En 5 día(s), 16 hora(s) y 7 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Modelos lineales doblemente generalizados con enfoque bayesiano: teoría y aplicaciones en R, OpenBUGS y Stan

dc.contributor.advisorCepeda Cuervo, Edilbertospa
dc.contributor.authorÁvila Perico, Hernan Davidspa
dc.contributor.researchgroupINFERENCIA BAYESIANAspa
dc.date.accessioned2021-01-29T15:10:23Zspa
dc.date.available2021-01-29T15:10:23Zspa
dc.date.issued2020-09-15spa
dc.description.abstractThis work presents Double Generalized Linear Models as a technique which allows data modeling when there is variable dispersion. This document contains theoretical aspects and details about bayesian estimation using Stan and OpenBUGS programming languages through simulations and applications developed in R using package R2OpenBUGS and rstan distribution. This document contains examples for heteroscedastic normal regression, gamma regression, beta regression with simulations and applications. Furthermore, models for count data based on beta binomial and negative binomial distribution are presented in chapter 3. Finally an extension for longitudinal data based on multivariate normal distribution is exposed. The expectancy is this document to be a guide for understanding and use of this model in a bayesian context.spa
dc.description.abstractEn este trabajo se presentan los Modelos Lineales Doblemente Generalizados como una técnica que permite en modelamiento de datos cuando existe dispersióon variable. Este documento presenta consideraciones teóricas y aspectos relacionados a la estimación bayesiana en los lenguajes Stan y OpenBUGS a través de simulaciones y aplicaciones desarrolladas en R usando el paquete R2OpenBUGS y la distribución rstan. Se presentan ejemplos de DGLM como la regresión normal heteroscedástica, la regresión gamma, la regresión beta con simulaciones y aplicaciones. Además, en el capitulo 3 se plantean modelos para datos de conteo basados en la distribución beta binomial y binomial negativa y finalmente, se presenta una extensión para modelamiento de datos longitudinales basados en la distribución normal multivariada. Se espera que este documento sirva de guía para la comprensión y utilización de estos modelos en un contexto bayesiano.spa
dc.description.additionalLínea de Investigación: Inferencia Bayesiana.spa
dc.description.degreelevelMaestríaspa
dc.format.extent162spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationÁvila Perico, H. D. (2020). Modelos lineales doblemente generalizados con enfoque bayesiano: teoria y aplicaciones en R, OpenBUGS y Stan [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78992
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.references[Agresti, 2015] Agresti, A. (2015).Foundations of linear and generalized linear models. JohnWiley & Sons.[Aitkin, 1987] Aitkin, M. (1987).spa
dc.relation.referencesModelling variance heterogeneity in normal regressionusing glim.Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(3),332–339.spa
dc.relation.references[Barndorff, 2014] Barndorff, O. (2014).Information and exponential families: in statisticaltheory. John Wiley & Sons.[Bateson, 2009] Bateson, T. (2009).spa
dc.relation.references[Bateson, 2009] Bateson, T. (2009). Gamma regression of interevent waiting times versus poisson regression of daily event counts: Inside the epidemiologist’s toolbox–selecting the best modeling tools for the job. Epidemiology, 20(2), 202–204.spa
dc.relation.references[Blei et al., 2017] Blei, D., Kucukelbir, A., & McAuliffe, J. (2017). Variational inference: A review for statisticians. Journal of the American statistical Association, 112(518), 859–877.spa
dc.relation.references[Breslow, 1984] Breslow, N. (1984). Extra-poisson variation in log-linear models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 33(1), 38–44.spa
dc.relation.references[Brown et al., 2001] Brown, P. J., Kenward, M. G., & Bassett, E. E. (2001). Bayesian discrimination with longitudinal data. Biostatistics, 2(4), 417–432.spa
dc.relation.references[Carpenter et al., 2017] Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of statistical software, 76(1).spa
dc.relation.references[Castillo, 2017] Castillo, E. (2017). Modelos Para Datos Longitudinales: Una Propuesta Ba- yesiana. PhD thesis, Universidad Nacional de Colombia-Sede Bogotá.spa
dc.relation.references[Castillo et al., 2020] Castillo, E., Cepeda, E., & Núnez, V. (2020). Bayesian structured antedependence model proposals for longitudinal data. SORT, 44(1), 1–30.spa
dc.relation.references[Cepeda, 2001a] Cepeda, E. (2001a). Modelagem da variabilidade em modelos lineares generalizados. PhD thesis, Tese de D. Sc., IM–UFRJ, Rio de Janeiro, RJ, Brasil.spa
dc.relation.references[Cepeda, 2001b] Cepeda, E. (2001b). Variability modeling in generalized linear models. Unpublished Ph. D. Thesis. Mathematics Institute, Universidade Federal do Rio de Janeiro.spa
dc.relation.references[Cepeda, 2016] Cepeda, E. (2016). Double generalized linear models. Disponible en http://www.redeabe.org.br/novosinape2016/minicursos/minicurso2.pdf. Recuperado el dia 10 de Marzo de 2019.spa
dc.relation.references[Cepeda & Achcar, 2010] Cepeda, E. & Achcar, J. (2010). Heteroscedastic nonlinear regression models. Communications in Statistics—Simulation and Computation R , 39(2), 405–419.spa
dc.relation.references[Cepeda et al., 2012a] Cepeda, E., Andrade, M., & Achcar, J. (2012a). A seasonal and heteroscedastic gamma model for hydrological time series: A bayesian approach. In AIP Conference Proceedings, volume 1490 (pp. 97–107).: American Institute of Physics.spa
dc.relation.references[Cepeda & Cifuentes, 2017] Cepeda, E. & Cifuentes, M. V. (2017). Double generalized beta- binomial and negative binomial regression models. Revista Colombiana de Estadı́stica, 40(1), 141–163.spa
dc.relation.references[Cepeda & Corrales, 2015] Cepeda, E. & Corrales, M. (2015). Gamma regression models with the gammareg r package1.spa
dc.relation.references[Cepeda et al., 2016] Cepeda, E., Corrales, M., Cifuentes, M., & Zarate, H. (2016). On gamma regression residuals.spa
dc.relation.references[Cepeda & Gamerman, 2000] Cepeda, E. & Gamerman, D. (2000). Bayesian modeling of variance heterogeneity in normal regression models. Brazilian Journal of Probability and Statistics, (pp. 207–221).spa
dc.relation.references[Cepeda & Gamerman, 2004] Cepeda, E. & Gamerman, D. (2004). Bayesian modeling of joint regressions for the mean and covariance matrix. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 46(4), 430–440.spa
dc.relation.references[Cepeda & Gamerman, 2005] Cepeda, E. & Gamerman, D. (2005). Bayesian methodology for modeling parameters in the two parameter exponential family. Revista Estadı́stica, 57(168-169), 93–105.spa
dc.relation.references[Cepeda et al., 2014] Cepeda, E., Migon, H. S., Garrido, L., & Achcar, J. A. (2014). Generalized linear models with random effects in the two-parameter exponential family. Journal of Statistical Computation and Simulation, 84(3), 513–525.spa
dc.relation.references[Cepeda & Núñez, 2013] Cepeda, E. & Núñez, V. (2013). Spatial double generalized beta regression models: extensions and application to study quality of education in colombia. Journal of Educational and Behavioral Statistics, 38(6), 604–628.spa
dc.relation.references[Cepeda et al., 2012b] Cepeda, E., Quintero, A., & Núñez, V. (2012b). Estimating infant mortality in colombia: some overdispersion modelling approaches. Journal of Applied Statistics, 39(5), 1011–1036.spa
dc.relation.references[Chib & Greenberg, 1995] Chib, S. & Greenberg, E. (1995). Understanding the Metropolis Hastings algorithm. The american statistician, 49(4), 327–335.spa
dc.relation.references[Cox & Reid, 1987] Cox, D. & Reid, N. (1987). Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society: Series B (Methodological), 49(1), 1–18.spa
dc.relation.references[Cribari & Zeileis, 2010] Cribari, F. & Zeileis, A. (2010). Beta regression in r. Journal of Statistical Software, Articles, 34(2).spa
dc.relation.references[DeGroot & Schervish, 2012] DeGroot, M. & Schervish, M. (2012). Probability and statistics. Pearson Education.spa
dc.relation.references[Dey et al., 1997] Dey, D., Gelfand, A., & Peng, F. (1997). Overdispersed generalized linear models. Journal of Statistical Planning and Inference, 64(1), 93–107.spa
dc.relation.references[Efron, 1986] Efron, B. (1986). Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association, 81(395), 709–721.spa
dc.relation.references[Ferrari & Cribari, 2004] Ferrari, S. & Cribari, F. (2004). Beta regression for modelling rates and proportions. Journal of applied statistics, 31(7), 799–815.spa
dc.relation.references[Fitzmaurice & Ravichandran, 2008] Fitzmaurice, G. & Ravichandran, C. (2008). A primer in longitudinal data analysis. Circulation, 118(19), 2005–2010.spa
dc.relation.references[Gelfand & Dalal, 1990] Gelfand, A. & Dalal, S. (1990). A note on overdispersed exponential families. Biometrika, 77(1), 55–64.spa
dc.relation.references[Guo et al., 2016] Guo, J., Lee, D., Sakrejda, K., Gabry, J., Goodrich, B., De Guzman, J., Niebler, E., Heller, T., & Fletcher, J. (2016). Rstan: the r interface to stan. R package version, 2(1).spa
dc.relation.references[Harvey, 1976] Harvey, A. C. (1976). Estimating regression models with multiplicative heteroscedasticity. Econometrica: Journal of the Econometric Society, (pp. 461–465).spa
dc.relation.references[Hauer, 2001] Hauer, E. (2001). Overdispersion in modelling accidents on road sections and in empirical bayes estimation. Accident Analysis & Prevention, 33(6), 799–808.spa
dc.relation.references[Hedeker & Gibbons, 2006] Hedeker, D. & Gibbons, R. (2006). Longitudinal data analysis, volume 451. John Wiley & Sons.spa
dc.relation.references[Hoffman & Gelman, 2014] Hoffman, M. & Gelman, A. (2014). The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15(1), 1593–1623.spa
dc.relation.references[Hui & Berger, 1983] Hui, S. L. & Berger, J. O. (1983). Empirical bayes estimation of rates in longitudinal studies. Journal of the American Statistical Association, 78(384), 753–760.spa
dc.relation.references[Kenward, 1987] Kenward, M. (1987). A method for comparing profiles of repeated mea- surements. Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(3), 296–308.spa
dc.relation.references[Long, 1990] Long, S. (1990). The origins of sex differences in science. Social forces, 68(4), 1297–1316.spa
dc.relation.references[Lunn et al., 2012] Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2012). The BUGS book: A practical introduction to Bayesian analysis. CRC press.spa
dc.relation.references[McCullagh, 1983] McCullagh, P. (1983). Generalized linear models. Routledge.spa
dc.relation.references[McElreath, 2020] McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press.spa
dc.relation.references[Neal et al., 2011] Neal, R. et al. (2011). Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo, 2(11), 2.spa
dc.relation.references[Nelder & Wedderburn, 1972] Nelder, J. & Wedderburn, R. (1972). Generalized linear mo- dels. Journal of the Royal Statistical Society: Series A (General), 135(3), 370–384.spa
dc.relation.references[Pammer & Kevan, 2007] Pammer, K. & Kevan, A. (2007). The contribution of visual sen- sitivity, phonological processing, and nonverbal iq to children’s reading. Scientific Studies of Reading, 11(1), 33–53.spa
dc.relation.references[Pham et al., 2010] Pham, T. V., Piersma, S. R., Warmoes, M., & Jimenez, C. R. (2010). On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics. Bioinformatics, 26(3), 363–369.spa
dc.relation.references[Phelps, 1982] Phelps, K. (1982). Use of the complementary log-log function to describe dose-response relationships in insecticide evaluation field trials. In GLIM 82: Proceedings of the International Conference on Generalised Linear Models (pp. 155–163).: Springer.spa
dc.relation.references[Ryan et al., 1976] Ryan, T., Joiner, B., & Ryan, B. (1976). Minitab student handbook.spa
dc.relation.references[Salem & Mount, 1974] Salem, A. & Mount, T. (1974). A convenient descriptive model of income distribution: the gamma density. Econometrica: journal of the Econometric Society, (pp. 1115–1127).spa
dc.relation.references[Simas et al., 2010] Simas, A., Barreto, W., & Rocha, A. V. (2010). Improved estimators for a general class of beta regression models. Computational Statistics & Data Analysis, 54(2), 348–366.spa
dc.relation.references[Smithson & Verkuilen, 2006] Smithson, M. & Verkuilen, J. (2006). A better lemon squee- zer? maximum-likelihood regression with beta-distributed dependent variables. Psycholo- gical methods, 11(1), 54.spa
dc.relation.references[Smyth, 1989] Smyth, G. (1989). Generalized linear models with varying dispersion. Journal of the Royal Statistical Society: Series B (Methodological), 51(1), 47–60.spa
dc.relation.references[Smyth & Verbyla, 1999] Smyth, G. & Verbyla, A. (1999). Double generalized linear mo- dels: approximate reml and diagnostics. In Statistical Modelling: Proceedings of the 14th International Workshop on Statistical Modelling (pp. 66–80).spa
dc.relation.references[Spiegelhalter et al., 2007] Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2007). Openbugs user manual, version 3.0. 2. MRC Biostatistics Unit, Cambridge.spa
dc.relation.references[Stan Development Team, 2016] Stan Development Team (2016). Stan modeling language users guide and reference manual. Technical report.spa
dc.relation.references[Sturtz et al., 2005] Sturtz, S., Ligges, U., & Gelman, A. (2005). R2winbugs: a package for running winbugs from r.spa
dc.relation.references[Sturtz et al., 2010] Sturtz, S., Ligges, U., & Gelman, A. (2010). R2openbugs: a package for running openbugs from r. URL http://cran. rproject. org/web/package- s/R2OpenBUGS/vignettes/R2OpenBUGS. pdf.spa
dc.relation.references[Vasconcellos & Cribari, 2005] Vasconcellos, K. & Cribari, F. (2005). Improved maximum likelihood estimation in a new class of beta regression models. Brazilian Journal of Probability and Statistics, (pp. 13–31).spa
dc.relation.references[Vehtari et al., 2017] Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out cross-validation and waic. Statistics and computing, 27(5), 1413–1432.spa
dc.relation.references[Vehtari et al., 2018] Vehtari, A., Gelman, A., & Gabry, J. (2018). loo: Efficient leave-one- out cross-validation and waic for bayesian models. R package version, 2(0), 1003.spa
dc.relation.references[Verbyla, 1993] Verbyla, A. (1993). Modelling variance heterogeneity: residual maximum likelihood and diagnostics. Journal of the Royal Statistical Society: Series B (Methodological), 55(2), 493–508.spa
dc.relation.references[Wedderburn, 1974] Wedderburn, R. (1974). Quasi-likelihood functions, generalized linear models, and the gauss—newton method. Biometrika, 61(3), 439–447.spa
dc.relation.references[Weiss, 2005] Weiss, R. (2005). Modeling longitudinal data. Springer Science & Business Media.spa
dc.relation.references[Williams, 1982] Williams, D. (1982). Extra-binomial variation in logistic linear models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 31(2), 144–148.spa
dc.relation.references[Young, 2018] Young, D. (2018). Handbook of regression methods. CRC Press.spa
dc.relation.references[Zacks, 2014] Zacks, S. (2014). Parametric statistical inference: basic theory and modern approaches, volume 4. Elsevier.spa
dc.relation.references[Zeileis et al., 2016] Zeileis, A., Cribari, F., Gruen, B., Kosmidis, I., Simas, A. B., Rocha, A. V., & Zeileis, M. A. (2016). Package ‘betareg’. R package.spa
dc.relation.references[Zhang et al., 2014] Zhang, Y., Chen, M., Ibrahim, J. G., Zeng, D., Chen, Q., Pan, Z., & Xue, X. (2014). Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching. Lifetime data analysis, 20(1), 76–105.spa
dc.relation.references[Zimmerman & Nunez, 2009] Zimmerman, D. & Nunez, V. (2009). Antedependence models for longitudinal data. CRC Press.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalDGLMeng
dc.subject.proposalOpen-BUGSspa
dc.subject.proposalOpenBUGSeng
dc.subject.proposalModelos lineales doblemente generalizadosspa
dc.subject.proposalDouble generalized lineas modelseng
dc.subject.proposalRegresión normal heteroscedásticaspa
dc.subject.proposalRegresión gammaspa
dc.subject.proposalStaneng
dc.subject.proposalRegresión betaspa
dc.subject.proposalHeteroscedastic normal regressioneng
dc.subject.proposalRegresión beta binomialspa
dc.subject.proposalGamma regressioneng
dc.subject.proposalBeta regressioneng
dc.subject.proposalRegresión binomial negativaspa
dc.subject.proposalBeta binomial regressioneng
dc.subject.proposalDatos longitudinalesspa
dc.subject.proposalNegative binomial regressioneng
dc.subject.proposalSobredispersiónspa
dc.subject.proposalDispersión variablespa
dc.subject.proposalLogitudinal dataeng
dc.subject.proposalVariable dispersioneng
dc.subject.proposalStanspa
dc.subject.proposalOverdispersioneng
dc.titleModelos lineales doblemente generalizados con enfoque bayesiano: teoría y aplicaciones en R, OpenBUGS y Stanspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10184389942020.pdf
Tamaño:
657.55 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: