes Catalán and Juan Carlos Montejo. Antifúngicos sistémicos. farmacodinamia y farmacocinética. Revista iberoamericana de micología, 23(1):39--49, 2006.
dc.relation.referencesElsa Ruth Arias Patrón. Caracterización de copolímeros en bloque conjugados como vehículos nanoestructurados para anfotericina b. Master’s thesis, Universidad Nacional de Colombia, Facultad de Ciencias, Maestría en Ciencias--Química, Bogotá, Colombia, 2020.
dc.relation.referencesDrugBank. Uses, interactions, mechanism of action amphotericin b, Jun 2005. Accedido el: 08-oct-2024.
dc.relation.referencesDolores R. Serrano López. Nuevas formulaciones orales, tópicas y parenterales de anfotericina B con acción antifúngica y antiparasitaria. PhD thesis, Universidad Complutense de Madrid, Madrid, España, 2013.
dc.relation.referencesArthur J Atkinson Jr and John E Bennett. Amphotericin b pharmacokinetics in humans. Antimicrobial Agents and Chemotherapy, 13(2):271--276, 1978.
dc.relation.referencesAna C Mesa-Arango, Liliana Scorzoni, and Oscar Zaragoza. It only takes one to do many jobs: Amphotericin b as antifungal and immunomodulatory drug. Frontiers in microbiology, 3:286, 2012.
dc.relation.referencesThomas M Anderson, Mary C Clay, Alexander G Cioffi, Katrina A Diaz, Grant S Hisao, Marcus D Tuttle, Andrew J Nieuwkoop, Gemma Comellas, Nashrah Maryum, Shu Wang, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nature chemical biology, 10(5):400--406, 2014.
dc.relation.referencesRaquel Fernández-García, Esther de Pablo, María Paloma Ballesteros, and Dolores R Serrano. Unmet clinical needs in the treatment of systemic fungal infections: The role of amphotericin b and drug targeting. International journal of pharmaceutics, 525(1):139--148, 2017.
dc.relation.referencesJodi M Lestner, Susan J Howard, Joanne Goodwin, Lea Gregson, Jayesh Majithiya, Thomas J Walsh, Gerard M Jensen, and William W Hope. Pharmacokinetics and pharmacodynamics of amphotericin b deoxycholate, liposomal amphotericin b, and amphotericin b lipid complex in an in vitro model of invasive pulmonary aspergillosis. Antimicrobial agents and chemotherapy, 54(8):3432--3441, 2010.
dc.relation.referencesMin Liu, Meiwan Chen, and Zhiwen Yang. Design of amphotericin b oral formulation for antifungal therapy. Drug delivery, 24(1):1--9, 2017.
dc.relation.referencesAvnesh Kumari, Rubbel Singla, Anika Guliani, and Sudesh Kumar Yadav. Nanoencapsulation for drug delivery. EXCLI journal, 13:265, 2014.
dc.relation.referencesPN Ezhilarasi, P Karthik, Narayansing Chhanwal, and C Anandharamakrishnan. Nanoencapsulation techniques for food bioactive components: a review. Food and bioprocess technology, 6:628--647, 2013.
dc.relation.referencesSeid Mahdi Jafari. An overview of nanoencapsulation techniques and their classification. Nanoencapsulation technologies for the food and nutraceutical industries, pages 1--34, 2017.
dc.relation.referencesC Anandharamakrishnan and C Anandharamakrishnan. Nanoencapsulation of food bioactive compounds. Techniques for nanoencapsulation of food ingredients, pages 1--6, 2014.
dc.relation.referencesHugo Espinosa Andrews and Eristeo García Márquez. Tecnologías de nano/microencapsulación de compuestos bioactivos, 2017.
dc.relation.referencesJuan Manuel Llabot, Santiago Daniel Palma, and D Allemandi. Nanopartículas poliméricas sólidas. Nuestra Farmacia, 53:40--47, 2008.
dc.relation.referencesC Anandharamakrishnan and C Anandharamakrishnan. Characterization of nanoparticles. Techniques for Nanoencapsulation of Food Ingredients, pages 65--67, 2014.
dc.relation.referencesJ Batalla Mayoral, A Cuadros Moreno, and E San Martín Martínez. Potencial zeta en la determinación de carga superficial de liposomas. Latin-American Journal of Physics Education, 8(4):19, 2014.
dc.relation.referencesSANDRA YASMIN RODRIGUEZ GONZALEZ. Técnicas de análisis para evaluación de materiales nanoestructurados y su aplicación en nanomedicina, 2011.
dc.relation.referencesClaudia Luengo-Alonso, Juan José Torrado, Maria Paloma Ballesteros, Alessio Malfanti, Sara Bersani, Stefano Salmaso, and Paolo Caliceti. A novel performing peg-cholane nanoformulation for amphotericin b delivery. International journal of pharmaceutics, 495(1):41--51, 2015.
dc.relation.referencesCostas Demetzos. Biophysics and thermodynamics: the scientific building blocks of bio-inspired drug delivery nano systems. AAPS PharmSciTech, 16(3):491--495, 2015.
dc.relation.referencesA Vila, A Sanchez, M Tobıo, P Calvo, and MJ Alonso. Design of biodegradable particles for protein delivery. Journal of controlled release, 78(1-3):15--24, 2002.
dc.relation.referencesJMT Hamilton-Miller. The effect of ph and of temperature on the stability and bioactivity of nystatin and amphotericin b. Journal of Pharmacy and Pharmacology, 25(5):401--407, 1973.
dc.relation.referencesUnited States Pharmacopeia. United States Pharmacopeia 38 --- National Formulary 33 (USP 38--NF 33). United States Pharmacopeial Convention, Rockville, MD, USA, 2015.
dc.relation.referencesF Rocha Formiga. Nanosistemas a base de poliésteres. Monografías de la Real Academia Nacional de Farmacia, 2009.
dc.relation.referencesBlanca Inés y Ganem Adriana y Quintanar David Chávez, Fabiola y Olvera. Liberación de sustancias lipofílicas a partir de nanocápsulas poliméricas. Revista de la Sociedad Química de México, 46(4):349--356, 2002.
dc.relation.referencesMarcos Luciano Bruschi. 5 - mathematical models of drug release. In Marcos Luciano Bruschi, editor, Strategies to Modify the Drug Release from Pharmaceutical Systems, pages 63--86. Woodhead Publishing, 2015.
dc.relation.referencesRichard W Korsmeyer, Robert Gurny, Eric Doelker, Pierre Buri, and Nikolaos A Peppas. Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, 15(1):25--35, 1983.
dc.relation.referencesKosmas Kosmidis and George Dassios. Monte carlo simulations in drug release. Journal of pharmacokinetics and pharmacodynamics, 46:165--172, 2019.
dc.relation.referencesCarla Soares de Souza, Victor Ropke da Cruz Lopes, Gabriel Barcellos, Francisco Alexandrino-Junior, Patrícia Cristina da Costa Neves, Beatriz Ferreira de Carvalho Patricio, Helvécio Vinícius Antunes Rocha, Ana Paula Dinis Ano Bom, and Alexandre Bezerra Conde Figueiredo. Unleashing fungicidal forces: Exploring the synergistic power of amphotericin b-loaded nanoparticles and monoclonal antibodies. Journal of Fungi, 10(5):344, 2024.
dc.relation.referencesMA Dasilva, KF Crespo Andrada, M Maldonado Torales, I Manrrique Hughes, P Pez, JC García-Martínez, and María Gabriela Paraje. Synergistic activity of gold nanoparticles with amphotericin b on persister cells of candida tropicalis biofilms. Journal of Nanobiotechnology, 22(1):254, 2024.
dc.relation.referencesKhadijeh Rajablou, Hossein Attar, Seyyed Kazem Sadjady, and Amir Heydarinasab. Dspc based polymeric micelles loaded with amphotericin b: synthesis, characterization, and in vitro study. Nanomedicine Research Journal, 8(1):37--49, 2023.
dc.relation.referencesNandha Joyson, Anchal Pathak, and Keerti Jain. One platform comparison of polymeric and lipidic nanoparticles for the delivery of amphotericin b. AAPS PharmSciTech, 24(8):226, 2023.
dc.relation.referencesSongul Ulag, Sureyya Elif Celik, Mustafa Sengor, and Oguzhan Gunduz. Fabrication of amphotericin-b-loaded sodium alginate nanoparticles for biomedical applications. BioNanoScience, 12(4):1230--1237, 2022.
dc.relation.referencesPhyo Darli Maw, Prompong Pienpinijtham, Patamaporn Pruksakorn, and Phatsawee Jansook. Cyclodextrin-based pickering nanoemulsions containing amphotericin b: Part ii. formulation, antifungal activity, and chemical stability. Journal of Drug Delivery Science and Technology, 69:103174, 2022.
dc.relation.referencesAamir Sohail, Rahat Ullah Khan, Momin Khan, Mehvish Khokhar, Safat Ullah, Arshad Ali, Hazrat Bilal, Saadullah Khattak, Mirwaise Khan, and Baseer Ahmad. Comparative efficacy of amphotericin b-loaded chitosan nanoparticles and free amphotericin b drug against leishmania tropica. Bulletin of the National Research Centre, 45:1--9, 2021.
dc.relation.referencesElsa R Arias, Vivian Angarita-Villamizar, Yolima Baena, Claudia Parra-Giraldo, and Leon D Perez. Phospholipidconjugated peg-b-pcl copolymers as precursors of micellar vehicles for amphotericin b. Polymers, 13(11):1747, 2021.
dc.relation.referencesPratthana Chomchalao, Pataranapa Nimtrakul, Duy Toan Pham, and Waree Tiyaboonchai. Development of amphotericin b-loaded fibroin nanoparticles: a novel approach for topical ocular application. Journal of Materials Science, 55(12):5268- -5279, 2020.
dc.relation.referencesYeimy J Rodriguez, Luis F Quejada, Jean C Villamil, Yolima Baena, Claudia M Parra-Giraldo, and Leon D Perez. Development of amphotericin b micellar formulations based on copolymers of poly (ethylene glycol) and poly (ε- caprolactone) conjugated with retinol. Pharmaceutics, 12(3):196, 2020.
dc.relation.referencesBenedikt Göttel, Henrike Lucas, Frank Syrowatka, Wolfgang Knolle, Judith Kuntsche, Joana Heinzelmann, Arne Viestenz, and Karsten Mäder. In situ gelling amphotericin b nanofibers: a new option for the treatment of keratomycosis. Frontiers in bioengineering and biotechnology, 8:600384, 2020.
dc.relation.referencesCélia Faustino and Lídia Pinheiro. Lipid systems for the delivery of amphotericin b in antifungal therapy. Pharmaceutics, 12(1):29, 2020.
dc.relation.referencesShabi Parvez, Ganesh Yadagiri, Mallikarjuna Rao Gedda, Aakriti Singh, Om Prakash Singh, Anurag Verma, Shyam Sundar, and Shyam Lal Mudavath. Modified solid lipid nanoparticles encapsulated with amphotericin b and paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Scientific Reports, 10(1):12243, 2020.
dc.relation.referencesPataranapa Nimtrakul, Waree Tiyaboonchai, and Supaporn Lamlertthon. Amphotericin b loaded nanostructured lipid carriers for parenteral delivery: characterization, antifungal and in vitro toxicity assessment. Current drug delivery, 16(7):645--653, 2019.
dc.relation.referencesAiman Abu Ammar, Abed Nasereddin, Suheir Ereqat, Mary Dan-Goor, Charles L Jaffe, Eyal Zussman, and Ziad Abdeen. Amphotericin b-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Delivery and Translational Research, 9:76--84, 2019.
dc.relation.referencesMD Ashraf, Javed Abrar Farooqi, and Kalim Javed. Evaluation of macrophage injury and activation by amphotericin bloaded polymeric nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(5):297--306, 2018.
dc.relation.referencesHafiz Shoaib Sarwar, Muhammad Farhan Sohail, Noushin Saljoughian, Anees Ur Rehman, Sohail Akhtar, Akhtar Nadhman, Masoom Yasinzai, Howard E Gendelman, Abhay R Satoskar, and Gul Shahnaz. Design of mannosylated oral amphotericin b nanoformulation: Efficacy and safety in visceral leishmaniasis. Artificial cells, nanomedicine, and biotechnology, 46(sup1):521--531, 2018.
dc.relation.referencesClaudia Luengo Alonso. Nuevas formulaciones para la liberación de anfotericina B. PhD thesis, Universidad Complutense de Madrid, Madrid, España, 2018.
dc.relation.referencesMahasen A Radwan, Bushra T AlQuadeib, Lidija Šiller, Matthew C Wright, and Benjamin Horrocks. Oral administration of amphotericin b nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Delivery, 24(1):40--50, 2017.
dc.relation.referencesTC Moraes Moreira Carraro, C Altmeyer, N Maissar Khalil, and R Mara Mainardes. Assessment of in vitro antifungal efficacy and in vivo toxicity of amphotericin b-loaded plga and plga-peg blend nanoparticles. Journal de mycologie medicale, 27(4):519--529, 2017.
dc.relation.referencesTessa Rui Min Tan, Kong Meng Hoi, Peiqing Zhang, and Say Kong Ng. Characterization of a polyethylene glycolamphotericin b conjugate loaded with free amb for improved antifungal efficacy. PLoS One, 11(3):e0152112, 2016.
dc.relation.referencesIvonne L Diaz, Claudia Parra, Melva Linarez, and Leon D Perez. Design of micelle nanocontainers based on pdmaemab- pcl-b-pdmaema triblock copolymers for the encapsulation of amphotericin b. AAPS PharmSciTech, 16:1069--1078, 2015.
dc.relation.referencesXiaolong Tang, Jingjing Dai, Jun Xie, Yongqiang Zhu, Ming Zhu, Zhi Wang, Chunmei Xie, Aixia Yao, Tingting Liu, Xiaoyu Wang, et al. Enhanced antifungal activity by ab-modified amphotericin b-loaded nanoparticles using a ph-responsive block copolymer. Nanoscale Research Letters, 10:1--11, 2015.
dc.relation.referencesYing-Chen Chen, Chia-Yu Su, Hua-Jun Jhan, Hsiu-O Ho, and Ming-Thau Sheu. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin b-loaded lecithin-based mixed polymeric micelles. International Journal of Nanomedicine, pages 7265--7274, 2015.
dc.relation.referencesJing Zhou and Xue-hua Jiang. Formulation conditions on the drug loading properties of polymeric micelles. Pakistan Journal of Pharmaceutical Sciences, 32(2), 2019.
dc.relation.referencesJennifer B Dressman, Gordon L Amidon, Christos Reppas, and Vinod P Shah. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharmaceutical research, 15:11--22, 1998.
dc.relation.referencesUnited States Pharmacopeia. United States Pharmacopeia 41 --- National Formulary 36 (USP 41--NF 36): Test Solutions and Indicator Solutions. United States Pharmacopeial Convention, Rockville, MD, USA, 2024.
dc.relation.referencesEleftheria Nicolaides, Moira Symillides, Jennifer B Dressman, and Christos Reppas. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharmaceutical research, 18:380--388, 2001.
dc.relation.referencesMilo Gibaldi and Stuart Feldman. Establishment of sink conditions in dissolution rate determinations. theoretical considerations and application to nondisintegrating dosage forms. Journal of pharmaceutical sciences, 56(10):1238--1242, 1967.
dc.relation.referencesDiego Rafael Monterroza Hernandez. Desarrollo y validación de un método para evaluar la disolución de progesterona en suspensión oleosa contenida en una cápsula blanda de gelatina. PhD thesis, Universidad Nacional de Colombia, 2016.
dc.relation.referencesDiego R Monterroza, Claudia M Baena-Aristizábal, Yolima Baena, et al. Development of a method to assess the dissolution of soft gelatin capsules containing progesterone in oily suspension. Journal of Applied Pharmaceutical Science, 14(4):163--170, 2024.
dc.relation.referencesJuan José Carrascal Sánchez. Evaluación del comportamiento fisicoquímico y antimicrobiano de complejos con polielectrolitos. PhD thesis, Universidad Nacional de Colombia, 2021.
dc.relation.referencesSurbhi Mundra, Jay Kumar, Diva Maheshwari, Vaibhav K Shukla, Rahul Yadav, SVS Rama Krishna Pulavarti, and Ashish Arora. Protein labeling and structure determination by nmr spectroscopy. In Biophysical and Computational Tools in Drug Discovery, pages 65--131. Springer, 2021.
dc.relation.referencesJing Che, Chukwunweike I Okeke, Zhong-Bo Hu, and Jing Xu. Dspe-peg: a distinctive component in drug delivery system. Current pharmaceutical design, 21(12):1598--1605, 2015.
dc.relation.referencesMahdi Karimi, Amir Ghasemi, Parham Sahandi Zangabad, Reza Rahighi, S Masoud Moosavi Basri, H Mirshekari, M Amiri, Z Shafaei Pishabad, A Aslani, M Bozorgomid, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical Society Reviews, 45(5):1457--1501, 2016.
dc.relation.referencesRobert Langer and Nicholas A Peppas. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE Journal, 49(12):2990--3006, 2003.
dc.relation.referencesFabienne Danhier, Eduardo Ansorena, Joana M Silva, Régis Coco, Aude Le Breton, and Véronique Préat. Plga-based nanoparticles: an overview of biomedical applications. Journal of controlled release, 161(2):505--522, 2012.
dc.relation.referencesVladimir P Torchilin. Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery, 4(2):145--160, 2005.
dc.relation.referencesMay M Eid. Characterization of nanoparticles by ftir and ftir-microscopy. In Handbook of consumer nanoproducts, pages 1--30. Springer, 2022.
dc.relation.referencesBarbara H Stuart. Infrared spectroscopy: fundamentals and applications. John Wiley & Sons, 2004.
dc.relation.referencesS PURI. Techniques for nanoparticles characterization. Modern physics: concepts and applications, 2004.
dc.relation.referencesSourav Bhattacharjee. Dls and zeta potential--what they are and what they are not? Journal of controlled release, 235:337--351, 2016.
dc.relation.referencesMRMM Danaei, Mahvash Dehghankhold, Somayeh Ataei, F Hasanzadeh Davarani, R Javanmard, A Dokhani, S Khorasani, and MR Mozafari. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2):57, 2018.
dc.relation.referencesJean C Villamil, Claudia M Parra-Giraldo, and León D Pérez. Enhancing the performance of peg-b-pcl copolymers as precursors of micellar vehicles for amphotericin b through its conjugation with cholesterol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572:79--87, 2019.
dc.relation.referencesBelén Begines, Tamara Ortiz, María Pérez-Aranda, Guillermo Martínez, Manuel Merinero, Federico Argüelles-Arias, and Ana Alcudia. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 10(7):1403, 2020.
dc.relation.referencesBibiana Margarita Rojas Cortés, Manuel Guillermo y Vallejo Díaz and Jairo Ernesto Perilla. Los biopolímeros como materiales para el desarrollo de productos en aplicaciones farmacéuticas y de uso biomédico. Ingeniería e Investigación, 28(1):57--71, 2008.
dc.relation.referencesU.S. Food and Drug Administration (FDA). Dissolution testing and acceptance criteria for immediate-release solid oral dosage form drug products containing high solubility drug substances: Guidance for industry, 1997. Accessed: October 10, 2024.
dc.relation.referencesRené Holm, Anette Müllertz, and Huiling Mu. Bile salts and their importance for drug absorption. International Journal of Pharmaceutics, 453(1):44--55, 2013.
dc.relation.referencesPhawanan Sawangchan, Francisco Alexandrino Júnior, Éverton N Alencar, Eryvaldo ST Egito, and Lee E Kirsch. The role of aggregation and ionization in the chemical instability of amphotericin b in aqueous methanol. International Journal of Pharmaceutics, 632:122586, 2023.
dc.relation.referencesVD Daniels and NH Rees. Analysis of the ultraviolet/visible spectrum of degraded poly (vinyl chloride) to determine polyene concentrations. Journal of Polymer Science: Polymer Chemistry Edition, 12(9):2115--2122, 1974.
dc.relation.referencesÉverton N Alencar, Phawanan Sawangchan, Lee E Kirsch, and Eryvaldo Sócrates T Egito. Unveiling the amphotericin b degradation pathway and its kinetics in lipid-based solutions. Journal of Pharmaceutical Sciences, 110(3):1248--1258, 2021.
dc.relation.referencesMarciela B Montenegro, Stefânia P de Souza, Raquel AC Leão, Helvécio VA Rocha, Claudia M de Rezende, and Rodrigo OMA de Souza. Methodology development and validation of amphotericin b stability by hplc-dad. Journal of the Brazilian Chemical Society, 31(5):916--926, 2020.
dc.relation.referencesPhawanan Sawangchan. The effect of aggregation state on the degradation kinetics of Amphotericin B in aqueous solution. The University of Iowa, 2017.
dc.relation.referencesJohn D Cleary, Stanley W Chapman, Edwin Swiatlo, and Robert Kramer. High purity amphotericin b. Journal of antimicrobial chemotherapy, 60(6):1331--1340, 2007.
dc.relation.referencesSoheyla Honary and Foruhe Zahir. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 1). Tropical journal of pharmaceutical research, 12(2):255--264, 2013.
dc.relation.referencesRina Takayama, Yutaka Inoue, Isamu Murata, and Ikuo Kanamoto. Characterization of nanoparticles using dspe-peg2000 and soluplus. Colloids and Interfaces, 4(3):28, 2020.
dc.relation.referencesFei Yu, Mingtao Ao, Xiao Zheng, Nini Li, Junjie Xia, Yang Li, Donghui Li, Zhenqing Hou, Zhongquan Qi, and Xiao Dong Chen. Peg--lipid--plga hybrid nanoparticles loaded with berberine--phospholipid complex to facilitate the oral delivery efficiency. Drug delivery, 24(1):825--833, 2017.
dc.relation.referencesKavita R Gajbhiye, Rajesh Salve, Mahavir Narwade, Afsana Sheikh, Prashant Kesharwani, and Virendra Gajbhiye. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Molecular Cancer, 22(1):160, 2023.
dc.relation.referencesJennifer Cuellar, Lorena Parada-Díaz, Jorge Garza, and Sol M Mejía. A theoretical analysis of interaction energies and intermolecular interactions between amphotericin b and potential bioconjugates used in the modification of nanocarriers for drug delivery. Molecules, 28(6):2674, 2023.
dc.relation.referencesBushra T Al-Quadeib, Mahasen A Radwan, Lidija Siller, Benjamin Horrocks, and Matthew C Wright. Stealth amphotericin b nanoparticles for oral drug delivery: In vitro optimization. Saudi Pharmaceutical Journal, 23(3):290--302, 2015.
dc.relation.referencesMarcos Luciano Bruschi. Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, 2015.
dc.relation.referencesShama Parveen, Pratishtha Gupta, Saurabh Kumar, and Monisha Banerjee. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Medicine in Drug Discovery, 20:100165, 2023.
dc.relation.referencesPhilip Grossen, Dominik Witzigmann, Sandro Sieber, and Jörg Huwyler. Peg-pcl-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 260:46--60, 2017.
dc.relation.referencesXiaoming Zhong, Jianqiong Yang, Hongyan Liu, Zhiwen Yang, and Ping Luo. Potential lipid-based strategies of amphotericin b designed for oral administration in clinical application. Drug Delivery, 30(1):2161671, 2023.
dc.relation.referencesFrancelise B Cavassin, João Luiz Baú-Carneiro, Rogério R Vilas-Boas, and Flávio Queiroz-Telles. Sixty years of amphotericin b: an overview of the main antifungal agent used to treat invasive fungal infections. Infectious Diseases and Therapy, 10(1):115--147, 2021.
dc.relation.referencesVasiliki Papadopoulou, Kosmas Kosmidis, Marilena Vlachou, and Panos Macheras. On the use of the weibull function for the discernment of drug release mechanisms. International journal of pharmaceutics, 309(1-2):44--50, 2006.
dc.relation.referencesMonica Boffito, Paolo Sirianni, Anna Maria Di Rienzo, and Valeria Chiono. Thermosensitive block copolymer hydrogels based on poly (-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives. Journal of Biomedical Materials Research Part A, 103(3):1276--1290, 2015.
dc.relation.referencesMaria Chountoulesi, Dimitrios Selianitis, Stergios Pispas, and Natassa Pippa. Recent advances on peo-pcl block and graft copolymers as nanocarriers for drug delivery applications. Materials, 16(6):2298, 2023.
dc.relation.referencesBarbora Tomalova, Milada Sirova, Pavel Rossmann, Robert Pola, Jiri Strohalm, Petr Chytil, Viktor Cerny, Jakub Tomala, Martina Kabesova, Blanka Rihova, et al. The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of hpma copolymer conjugates in the treatment of solid tumours and leukaemia. Journal of Controlled Release, 223:1--10, 2016.
dc.relation.referencesTang Li, David Cipolla, Thomas Rades, and Ben J Boyd. Drug nanocrystallisation within liposomes. Journal of Controlled Release, 288:96--110, 2018.
dc.relation.referencesTJJOPS Higuchi. Mechanism of sustained-action medication. theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of pharmaceutical sciences, 52(12):1145--1149, 1963.
dc.relation.referencesNA Peppas. Analysis of fickian and non-fickian drug release from polymers. Pharmaceutica Acta Helvetiae, 60(4):110--111, 1985.
dc.relation.referencesAntoine Tardy, Julien Nicolas, Didier Gigmes, Catherine Lefay, and Yohann Guillaneuf. Radical ring-opening polymerization: Scope, limitations, and application to (bio) degradable materials. Chemical reviews, 117(3):1319--1406, 2017.
dc.relation.referencesIHT Guideline. Validation of analytical procedures q2 (r2). ICH: Geneva, Switzerland, 2024.
dc.relation.referencesJulio Collazos, Eduardo Martínez, Jose Mayo, and Ibarra Sofía. Pulmonary reactions during treatment with amphotericin b: review of published cases and guidelines for management. Clinical Infectious Diseases, 33(7):e75--e82, 2001.
dc.relation.referencesZhiwen Yang, Min Liu, Jian Chen, Weijun Fang, Yanli Zhang, Man Yuan, and Jie Gao. Development and characterization of amphotericin b nanosuspensions for oral administration through a simple top-down method. Current Pharmaceutical Biotechnology, 15(6):569--576, 2014.
dc.relation.referencesLiam M Dalton, Carol A Kauffman, and Marisa H Miceli. Oral lipid nanocrystal amphotericin b (mat2203) for the treatment of invasive fungal infections. In Open Forum Infectious Diseases, volume 11, page ofae346. Oxford University Press US, 2024.
dc.relation.referencesZeyad AlMajed, Najla M Salkho, Hana Sulieman, and Ghaleb A Husseini. Modeling of the in vitro release kinetics of sonosensitive targeted liposomes. Biomedicines, 10(12):3139, 2022.
dc.relation.referencesKH Ramteke, PA Dighe, AR Kharat, SV Patil, et al. Mathematical models of drug dissolution: a review. Sch. Acad. J. Pharm, 3(5):388--396, 2014
dc.relation.referencesTheresa M Allen and Pieter R Cullis. Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews, 65(1):36--48, 2013.
dc.relation.referencesITW Reagents. Amfotericina B Biochemica. https://itwreagents.com/iberia/es/product/amfotericina+b+ biochemica/A1907, 2024. Accedido el: 07-oct-2024.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.lembAntifúngicosspa
dc.subject.lembAntifungal agentseng
dc.subject.lembCopolímerosspa
dc.subject.lembCopolymerseng
dc.subject.lembMicelasspa
dc.subject.lembMicelleseng
dc.subject.proposalAnfotericina Bspa
dc.subject.proposalFormulaciones micelaresspa
dc.subject.proposalSistemas de liberación modificadaspa
dc.subject.proposalNanopartículas poliméricasspa
dc.subject.proposalBiodisponibilidadspa
dc.subject.proposalEstabilidadspa
dc.subject.proposalAmphotericin Beng
dc.subject.proposalMicellar formulationseng
dc.subject.proposalModified-release systemseng
dc.subject.proposalPolymeric nanoparticleseng
dc.subject.proposalBioavailabilityeng
dc.subject.proposalStabilityeng
dc.titleContribución al desarrollo de formulaciones micelares de anfotericina B, con miras a su aplicación en sistemas de liberación modificadaspa
dc.title.translatedContribution to the development of micellar formulations of amphotericin B, with a view to its application in modified release systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Contribución al desarrollo de formulaciones micelares de anfotericina B, con miras a su aplicación en sistemas de liberación modificada.pdf
Tamaño:
30.61 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: