Análisis biomecánico de la marcha en individuos con amputación transtibial y prótesis : recuperación de la funcionalidad y calidad de vida. Revisión sistemática

dc.contributor.advisorCaro Henao, Luis Enrique
dc.contributor.authorOcasion Fuentes, Karen Andrea
dc.date.accessioned2026-01-21T16:03:43Z
dc.date.available2026-01-21T16:03:43Z
dc.date.issued2025
dc.descriptionilustraciones a colorspa
dc.description.abstractLa amputación de las extremidades es un proceso quirúrgico que se realiza debido a múltiples causas. Se lleva a cabo con mayor frecuencia en las extremidades inferiores, la más prevalente es la amputación transtibial, la cual consiste en el retiro parcial de la tibia y el peroné, sin embargo, se conserva la articulación femorotibial y patelofemoral. El proceso de amputación transcurre en cuatro etapas que son: Prequirúrgica, posquirúrgica, pre - protésica y protésica. La etapa protésica es fundamental, debido a las adaptaciones y compensaciones biomecánicas. El propósito del trabajo es identificar y analizar las alteraciones, adaptaciones y compensaciones biomecánicas musculoesqueléticas presentes en el patrón de la marcha en individuos con amputación transtibial y prótesis, con el fin de proporcionar una base de conocimiento para la realización de intervenciones y programas de rehabilitación que fomenten la independencia, funcionalidad y la calidad de vida en las actividades de la vida diaria de los pacientes. A través de una revisión sistemática, se realizó una búsqueda en bases de datos como: PudMed, Scopus, sciELO, scienceDirect, BVS, OVID y LILACS. Se obtuvieron datos de las limitaciones, adaptaciones y compensaciones biomecánicas en la marcha a nivel osteomuscular. Los cuales, aportan al conocimiento de los profesionales de la salud, para establecer planes de intervención para la rehabilitación, diseño y acondicionamiento de la prótesis; optimizando así la calidad de vida, funcionalidad e independencia en las actividades de la vida diaria (AVD) de los pacientes. (Texto tomado de la fuente)spa
dc.description.abstractAmputation of the limbs is a surgical process that is performed due to multiple causes. It is carried out with greater frequency in the lower extremities, the most prevalent is transtibial amputation, which consists of the partial removal of the tibia and fibula; however, the femorotibial and patellofemoral articulation is preserved. The amputation process occurs in four stages which are: Presurgical, postsurgical, pre-prosthetic, and prosthetic. The prosthetic stage is fundamental, due to the biomechanical adaptations and compensations. The purpose of the work is to identify and analyze the musculoskeletal biomechanical alterations, adaptations, and compensations present in the gait pattern in individuals with transtibial amputation and prosthesis, with the aim of providing a knowledge base for the development of interventions and rehabilitation programs that foster independence, functionality, and quality of life in the activities of daily living of the patients, through a systematic review of the scientific literature. A search was carried out in databases such as: PubMed, Scopus, SciELO, ScienceDirect, BVS, OVID, and LILACS. Data was obtained on the limitations, adaptations, and biomechanical compensations in gait at the musculoskeletal level, which can provide relevant data for rehabilitation and prosthesis design. And which can contribute to the knowledge of health professionals, to establish intervention plans for the rehabilitation and conditioning of the prosthesis; thus, optimizing the quality of life, functionality, and independence in the activities of daily living (ADL) of the patients.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Morfología Humana
dc.description.methodsRevisión sistemática de la literatura científica, con la búsqueda, selección, análisis y síntesis de la evidencia de manera objetiva, y por lo tanto se realizó un análisis cualitativo. Se hizo énfasis en lo anatómico y en el análisis biomecánico de la marcha en individuos con amputación transtibial y prótesis. El objetivo es recabar información y las recomendaciones, basadas en la evidencia, proporcionadas para mejorar la calidad de vida, independencia y funcionalidad de los pacientes. Se realizó la búsqueda en las bases de datos electrónicas PubMed, Scopus, sciELO, scienceDirect, BVS, OVID y LILACS. La estrategía de búsqueda fue orientada con base en la metodología PICO, mediante la cual se obtuvieron los siguientes criterios: P: adultos con amputación transtibial unilateral. I: análisis biomecánico de la marcha con amputación y uso de prótesis. C: análisis biomecánico de la marcha con normalidad. O: parámetros biomecánicos de la marcha, funcionalidad y calidad de vida.
dc.description.researchareaÉnfasis en Anatomía Humana
dc.format.extent298 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89280
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Medicina - Maestría en Morfología Humana
dc.relation.referencesRodeiro, M. (2018). Guía de atención de pacientes amputados. https://www.argentina.gob.ar/sites/default/files/inareps-guia-atencion-pacientes_amputados.pdf
dc.relation.referencesGutiérrez, M. (2021). El paciente amputado de miembro inferior. https://digibug.ugr.es/bitstream/handle/10481/73138/62762.pdf?sequence=4&isAllowed=y
dc.relation.referencesMartín Casas, P., Meneses Monroy, A., Beneit Montesinos, J. V., & Atín Arratibel, M. Á. (2014). El desarrollo de la marcha infantil como proceso de aprendizaje. Revista de Logopedia, Foniatría y Audiología, 34(1), 27–34. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1578-908X2014000100005
dc.relation.referencesOsorio, J. H., & Valencia, M. H. (2013). Bases para el entendimiento del proceso de la marcha humana. Revista Ciencias de la Salud, 11(3), 331–343. https://www.redalyc.org/pdf/2738/273828094009.pdf
dc.relation.referencesInman, V. T., Ralston, H. J., & Todd, F. (1981). Human walking. Williams & Wilkins.
dc.relation.referencesMartín Nogueras, A., Calvo Arenillas, J. L., Orejuela Rodríguez, J., Barbero Iglesias, F. J., & Sánchez Sánchez, C. (1999). Fases de la marcha humana. Revista Iberoamericana de Fisioterapia y Kinesiología, 2(1), 22–28. https://www.elsevier.es/es-revista-revista-iberoamericana-fisioterapia-kinesiologia-176-articulo-fases-marcha-humana-13012714
dc.relation.referencesCifuentes, C., Martínez, F., & Romero, E. (2010). Análisis teórico y computacional de la marcha normal y patológica: Una revisión. Revista de la Facultad de Medicina, 18(2), 231–244. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-52562010000200005
dc.relation.referencesCerda, A. L. (2014). Manejo del trastorno de marcha del adulto mayor. Revista Médica Clínica Las Condes, 25(6), 743–751. https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-manejo-del-trastorno-marcha-del-S0716864014700379
dc.relation.referencesEspinoza, V. M. J., & García, S. D. (2014). Niveles de amputación en extremidades inferiores: Repercusión en el futuro del paciente. Revista Médica Clínica Las Condes, 25(6), 752–758. https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-niveles-amputacion-extremidades-inferiores-repercusion-S0716864014700380
dc.relation.referencesChataigneau, A., de l’Escalopier, N., Borrini, L., & Mathieu, L. (2022). Amputaciones y desarticulaciones de los miembros: Miembro inferior. Médecine et Chirurgie du Pied, 38(4), 165–173. https://www.sciencedirect.com/science/article/abs/pii/S2211033X22467995
dc.relation.referencesOcampo, M. L., Henao, L. M., & Vásquez, L. (2010). Amputación de miembro inferior: Cambios funcionales, inmovilización y actividad física. https://repository.urosario.edu.co/server/api/core/bitstreams/c0020553-dbbc-4bc5-86e6-63afc654f5cb/content
dc.relation.referencesSarroca Becerrica, N. (2020). Estudio del comportamiento muscular y estabilidad en pacientes amputados transtibiales. Análisis del impacto de la amputación en la imagen corporal, la autoestima y su calidad de vida [Tesis de maestría, Universidad Complutense de Madrid]. https://docta.ucm.es/entities/publication/f375367f-47f3-4f06-9b96-5b5829eeae83
dc.relation.referencesGutiérrez, M. (2021). El paciente amputado de miembro inferior. https://digibug.ugr.es/bitstream/handle/10481/73138/62762.pdf?sequence=4&isAllowed=y
dc.relation.referencesRodríguez Vera, J. (2021). Tasas de amputación de miembros inferiores en pacientes con Diabetes Mellitus del régimen contributivo y las diferencias regionales en Colombia (2013–2017) [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/78990/52964538.2021.pdf
dc.relation.referencesSánchez, Y., Briceño, E., Bautista, L. M., Niño, M., & Roblejo, M. (2024). Prevalencia de reamputación en amputaciones menores de pie en pacientes con pie diabético: Estudio de corte transversal. Revista Española de Cirugía Ortopédica y Traumatología. https://www.elsevier.es/es-revista-revista-espanola-cirugia-ortopedica-traumatologia-129-articulo-prevalencia-reamputacion-amputaciones-menores-del-S1888441524001097
dc.relation.referencesGiraldo, L., Pinto, J. K., Lugo, L. H., Velásquez, J. C., Pastor, P., Posada, A. M., Patiño, D. F., & Plata, J. A. (2022). Ruta integral de atención en salud para personas con amputaciones de miembro inferior, para mejorar el funcionamiento y la calidad de vida. https://dialnet.unirioja.es/descarga/articulo/8516801.pdf
dc.relation.referencesJiménez, H. C., Martínez, C. M., Romero, E., Medina, R., Botache, W. F., Sanjuán, J. F., Morales, A. D., Durán, A., & Salamanca, J. F. (2019). Factores pronósticos para pérdida de extremidad con trauma arterial periférico en un hospital de Colombia. Revista Chilena de Cirugía, 71(3), 236–244. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S2452-45492019000300216
dc.relation.referencesPinilla, T., Agudelo, T., Cortés, D., Cano, C., & Chavarro, D. (2023). Desenlaces en salud en población adulta mayor colombiana con amputaciones: Un análisis secundario de la encuesta SABE. Revista Colombiana de Medicina Física y Rehabilitación, 7(1), 1–10. https://repository.javeriana.edu.co/bitstream/handle/10554/63836/a01v07n01.pdf
dc.relation.referencesEthan, B., et al. (2018). Lower limb prostheses: Measurement instruments, comparison of component effects by subgroups, and long-term outcomes (Comparative Effectiveness Review No. 213). Agency for Healthcare Research and Quality (US). https://www.ncbi.nlm.nih.gov/books/NBK531523/
dc.relation.referencesKapandji, I. A. (2007). Fisiología articular: Esquemas comentados de mecánica humana. Volumen 2: Miembro inferior (6ª ed.). Editorial Médica Panamericana.
dc.relation.referencesButowicz, C. M., Krupenevich, R. L., Acasio, J. C., Dearth, C. L., & Hendershot, B. D. (2020). Relationships between mediolateral trunk-pelvic motion, hip strength, and knee joint moments during gait among persons with lower limb amputation. Clinical Biomechanics, 71, 160–166. https://doi.org/10.1016/j.clinbiomech.2018.11.020
dc.relation.referencesVilla, C., Loiret, I., Langlois, K., Bonnet, X., Lavaste, F., Fodé, P., & Pillet, H. (2017). Cross-slope and level walking strategies during swing in individuals with lower limb amputation. Archives of Physical Medicine and Rehabilitation, 98(6), 1149–1157. https://doi.org/10.1016/j.apmr.2016.11.008
dc.relation.referencesÁrmannsdóttir, A. L., Lecomte, C., Brynjólfsson, S., & Briem, K. (2021). Task dependent changes in mechanical and biomechanical measures result from manipulating stiffness settings in a prosthetic foot. Clinical Biomechanics, 89, 105476. https://doi.org/10.1016/j.clinbiomech.2021.105476
dc.relation.referencesHashimoto, H., Kobayashi, T., Kataoka, M., & Okuda, K. (2021). Influence of coronal and sagittal prosthetic foot alignment on socket reaction moments in transtibial prostheses during walking. Gait & Posture, 90, 252–260. https://doi.org/10.1016/j.gaitpost.2021.08.021
dc.relation.referencesDe Pauw, K., Serrien, B., Baeyens, J.-P., Cherelle, P., De Bock, S., Ghillebert, J., Bailey, S. P., Lefeber, D., Roelands, B., Vanderborght, B., & Meeusen, R. (2020). Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study. Clinical Biomechanics, 71, 59–67. https://doi.org/10.1016/j.clinbiomech.2019.10.011
dc.relation.referencesVarrecchia, T., Serrao, M., Rinaldi, M., Ranavolo, A., Conforto, S., De Marchis, C., Simonetti, A., Poni, I., Castellano, S., Silvetti, A., Tatarelli, A., Fiori, L., Conte, C., & Draicchio, F. (2019). Common and specific gait patterns in people with varying anatomical levels of lower limb amputation and different prosthetic components. Human Movement Science, 66, 9–21. https://doi.org/10.1016/j.humov.2019.03.012
dc.relation.referencesDing, Z., Henson, D. P., Sivapuratharasu, B., McGregor, A. H., & Bull, A. M. J. (2023). The effect of muscle atrophy in people with unilateral transtibial amputation for three activities: Gait alone does not tell the whole story. Journal of Biomechanics, 149, 111484. https://doi.org/10.1016/j.jbiomech.2023.111484
dc.relation.referencesPetersen, B. A., Sparto, P. J., & Fisher, L. E. (2023). Clinical measures of balance and gait cannot differentiate somatosensory impairments in people with lower-limb amputation. Gait & Posture, 99, 104–110. https://doi.org/10.1016/j.gaitpost.2022.11.013
dc.relation.referencesSibley, A. R., Strike, S., Moudy, S. C., & Tillin, N. A. (2021). The associations between asymmetries in quadriceps strength and gait in individuals with unilateral transtibial amputation. Gait & Posture, 90, 267–273. https://doi.org/10.1016/j.gaitpost.2021.10.015
dc.relation.referencesButowicz, C. M., Dearth, C. L., & Hendershot, B. D. (2019). Joint power distribution does not change within the contralateral limb one year after unilateral limb loss. Gait & Posture, 73, 8–13. https://doi.org/10.1016/j.gaitpost.2019.09.003
dc.relation.referencesPantera, E., Reneaud, N., Dupeyron, A., & Pradon, D. (2025). Impact of amputation level on gait disorders in transfemoral and transtibial amputees. Gait & Posture, 119, 23–30. https://doi.org/10.1016/j.gaitpost.2025.06.003
dc.relation.referencesZelik, K. E., & Honert, E. C. (2018). Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment. Journal of Biomechanics, 75, 1–12. https://doi.org/10.1016/j.jbiomech.2018.04.019
dc.relation.referencesSong, H., Hsieh, T.-H., Yeon, S. H., Shu, T., Nawrot, M., Landis, C. F., Friedman, G. N., Israel, E. A., Gutierrez-Arango, S., Carty, M. J., Freed, L. E., & Herr, H. M. (2024). Continuous neural control of a bionic limb restores biomimetic gait after amputation. Nature Medicine, 30(7), 2010–2019. https://doi.org/10.1038/s41591-024-02994-9
dc.relation.referencesRogers-Bradley, E., Yeon, S. H. (2024). Variable-stiffness prosthesis improves biomechanics of walking across speeds compared to a passive device. Scientific Reports.
dc.relation.referencesMurawa, M., Otworowski, J., But, S., Kabacinski, J., Kubaszewski, L., & Gramala, A. (2023). Symmetry function in trans-tibial amputees gait supplied with the new concept of affordable dynamic foot prosthesis: Case study. Symmetry, 15(8), 1595. https://doi.org/10.3390/sym15081595
dc.relation.referencesWithey, A., Cazzola, D., Tabor, A., & Seminati, E. (2025). Exploring the associations between the biomechanical and psychological mechanistic pathways of lower back pain development amongst persons with lower-limb amputation: A study protocol. PLoS ONE, 20(2). https://doi.org/10.1371/journal.pone.0314523
dc.relation.referencesSattar, M. A., Ghazwan, A., & Abbas, S. M. (2023). Study and analysis of the mechanical properties and pressure socket for through-knee amputation. International Journal of Advanced Technology and Engineering Exploration, 10(105), 1063–1077. https://doi.org/10.19101/IJATEE.2023.10101334
dc.relation.referencesNasri, A., Abbasi, A., Hadavi, Z., Abbasi, S., & Svoboda, Z. (2024). Lower-extremity inter-joint coordination variability in active individuals with transtibial amputation and healthy males during gait. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-62655-2
dc.relation.referencesValle, M. S., Casabona, A., Lanza, S., Cioni, M., Sapienza, I., Laudani, L., & Vagnini, A. (2022). Use of a single wearable sensor to evaluate the effects of gait and pelvis asymmetries on the components of the timed up and go test, in persons with unilateral lower limb amputation. Sensors, 22(1). https://doi.org/10.3390/s22010095
dc.relation.referencesZhang, X., Liu, Z., & Qiu, G. (2021). Measuring balance abilities of transtibial amputees using multiattribute utility theory. BioMed Research International, 2021. https://doi.org/10.1155/2021/8340367
dc.relation.referencesSeth, M., Coyle, P. C., Pohlig, R. T., Beisheim, E. H., Horne, J. R., Hicks, G. E., & Sions, J. M. (2022). Gait asymmetry is associated with performance-based physical function among adults with lower-limb amputation. Physiotherapy Theory and Practice, 38(13), 3108–3118. https://doi.org/10.1080/09593985.2021.1990449
dc.relation.referencesJasni, F., Hamzaid, N. A., Mohd Syah, N. E., Chung, T. Y., & Abu Osman, N. A. (2017). Analysis of interrelationships among voluntary and prosthetic leg joint parameters using cyclograms. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00230
dc.relation.referencesIngraham, K. A., Choi, H., Gardinier, E. S., Remy, C. D., & Gates, D. H. (2018). Choosing appropriate prosthetic ankle work to reduce the metabolic cost of individuals with transtibial amputation. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-33569-7
dc.relation.referencesZhang, X., Fiedler, G., & Liu, Z. (2019). Evaluation of gait variable change over time as transtibial amputees adapt to a new prosthesis foot. BioMed Research International, 2019. https://doi.org/10.1155/2019/9252368
dc.relation.referencesDarter, B. J., Bastian, A. J., Wolf, E. J., Husson, E. M., Labrecque, B. A., & Hendershot, B. D. (2017). Locomotor adaptability in persons with unilateral transtibial amputation. PLoS ONE, 12(7). https://pubmed.ncbi.nlm.nih.gov/28704467/
dc.relation.referencesMajor, M. J., Serba, C. K., Chen, X., Reimold, N., Ndubuisi-Obi, F., & Gordon, K. E. (2018). Proactive locomotor adjustments are specific to perturbation uncertainty in below-knee prosthesis users. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20207-5
dc.relation.referencesGaffney, B. M. M., Christiansen, C. L., Murray, A. M., Myers, C. A., Laz, P. J., & Davidson, B. S. (2017). The effects of prosthesis inertial parameters on inverse dynamics: A probabilistic analysis. Journal of Verification, Validation and Uncertainty Quantification, 2(3). https://doi.org/10.1115/1.4038175
dc.relation.referencesJeffers, J. R., & Grabowski, A. M. (2017). Individual leg and joint work during sloped walking for people with a transtibial amputation using passive and powered prostheses. Frontiers in Robotics and AI, 4, Article 72. https://doi.org/10.3389/frobt.2017.00072
dc.relation.referencesAndrag, L., Derman, W., Cockcroft, J., & Runciman, P. (2025). Is biomechanical loading reduced in individuals with unilateral transtibial amputation during fast-paced walking when using different ankle/foot prostheses? A pragmatic randomized controlled trial. Prosthetics and Orthotics International, 49(2), 148–158. https://pubmed.ncbi.nlm.nih.gov/39486009/
dc.relation.referencesKeklicek, H., Kirdi, E., Yalcin, A., Topuz, S., Ulger, O., Erbahceci, F., & Sener, G. (2019). Comparison of gait variability and symmetry in trained individuals with transtibial and transfemoral limb loss. Journal of Orthopaedic Surgery (Hong Kong), 27(1), 2309499019832665. https://pubmed.ncbi.nlm.nih.gov/30827168/
dc.relation.referencesStafford, N. E., Gonzalez, E. B., & Ferris, D. P. (2024). Walking ankle biomechanics of individuals with transtibial amputations using a prescribed prosthesis and a portable bionic prosthesis under myoelectric control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 3036–3047. https://pubmed.ncbi.nlm.nih.gov/39115988/
dc.relation.referencesDillingham, T., Kenia, J., Shofer, F., & Marschalek, J. (2019). A prospective assessment of an adjustable, immediate fit, transtibial prosthesis. PM & R: The Journal of Injury, Function, and Rehabilitation, 11(11), 1210–1217. https://doi.org/10.1002/pmrj.12180
dc.relation.referencesRay, S. F., Wurdeman, S. R., & Takahashi, K. Z. (2018). Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device. Journal of NeuroEngineering and Rehabilitation, 15(1), 6. https://doi.org/10.1186/s12984-018-0351-5
dc.relation.referencesRunciman, P., Cockcroft, J., & Derman, W. (2022). A novel pivot ankle/foot prosthesis reduces sound side loading and risk for osteoarthritis: A pragmatic randomized controlled trial. Prosthetics and Orthotics International, 46(3), 258–266. https://doi.org/10.1097/PXR.0000000000000105
dc.relation.referencesMaun, J. A., Gard, S. A., Major, M. J., & Takahashi, K. Z. (2021). Reducing stiffness of shock-absorbing pylon amplifies prosthesis energy loss and redistributes joint mechanical work during walking. Journal of NeuroEngineering and Rehabilitation, 18(1), 143. https://doi.org/10.1186/s12984-021-00927-w
dc.relation.referencesKent, J. A., Stergiou, N., & Wurdeman, S. R. (2015). Step activity and stride-to-stride fluctuations are negatively correlated in individuals with transtibial amputation. Clinical Biomechanics, 30(10), 1225–1229. https://doi.org/10.1016/j.clinbiomech.2015.08.010
dc.relation.referencesCutti, A. G., Verni, G., Migliore, G. L., Amoresano, A., & Raggi, M. (2018). Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets. Journal of NeuroEngineering and Rehabilitation, 15(1), 61. https://doi.org/10.1186/s12984-018-0427-2
dc.relation.referencesOlenšek, A., Zadravec, M., Burger, H., & Matjačić, Z. (2021). Dynamic balancing responses in unilateral transtibial amputees following outward-directed perturbations during slow treadmill walking differ considerably for amputated and non-amputated side. Journal of NeuroEngineering and Rehabilitation, 18(1), 123. https://doi.org/10.1186/s12984-021-00912-4
dc.relation.referencesYoder, A. J., Silder, A., Farrokhi, S., Dearth, C. L., & Hendershot, B. D. (2019). Lower extremity joint contributions to trunk control during walking in persons with transtibial amputation. Scientific Reports, 9(1), 12267. https://doi.org/10.1038/s41598-019-48602-0
dc.relation.referencesNichols, K. M., & Adamczyk, P. G. (2023). Sensitivity of lower-limb joint mechanics to prosthetic forefoot stiffness with a variable stiffness foot in level-ground walking. Journal of Biomechanics, 147, 111436. https://doi.org/10.1016/j.jbiomech.2022.111436
dc.relation.referencesSanders, J. E., Youngblood, R. T., Hafner, B. J., Cagle, J. C., McLean, J. B., Redd, C. B., Dietrich, C. R., Ciol, M. A., & Allyn, K. J. (2017). Effects of socket size on metrics of socket fit in trans-tibial prosthesis users. Medical Engineering & Physics, 44, 32–43. https://doi.org/10.1016/j.medengphy.2017.03.008
dc.relation.referencesTosun, N., & Erbahçeci, F. (2025). Comparison of trauma and diabetes mellitus-induced transtibial amputees in terms of gait parameters and functional capacity. Ulus Travma Acil Cerrahi Derg, 31(3), 259–268. https://pmc.ncbi.nlm.nih.gov/articles/PMC11894242/
dc.relation.referencesCherni, Y., Laurendeau, S., Robert, M., & Turcot, K. (2022). The influence of transtibial prosthesis type on lower-body gait adaptation: A case study. International Journal of Environmental Research and Public Health, 20(1), 30. https://doi.org/10.3390/ijerph20010030
dc.relation.referencesHashimoto, H., Kobayashi, T., Gao, F., Kataoka, M., Orendurff, M. S., & Okuda, K. (2018). The effect of transverse prosthetic alignment changes on socket reaction moments during gait in individuals with transtibial amputation. Gait & Posture, 65, 8–14. https://doi.org/10.1016/j.gaitpost.2018.06.185
dc.relation.referencesEsposito, E. R., Stinner, D. J., Fergason, J. R., & Wilken, J. M. (2017). Gait biomechanics following lower extremity trauma: Amputation vs. reconstruction. Gait & Posture, 54, 167–173. https://doi.org/10.1016/j.gaitpost.2017.03.005
dc.relation.referencesZiegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422–429.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.subject.lembAMPUTACIONESspa
dc.subject.lembAmputationeng
dc.subject.lembPERSONAS AMPUTADASspa
dc.subject.lembAmputeeseng
dc.subject.lembPROTESIS ARTICULARESspa
dc.subject.lembJoint prothesiseng
dc.subject.lembBIOMECANICAspa
dc.subject.lembBiomechanicseng
dc.subject.lembMECANICA HUMANAspa
dc.subject.lembHuman mechanicseng
dc.subject.lembREHABILITACION DE AMPUTADOSspa
dc.subject.lembAmputees - rehabilitationeng
dc.subject.lembEXTREMIDADES ARTIFICIALESspa
dc.subject.lembArtificial limbseng
dc.subject.proposalAmputación transtibialspa
dc.subject.proposalAnálisis de la Marchaspa
dc.subject.proposalFenómenos Biomecánicosspa
dc.subject.proposalCinemáticaspa
dc.subject.proposalPrótesisspa
dc.subject.proposalTranstibial Amputationeng
dc.subject.proposalGait Analysiseng
dc.subject.proposalBiomechanical Phenomenaeng
dc.subject.proposalKinematicseng
dc.subject.proposalProsthesiseng
dc.titleAnálisis biomecánico de la marcha en individuos con amputación transtibial y prótesis : recuperación de la funcionalidad y calidad de vida. Revisión sistemáticaspa
dc.title.translatedBiomechanical analysis of gait in individuals with transtibial amputation and prosthesis : functional recovery and quality of life. Systematic revieweng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TRABAJO FINAL KAREN OCASION 12-09-2025.docx (4).pdf
Tamaño:
5.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Morfología Humana

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: