Estimación Bayesiana de los parámetros estructurales de los modelos Multivariados Autoregresivos de Umbrales con ruido t-Student multivariado

dc.contributor.advisorCalderón Villanueva, Sergio Alejandrospa
dc.contributor.authorIbáñez Forero, Luis Eduardospa
dc.contributor.researchgroupSeries de Tiempospa
dc.date.accessioned2020-07-17T15:58:31Zspa
dc.date.available2020-07-17T15:58:31Zspa
dc.date.issued2020-05-07spa
dc.description.abstractSometimes it is necessary to work with multivariate time series that have heavy tails and in particular multivariate Student t-noise. Unfortunately, there is no Bayesian methodology in the literature known to the author that allows estimating the structural parameters of a multivariate TAR model. In this sense, the analysis of the autoregressive multivariate models of thresholds and multivariate t-Student noise is carried out via the Bayesian approach and the proposed methodology is examined through simulations and an application in the stock market field.spa
dc.description.abstractEn algunas ocasiones es necesario trabajar con series de tiempo multivariadas que tienen colas pesadas y en particular ruido t-Student multivariado. Desafortunadamente no existe en la literatura, conocida por el autor, alguna metodología Bayesiana que permita estimar los parámetros estructurales de un modelo TAR multivariado. En ese sentido el análisis de los modelos multivariados autoregresivos de umbrales y ruido t-Student multivariado es llevado a cabo vía el enfoque Bayesiano y la metodología propuesta es examinada a través de simulaciones y una aplicación en el campo bursátil.spa
dc.description.degreelevelMaestríaspa
dc.format.extent112spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77786
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesCalderón, S. & Nieto, F. (2017), ‘Bayesian analysis of multivariate threshold autoregressive models with missing data’, Communications in Statistics - Theory and Methods 46(1), 296–318.spa
dc.relation.referencesCarlin, B. & Chib, S. (1995), ‘Bayesian model choice via markov chain monte carlo methods’, Journal of the Royal Statistical Society. Series B (Methodological) 57(13), 473–484.spa
dc.relation.referencesChen, C. (1999), ‘Subset selection of autoregressive time series models’, Journal of Forecasting 18(7), 505–516.spa
dc.relation.referencesChen, C., Liu, F.-C. & So, M. (2011), ‘A review of threshold time series models in finance’, Statistics and its Interface 4(2), 167–181.spa
dc.relation.referencesChen, C. & So, M. (2003), ‘Subset threshold autoregression’, Journal of Forecasting 22, 49– 66.spa
dc.relation.referencesDellaportas, P., Forster, J. & Ntzoufras, I. (2002), ‘On bayesian model and variable selection using mcmc’, Statistics and Computing 12(1), 27–36.spa
dc.relation.referencesGelman, A. & Rubin, D. (1992), ‘Inference from iterative simulation using multiple sequences’, Statistical Science 7(4), 457–472.spa
dc.relation.referencesGelman, A., Stern, H., Carlin, J., Dunson, D., Vehtari, A. & Rubin, D. (2013), Bayesian data analysis, Chapman and Hall/CRC.spa
dc.relation.referencesGeweke, J. (1992), ‘Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments’, Bayesian Statistics, Clarendon Press, Oxford. 4, 169–193.spa
dc.relation.referencesGreen, P. (1995), ‘Reversible jump markov chain monte carlo computation and bayesian model determination’, Biometrika 82(4), 711–732.spa
dc.relation.referencesHansen, B. (1999), ‘Testing for linearity’, Journal of Economic Surveys 13(5), 551–76.spa
dc.relation.referencesHansen, B. (2011), ‘Threshold autoregression in economics’, Statistics and its Interface 4(2), 123–127.spa
dc.relation.referencesKotz, S. & Nadarajah, S. (2004), Multivariate T-Distributions and Their Applications, Cambridge University Press.spa
dc.relation.referencesKuo, L. & Mallick, B. (1998), ‘Variable selection for regression models’, The Indian Journal of Statistics, Series B 60(1), 65–81.spa
dc.relation.referencesLin, P.-E. (1972), ‘Some characterizations of the multivariate t distribution’, Journal of Multivariate Analysis 2(3), 339–344.spa
dc.relation.referencesLiu, J. (1996), ‘Peskun’s theorem and a modified discrete-state gibbs sampler’, Biometrika 83(3), 681–682.spa
dc.relation.referencesLo, M. & Zivot, E. (2001), ‘Threshold cointegration and nonlinear adjustment to the law of one price’, Macroeconomic Dynamics 5(4), 533–576.spa
dc.relation.referencesMillan, C. & Calderón, S. (2017), Estimación Bayesiana de los parámetros de umbrales y de retardo en un modelo autorregresivo de umbrales multivariado (mtar) con ruido t-student multivariado, Master’s thesis.spa
dc.relation.referencesNieto, F. (2005), ‘Modeling bivariate threshold autoregressive processes in the presence of missing data’, Communications in Statistics - Theory and Methods 34(4), 905–930.spa
dc.relation.referencesRobert, C. & Casella, G. (2005), Monte Carlo Statistical Methods (Springer Texts in Statistics), Springer-Verlag New York, Inc.spa
dc.relation.referencesRobert, C. & Casella, G. (2009), Introducing Monte Carlo Methods with R (Use R), 1st edn, Springer-Verlag.spa
dc.relation.referencesRomero, L. (2017), Estimación Bayesiana de un modelo tar multivariado cuando el proceso de ruido sigue una distribución t-student, Master’s thesis.spa
dc.relation.referencesSchäfer, C. (2012), Monte Carlo methods for sampling high-dimensional binary vectors, PhD thesis, Universit´e Paris Dauphine-Paris IX.spa
dc.relation.referencesSchäfer, C. & Chopin, N. (2011), ‘Sequential monte carlo on large binary sampling spaces’, Statistics and Computing 23, 163–184.spa
dc.relation.referencesStenseth, N., Chan, K., Tong, H., Boonstra, R., Boutin, S., Krebs, C., Post, E., O’Donoghue, M., Yoccoz, N., Forchhammer, M. & Hurrell, J. (1999), ‘Common dynamic structure of canada lynx populations within three climatic regions’, Science 285(5430), 1071–1073.spa
dc.relation.referencesTong, H. (1978), ‘On a threshold model’, In Pattern Recognition and Signal Processing (C. H. Chen, ed.) 29, 575–586.spa
dc.relation.referencesTong, H. (1983), Threshold models in non-linear time series analysis, Springer-Verlag.spa
dc.relation.referencesTsay, R. (1998), ‘Testing and modelingmultivariate threshold models’, Journal of the American Statistical Association 93(443), 1188–1202.spa
dc.relation.referencesZhang, H. & Nieto, F. H. (2015), ‘Tar modeling with missing data when the white noise process follows a student’s t-distribution’, Revista Colombiana de Estad´ıstica 38(1), 239– 266.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.proposalBayesian Analysiseng
dc.subject.proposalAnálisis Bayesianospa
dc.subject.proposalCadenas de Markov Monte Carlospa
dc.subject.proposalMonte Carlo Markov Chaineng
dc.subject.proposalModelos multivariados autoregresivos de umbralesspa
dc.subject.proposalMultivariate threshold autoregressive modelseng
dc.titleEstimación Bayesiana de los parámetros estructurales de los modelos Multivariados Autoregresivos de Umbrales con ruido t-Student multivariadospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Maestria.pdf
Tamaño:
1.67 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: