Análisis biomecánico de la marcha en individuos con amputación transtibial y prótesis : recuperación de la funcionalidad y calidad de vida. Revisión sistemática
| dc.contributor.advisor | Caro Henao, Luis Enrique | |
| dc.contributor.author | Ocasion Fuentes, Karen Andrea | |
| dc.date.accessioned | 2026-01-21T16:03:43Z | |
| dc.date.available | 2026-01-21T16:03:43Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones a color | spa |
| dc.description.abstract | La amputación de las extremidades es un proceso quirúrgico que se realiza debido a múltiples causas. Se lleva a cabo con mayor frecuencia en las extremidades inferiores, la más prevalente es la amputación transtibial, la cual consiste en el retiro parcial de la tibia y el peroné, sin embargo, se conserva la articulación femorotibial y patelofemoral. El proceso de amputación transcurre en cuatro etapas que son: Prequirúrgica, posquirúrgica, pre - protésica y protésica. La etapa protésica es fundamental, debido a las adaptaciones y compensaciones biomecánicas. El propósito del trabajo es identificar y analizar las alteraciones, adaptaciones y compensaciones biomecánicas musculoesqueléticas presentes en el patrón de la marcha en individuos con amputación transtibial y prótesis, con el fin de proporcionar una base de conocimiento para la realización de intervenciones y programas de rehabilitación que fomenten la independencia, funcionalidad y la calidad de vida en las actividades de la vida diaria de los pacientes. A través de una revisión sistemática, se realizó una búsqueda en bases de datos como: PudMed, Scopus, sciELO, scienceDirect, BVS, OVID y LILACS. Se obtuvieron datos de las limitaciones, adaptaciones y compensaciones biomecánicas en la marcha a nivel osteomuscular. Los cuales, aportan al conocimiento de los profesionales de la salud, para establecer planes de intervención para la rehabilitación, diseño y acondicionamiento de la prótesis; optimizando así la calidad de vida, funcionalidad e independencia en las actividades de la vida diaria (AVD) de los pacientes. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Amputation of the limbs is a surgical process that is performed due to multiple causes. It is carried out with greater frequency in the lower extremities, the most prevalent is transtibial amputation, which consists of the partial removal of the tibia and fibula; however, the femorotibial and patellofemoral articulation is preserved. The amputation process occurs in four stages which are: Presurgical, postsurgical, pre-prosthetic, and prosthetic. The prosthetic stage is fundamental, due to the biomechanical adaptations and compensations. The purpose of the work is to identify and analyze the musculoskeletal biomechanical alterations, adaptations, and compensations present in the gait pattern in individuals with transtibial amputation and prosthesis, with the aim of providing a knowledge base for the development of interventions and rehabilitation programs that foster independence, functionality, and quality of life in the activities of daily living of the patients, through a systematic review of the scientific literature. A search was carried out in databases such as: PubMed, Scopus, SciELO, ScienceDirect, BVS, OVID, and LILACS. Data was obtained on the limitations, adaptations, and biomechanical compensations in gait at the musculoskeletal level, which can provide relevant data for rehabilitation and prosthesis design. And which can contribute to the knowledge of health professionals, to establish intervention plans for the rehabilitation and conditioning of the prosthesis; thus, optimizing the quality of life, functionality, and independence in the activities of daily living (ADL) of the patients. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magister en Morfología Humana | |
| dc.description.methods | Revisión sistemática de la literatura científica, con la búsqueda, selección, análisis y síntesis de la evidencia de manera objetiva, y por lo tanto se realizó un análisis cualitativo. Se hizo énfasis en lo anatómico y en el análisis biomecánico de la marcha en individuos con amputación transtibial y prótesis. El objetivo es recabar información y las recomendaciones, basadas en la evidencia, proporcionadas para mejorar la calidad de vida, independencia y funcionalidad de los pacientes. Se realizó la búsqueda en las bases de datos electrónicas PubMed, Scopus, sciELO, scienceDirect, BVS, OVID y LILACS. La estrategía de búsqueda fue orientada con base en la metodología PICO, mediante la cual se obtuvieron los siguientes criterios: P: adultos con amputación transtibial unilateral. I: análisis biomecánico de la marcha con amputación y uso de prótesis. C: análisis biomecánico de la marcha con normalidad. O: parámetros biomecánicos de la marcha, funcionalidad y calidad de vida. | |
| dc.description.researcharea | Énfasis en Anatomía Humana | |
| dc.format.extent | 298 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89280 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Medicina | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Medicina - Maestría en Morfología Humana | |
| dc.relation.references | Rodeiro, M. (2018). Guía de atención de pacientes amputados. https://www.argentina.gob.ar/sites/default/files/inareps-guia-atencion-pacientes_amputados.pdf | |
| dc.relation.references | Gutiérrez, M. (2021). El paciente amputado de miembro inferior. https://digibug.ugr.es/bitstream/handle/10481/73138/62762.pdf?sequence=4&isAllowed=y | |
| dc.relation.references | Martín Casas, P., Meneses Monroy, A., Beneit Montesinos, J. V., & Atín Arratibel, M. Á. (2014). El desarrollo de la marcha infantil como proceso de aprendizaje. Revista de Logopedia, Foniatría y Audiología, 34(1), 27–34. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1578-908X2014000100005 | |
| dc.relation.references | Osorio, J. H., & Valencia, M. H. (2013). Bases para el entendimiento del proceso de la marcha humana. Revista Ciencias de la Salud, 11(3), 331–343. https://www.redalyc.org/pdf/2738/273828094009.pdf | |
| dc.relation.references | Inman, V. T., Ralston, H. J., & Todd, F. (1981). Human walking. Williams & Wilkins. | |
| dc.relation.references | Martín Nogueras, A., Calvo Arenillas, J. L., Orejuela Rodríguez, J., Barbero Iglesias, F. J., & Sánchez Sánchez, C. (1999). Fases de la marcha humana. Revista Iberoamericana de Fisioterapia y Kinesiología, 2(1), 22–28. https://www.elsevier.es/es-revista-revista-iberoamericana-fisioterapia-kinesiologia-176-articulo-fases-marcha-humana-13012714 | |
| dc.relation.references | Cifuentes, C., Martínez, F., & Romero, E. (2010). Análisis teórico y computacional de la marcha normal y patológica: Una revisión. Revista de la Facultad de Medicina, 18(2), 231–244. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-52562010000200005 | |
| dc.relation.references | Cerda, A. L. (2014). Manejo del trastorno de marcha del adulto mayor. Revista Médica Clínica Las Condes, 25(6), 743–751. https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-manejo-del-trastorno-marcha-del-S0716864014700379 | |
| dc.relation.references | Espinoza, V. M. J., & García, S. D. (2014). Niveles de amputación en extremidades inferiores: Repercusión en el futuro del paciente. Revista Médica Clínica Las Condes, 25(6), 752–758. https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-niveles-amputacion-extremidades-inferiores-repercusion-S0716864014700380 | |
| dc.relation.references | Chataigneau, A., de l’Escalopier, N., Borrini, L., & Mathieu, L. (2022). Amputaciones y desarticulaciones de los miembros: Miembro inferior. Médecine et Chirurgie du Pied, 38(4), 165–173. https://www.sciencedirect.com/science/article/abs/pii/S2211033X22467995 | |
| dc.relation.references | Ocampo, M. L., Henao, L. M., & Vásquez, L. (2010). Amputación de miembro inferior: Cambios funcionales, inmovilización y actividad física. https://repository.urosario.edu.co/server/api/core/bitstreams/c0020553-dbbc-4bc5-86e6-63afc654f5cb/content | |
| dc.relation.references | Sarroca Becerrica, N. (2020). Estudio del comportamiento muscular y estabilidad en pacientes amputados transtibiales. Análisis del impacto de la amputación en la imagen corporal, la autoestima y su calidad de vida [Tesis de maestría, Universidad Complutense de Madrid]. https://docta.ucm.es/entities/publication/f375367f-47f3-4f06-9b96-5b5829eeae83 | |
| dc.relation.references | Gutiérrez, M. (2021). El paciente amputado de miembro inferior. https://digibug.ugr.es/bitstream/handle/10481/73138/62762.pdf?sequence=4&isAllowed=y | |
| dc.relation.references | Rodríguez Vera, J. (2021). Tasas de amputación de miembros inferiores en pacientes con Diabetes Mellitus del régimen contributivo y las diferencias regionales en Colombia (2013–2017) [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/78990/52964538.2021.pdf | |
| dc.relation.references | Sánchez, Y., Briceño, E., Bautista, L. M., Niño, M., & Roblejo, M. (2024). Prevalencia de reamputación en amputaciones menores de pie en pacientes con pie diabético: Estudio de corte transversal. Revista Española de Cirugía Ortopédica y Traumatología. https://www.elsevier.es/es-revista-revista-espanola-cirugia-ortopedica-traumatologia-129-articulo-prevalencia-reamputacion-amputaciones-menores-del-S1888441524001097 | |
| dc.relation.references | Giraldo, L., Pinto, J. K., Lugo, L. H., Velásquez, J. C., Pastor, P., Posada, A. M., Patiño, D. F., & Plata, J. A. (2022). Ruta integral de atención en salud para personas con amputaciones de miembro inferior, para mejorar el funcionamiento y la calidad de vida. https://dialnet.unirioja.es/descarga/articulo/8516801.pdf | |
| dc.relation.references | Jiménez, H. C., Martínez, C. M., Romero, E., Medina, R., Botache, W. F., Sanjuán, J. F., Morales, A. D., Durán, A., & Salamanca, J. F. (2019). Factores pronósticos para pérdida de extremidad con trauma arterial periférico en un hospital de Colombia. Revista Chilena de Cirugía, 71(3), 236–244. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S2452-45492019000300216 | |
| dc.relation.references | Pinilla, T., Agudelo, T., Cortés, D., Cano, C., & Chavarro, D. (2023). Desenlaces en salud en población adulta mayor colombiana con amputaciones: Un análisis secundario de la encuesta SABE. Revista Colombiana de Medicina Física y Rehabilitación, 7(1), 1–10. https://repository.javeriana.edu.co/bitstream/handle/10554/63836/a01v07n01.pdf | |
| dc.relation.references | Ethan, B., et al. (2018). Lower limb prostheses: Measurement instruments, comparison of component effects by subgroups, and long-term outcomes (Comparative Effectiveness Review No. 213). Agency for Healthcare Research and Quality (US). https://www.ncbi.nlm.nih.gov/books/NBK531523/ | |
| dc.relation.references | Kapandji, I. A. (2007). Fisiología articular: Esquemas comentados de mecánica humana. Volumen 2: Miembro inferior (6ª ed.). Editorial Médica Panamericana. | |
| dc.relation.references | Butowicz, C. M., Krupenevich, R. L., Acasio, J. C., Dearth, C. L., & Hendershot, B. D. (2020). Relationships between mediolateral trunk-pelvic motion, hip strength, and knee joint moments during gait among persons with lower limb amputation. Clinical Biomechanics, 71, 160–166. https://doi.org/10.1016/j.clinbiomech.2018.11.020 | |
| dc.relation.references | Villa, C., Loiret, I., Langlois, K., Bonnet, X., Lavaste, F., Fodé, P., & Pillet, H. (2017). Cross-slope and level walking strategies during swing in individuals with lower limb amputation. Archives of Physical Medicine and Rehabilitation, 98(6), 1149–1157. https://doi.org/10.1016/j.apmr.2016.11.008 | |
| dc.relation.references | Ármannsdóttir, A. L., Lecomte, C., Brynjólfsson, S., & Briem, K. (2021). Task dependent changes in mechanical and biomechanical measures result from manipulating stiffness settings in a prosthetic foot. Clinical Biomechanics, 89, 105476. https://doi.org/10.1016/j.clinbiomech.2021.105476 | |
| dc.relation.references | Hashimoto, H., Kobayashi, T., Kataoka, M., & Okuda, K. (2021). Influence of coronal and sagittal prosthetic foot alignment on socket reaction moments in transtibial prostheses during walking. Gait & Posture, 90, 252–260. https://doi.org/10.1016/j.gaitpost.2021.08.021 | |
| dc.relation.references | De Pauw, K., Serrien, B., Baeyens, J.-P., Cherelle, P., De Bock, S., Ghillebert, J., Bailey, S. P., Lefeber, D., Roelands, B., Vanderborght, B., & Meeusen, R. (2020). Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study. Clinical Biomechanics, 71, 59–67. https://doi.org/10.1016/j.clinbiomech.2019.10.011 | |
| dc.relation.references | Varrecchia, T., Serrao, M., Rinaldi, M., Ranavolo, A., Conforto, S., De Marchis, C., Simonetti, A., Poni, I., Castellano, S., Silvetti, A., Tatarelli, A., Fiori, L., Conte, C., & Draicchio, F. (2019). Common and specific gait patterns in people with varying anatomical levels of lower limb amputation and different prosthetic components. Human Movement Science, 66, 9–21. https://doi.org/10.1016/j.humov.2019.03.012 | |
| dc.relation.references | Ding, Z., Henson, D. P., Sivapuratharasu, B., McGregor, A. H., & Bull, A. M. J. (2023). The effect of muscle atrophy in people with unilateral transtibial amputation for three activities: Gait alone does not tell the whole story. Journal of Biomechanics, 149, 111484. https://doi.org/10.1016/j.jbiomech.2023.111484 | |
| dc.relation.references | Petersen, B. A., Sparto, P. J., & Fisher, L. E. (2023). Clinical measures of balance and gait cannot differentiate somatosensory impairments in people with lower-limb amputation. Gait & Posture, 99, 104–110. https://doi.org/10.1016/j.gaitpost.2022.11.013 | |
| dc.relation.references | Sibley, A. R., Strike, S., Moudy, S. C., & Tillin, N. A. (2021). The associations between asymmetries in quadriceps strength and gait in individuals with unilateral transtibial amputation. Gait & Posture, 90, 267–273. https://doi.org/10.1016/j.gaitpost.2021.10.015 | |
| dc.relation.references | Butowicz, C. M., Dearth, C. L., & Hendershot, B. D. (2019). Joint power distribution does not change within the contralateral limb one year after unilateral limb loss. Gait & Posture, 73, 8–13. https://doi.org/10.1016/j.gaitpost.2019.09.003 | |
| dc.relation.references | Pantera, E., Reneaud, N., Dupeyron, A., & Pradon, D. (2025). Impact of amputation level on gait disorders in transfemoral and transtibial amputees. Gait & Posture, 119, 23–30. https://doi.org/10.1016/j.gaitpost.2025.06.003 | |
| dc.relation.references | Zelik, K. E., & Honert, E. C. (2018). Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment. Journal of Biomechanics, 75, 1–12. https://doi.org/10.1016/j.jbiomech.2018.04.019 | |
| dc.relation.references | Song, H., Hsieh, T.-H., Yeon, S. H., Shu, T., Nawrot, M., Landis, C. F., Friedman, G. N., Israel, E. A., Gutierrez-Arango, S., Carty, M. J., Freed, L. E., & Herr, H. M. (2024). Continuous neural control of a bionic limb restores biomimetic gait after amputation. Nature Medicine, 30(7), 2010–2019. https://doi.org/10.1038/s41591-024-02994-9 | |
| dc.relation.references | Rogers-Bradley, E., Yeon, S. H. (2024). Variable-stiffness prosthesis improves biomechanics of walking across speeds compared to a passive device. Scientific Reports. | |
| dc.relation.references | Murawa, M., Otworowski, J., But, S., Kabacinski, J., Kubaszewski, L., & Gramala, A. (2023). Symmetry function in trans-tibial amputees gait supplied with the new concept of affordable dynamic foot prosthesis: Case study. Symmetry, 15(8), 1595. https://doi.org/10.3390/sym15081595 | |
| dc.relation.references | Withey, A., Cazzola, D., Tabor, A., & Seminati, E. (2025). Exploring the associations between the biomechanical and psychological mechanistic pathways of lower back pain development amongst persons with lower-limb amputation: A study protocol. PLoS ONE, 20(2). https://doi.org/10.1371/journal.pone.0314523 | |
| dc.relation.references | Sattar, M. A., Ghazwan, A., & Abbas, S. M. (2023). Study and analysis of the mechanical properties and pressure socket for through-knee amputation. International Journal of Advanced Technology and Engineering Exploration, 10(105), 1063–1077. https://doi.org/10.19101/IJATEE.2023.10101334 | |
| dc.relation.references | Nasri, A., Abbasi, A., Hadavi, Z., Abbasi, S., & Svoboda, Z. (2024). Lower-extremity inter-joint coordination variability in active individuals with transtibial amputation and healthy males during gait. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-62655-2 | |
| dc.relation.references | Valle, M. S., Casabona, A., Lanza, S., Cioni, M., Sapienza, I., Laudani, L., & Vagnini, A. (2022). Use of a single wearable sensor to evaluate the effects of gait and pelvis asymmetries on the components of the timed up and go test, in persons with unilateral lower limb amputation. Sensors, 22(1). https://doi.org/10.3390/s22010095 | |
| dc.relation.references | Zhang, X., Liu, Z., & Qiu, G. (2021). Measuring balance abilities of transtibial amputees using multiattribute utility theory. BioMed Research International, 2021. https://doi.org/10.1155/2021/8340367 | |
| dc.relation.references | Seth, M., Coyle, P. C., Pohlig, R. T., Beisheim, E. H., Horne, J. R., Hicks, G. E., & Sions, J. M. (2022). Gait asymmetry is associated with performance-based physical function among adults with lower-limb amputation. Physiotherapy Theory and Practice, 38(13), 3108–3118. https://doi.org/10.1080/09593985.2021.1990449 | |
| dc.relation.references | Jasni, F., Hamzaid, N. A., Mohd Syah, N. E., Chung, T. Y., & Abu Osman, N. A. (2017). Analysis of interrelationships among voluntary and prosthetic leg joint parameters using cyclograms. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00230 | |
| dc.relation.references | Ingraham, K. A., Choi, H., Gardinier, E. S., Remy, C. D., & Gates, D. H. (2018). Choosing appropriate prosthetic ankle work to reduce the metabolic cost of individuals with transtibial amputation. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-33569-7 | |
| dc.relation.references | Zhang, X., Fiedler, G., & Liu, Z. (2019). Evaluation of gait variable change over time as transtibial amputees adapt to a new prosthesis foot. BioMed Research International, 2019. https://doi.org/10.1155/2019/9252368 | |
| dc.relation.references | Darter, B. J., Bastian, A. J., Wolf, E. J., Husson, E. M., Labrecque, B. A., & Hendershot, B. D. (2017). Locomotor adaptability in persons with unilateral transtibial amputation. PLoS ONE, 12(7). https://pubmed.ncbi.nlm.nih.gov/28704467/ | |
| dc.relation.references | Major, M. J., Serba, C. K., Chen, X., Reimold, N., Ndubuisi-Obi, F., & Gordon, K. E. (2018). Proactive locomotor adjustments are specific to perturbation uncertainty in below-knee prosthesis users. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20207-5 | |
| dc.relation.references | Gaffney, B. M. M., Christiansen, C. L., Murray, A. M., Myers, C. A., Laz, P. J., & Davidson, B. S. (2017). The effects of prosthesis inertial parameters on inverse dynamics: A probabilistic analysis. Journal of Verification, Validation and Uncertainty Quantification, 2(3). https://doi.org/10.1115/1.4038175 | |
| dc.relation.references | Jeffers, J. R., & Grabowski, A. M. (2017). Individual leg and joint work during sloped walking for people with a transtibial amputation using passive and powered prostheses. Frontiers in Robotics and AI, 4, Article 72. https://doi.org/10.3389/frobt.2017.00072 | |
| dc.relation.references | Andrag, L., Derman, W., Cockcroft, J., & Runciman, P. (2025). Is biomechanical loading reduced in individuals with unilateral transtibial amputation during fast-paced walking when using different ankle/foot prostheses? A pragmatic randomized controlled trial. Prosthetics and Orthotics International, 49(2), 148–158. https://pubmed.ncbi.nlm.nih.gov/39486009/ | |
| dc.relation.references | Keklicek, H., Kirdi, E., Yalcin, A., Topuz, S., Ulger, O., Erbahceci, F., & Sener, G. (2019). Comparison of gait variability and symmetry in trained individuals with transtibial and transfemoral limb loss. Journal of Orthopaedic Surgery (Hong Kong), 27(1), 2309499019832665. https://pubmed.ncbi.nlm.nih.gov/30827168/ | |
| dc.relation.references | Stafford, N. E., Gonzalez, E. B., & Ferris, D. P. (2024). Walking ankle biomechanics of individuals with transtibial amputations using a prescribed prosthesis and a portable bionic prosthesis under myoelectric control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 3036–3047. https://pubmed.ncbi.nlm.nih.gov/39115988/ | |
| dc.relation.references | Dillingham, T., Kenia, J., Shofer, F., & Marschalek, J. (2019). A prospective assessment of an adjustable, immediate fit, transtibial prosthesis. PM & R: The Journal of Injury, Function, and Rehabilitation, 11(11), 1210–1217. https://doi.org/10.1002/pmrj.12180 | |
| dc.relation.references | Ray, S. F., Wurdeman, S. R., & Takahashi, K. Z. (2018). Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device. Journal of NeuroEngineering and Rehabilitation, 15(1), 6. https://doi.org/10.1186/s12984-018-0351-5 | |
| dc.relation.references | Runciman, P., Cockcroft, J., & Derman, W. (2022). A novel pivot ankle/foot prosthesis reduces sound side loading and risk for osteoarthritis: A pragmatic randomized controlled trial. Prosthetics and Orthotics International, 46(3), 258–266. https://doi.org/10.1097/PXR.0000000000000105 | |
| dc.relation.references | Maun, J. A., Gard, S. A., Major, M. J., & Takahashi, K. Z. (2021). Reducing stiffness of shock-absorbing pylon amplifies prosthesis energy loss and redistributes joint mechanical work during walking. Journal of NeuroEngineering and Rehabilitation, 18(1), 143. https://doi.org/10.1186/s12984-021-00927-w | |
| dc.relation.references | Kent, J. A., Stergiou, N., & Wurdeman, S. R. (2015). Step activity and stride-to-stride fluctuations are negatively correlated in individuals with transtibial amputation. Clinical Biomechanics, 30(10), 1225–1229. https://doi.org/10.1016/j.clinbiomech.2015.08.010 | |
| dc.relation.references | Cutti, A. G., Verni, G., Migliore, G. L., Amoresano, A., & Raggi, M. (2018). Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets. Journal of NeuroEngineering and Rehabilitation, 15(1), 61. https://doi.org/10.1186/s12984-018-0427-2 | |
| dc.relation.references | Olenšek, A., Zadravec, M., Burger, H., & Matjačić, Z. (2021). Dynamic balancing responses in unilateral transtibial amputees following outward-directed perturbations during slow treadmill walking differ considerably for amputated and non-amputated side. Journal of NeuroEngineering and Rehabilitation, 18(1), 123. https://doi.org/10.1186/s12984-021-00912-4 | |
| dc.relation.references | Yoder, A. J., Silder, A., Farrokhi, S., Dearth, C. L., & Hendershot, B. D. (2019). Lower extremity joint contributions to trunk control during walking in persons with transtibial amputation. Scientific Reports, 9(1), 12267. https://doi.org/10.1038/s41598-019-48602-0 | |
| dc.relation.references | Nichols, K. M., & Adamczyk, P. G. (2023). Sensitivity of lower-limb joint mechanics to prosthetic forefoot stiffness with a variable stiffness foot in level-ground walking. Journal of Biomechanics, 147, 111436. https://doi.org/10.1016/j.jbiomech.2022.111436 | |
| dc.relation.references | Sanders, J. E., Youngblood, R. T., Hafner, B. J., Cagle, J. C., McLean, J. B., Redd, C. B., Dietrich, C. R., Ciol, M. A., & Allyn, K. J. (2017). Effects of socket size on metrics of socket fit in trans-tibial prosthesis users. Medical Engineering & Physics, 44, 32–43. https://doi.org/10.1016/j.medengphy.2017.03.008 | |
| dc.relation.references | Tosun, N., & Erbahçeci, F. (2025). Comparison of trauma and diabetes mellitus-induced transtibial amputees in terms of gait parameters and functional capacity. Ulus Travma Acil Cerrahi Derg, 31(3), 259–268. https://pmc.ncbi.nlm.nih.gov/articles/PMC11894242/ | |
| dc.relation.references | Cherni, Y., Laurendeau, S., Robert, M., & Turcot, K. (2022). The influence of transtibial prosthesis type on lower-body gait adaptation: A case study. International Journal of Environmental Research and Public Health, 20(1), 30. https://doi.org/10.3390/ijerph20010030 | |
| dc.relation.references | Hashimoto, H., Kobayashi, T., Gao, F., Kataoka, M., Orendurff, M. S., & Okuda, K. (2018). The effect of transverse prosthetic alignment changes on socket reaction moments during gait in individuals with transtibial amputation. Gait & Posture, 65, 8–14. https://doi.org/10.1016/j.gaitpost.2018.06.185 | |
| dc.relation.references | Esposito, E. R., Stinner, D. J., Fergason, J. R., & Wilken, J. M. (2017). Gait biomechanics following lower extremity trauma: Amputation vs. reconstruction. Gait & Posture, 54, 167–173. https://doi.org/10.1016/j.gaitpost.2017.03.005 | |
| dc.relation.references | Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422–429. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología | |
| dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | |
| dc.subject.lemb | AMPUTACIONES | spa |
| dc.subject.lemb | Amputation | eng |
| dc.subject.lemb | PERSONAS AMPUTADAS | spa |
| dc.subject.lemb | Amputees | eng |
| dc.subject.lemb | PROTESIS ARTICULARES | spa |
| dc.subject.lemb | Joint prothesis | eng |
| dc.subject.lemb | BIOMECANICA | spa |
| dc.subject.lemb | Biomechanics | eng |
| dc.subject.lemb | MECANICA HUMANA | spa |
| dc.subject.lemb | Human mechanics | eng |
| dc.subject.lemb | REHABILITACION DE AMPUTADOS | spa |
| dc.subject.lemb | Amputees - rehabilitation | eng |
| dc.subject.lemb | EXTREMIDADES ARTIFICIALES | spa |
| dc.subject.lemb | Artificial limbs | eng |
| dc.subject.proposal | Amputación transtibial | spa |
| dc.subject.proposal | Análisis de la Marcha | spa |
| dc.subject.proposal | Fenómenos Biomecánicos | spa |
| dc.subject.proposal | Cinemática | spa |
| dc.subject.proposal | Prótesis | spa |
| dc.subject.proposal | Transtibial Amputation | eng |
| dc.subject.proposal | Gait Analysis | eng |
| dc.subject.proposal | Biomechanical Phenomena | eng |
| dc.subject.proposal | Kinematics | eng |
| dc.subject.proposal | Prosthesis | eng |
| dc.title | Análisis biomecánico de la marcha en individuos con amputación transtibial y prótesis : recuperación de la funcionalidad y calidad de vida. Revisión sistemática | spa |
| dc.title.translated | Biomechanical analysis of gait in individuals with transtibial amputation and prosthesis : functional recovery and quality of life. Systematic review | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TRABAJO FINAL KAREN OCASION 12-09-2025.docx (4).pdf
- Tamaño:
- 5.26 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Morfología Humana
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

