Uso de medidas alternativas para determinar la presencia de heterogeneidad en un metaanálisis

dc.contributor.advisorRodríguez Malagón, María Nelcy
dc.contributor.authorGil Velásquez, José de Jesús
dc.date.accessioned2023-07-07T20:24:32Z
dc.date.available2023-07-07T20:24:32Z
dc.date.issued2023
dc.description.abstractEl presente trabajo presenta dos tipos de medidas alternativas que fueron desarrolladas en 2017 para cuantifi car la presencia de heterogeneidad y las aplica en 2 conjuntos de datos distintos. Los datos utilizados hacen parte de 2 revisiones sistemáticas. Una relacionada con niveles de LDL-c en pacientes con Alzheimer y sin demencia. La otra referida al desarrollo de complicaciones por COVID en personas fumadoras y que nunca han fumado. (Texto tomado de la fuente)spa
dc.description.abstractThis work presents two types of alternative measures developed in 2017 in order to quantify the presence of heterogeneity and applied them into 2 different datasets. Data came from two systematic reviews. The first one refer to the LDL-c levels in patients with Alzheimer and non-demantia. The other related to the development of COVID complications in smokers and people who have never smoked.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.format.extentxv, 46páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84169
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAgresti, A. (2002). Categorical data analysis. Wiley.spa
dc.relation.referencesAitkin, M. (1999). Meta-analysis by random effect modelling in generalized linear models. Statistics in medicine, 18:2343-2351.spa
dc.relation.referencesBalduzzi, S., Rucker, G., and Schwarzer, G. (2019). How to perform a meta-analysis with r: a practical tutorial. Evidence-Based Mental Health, pages 153-160.spa
dc.relation.referencesBerkey, C. S., Hoaglin, D. C., Mosteller, F., and Colditz, G. A. (1995). A random-effects regression model for meta-analysis. Statistics in medicine, 14:395-411.spa
dc.relation.referencesBorenstein, M., Hedges, L. V., Higgins, J. P., and Rothsein, H. (2009). Introduction to Meta-Analysis. Wiley.spa
dc.relation.referencesBrockwell, S. E. and Gordon, I. R. (2001). A comparison of statistical methods for meta-analysis. Statistics in medicine, 20:825-840.spa
dc.relation.referencesCanal, S. Y., Alvarez, N. G., and Vargas, J. A. (2011). Cartas de control T2 multivariadas usando R y SAS. Universidad Nacional de Colombia.spa
dc.relation.referencesCentro Cochrane Iberoamericano, t. (2012). Ma- nual Cochrane de Revisiones Sistematicas de Intervenciones, version 5.1.0 [actualizada en marzo de 2011] [Internet]. Barcelona: Centro Cochrane Iberoamericano.spa
dc.relation.referencesChang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., and Borges, B. (2021). shiny: Web Application Framework for R. R Foundation for Statistical Computing.spa
dc.relation.referencesCollins, R., Peto, R., MacMahon, S., Hebert, P., Fiebach, N. H., Eberlein, K. A., Godwin, J., Qizilbash, N., Taylor, J. O., and Hennekens, C. H. (1990). Blood pressure, stroke, and coronary heart disease. part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. The Lancet, 335:827-838.spa
dc.relation.referencesDemidenko, E. (2013). Mixed models: theory and applications with R. John Wiley & Sons.spa
dc.relation.referencesDerSimonian, R. and Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7:177-188.spa
dc.relation.referencesDewey, M. (2020). CRAN Task View: Meta-Analysis. R Foundation for Statistical Computing, dewey.myzen.co.uk.spa
dc.relation.referencesDowle, M. and Srinivasan, A. (2019). data.table: Extension of `data.frame`. R Foundation for Statistical Computing.spa
dc.relation.referencesEmerson, J. D. (1994). Combining estimates of the odds ratio: the state of the art. Statistical methods in medical research, 3:157-178.spa
dc.relation.referencesGoodwin, P. J. and Boyd, N. F. (1988). Mammographic parenchymal pattern and breast cancer risk: a critical appraisal of the evidence. American Journal of Epidemiology, 127:1097-1108.spa
dc.relation.referencesHardy, R. J. and Thompson, S. G. (1996). A likelihood approach to meta-analysis with random effects. Statistics in medicine, 15:619-629.spa
dc.relation.referencesHedges, L. V. and Olkin, I. (1985). Statistical Method for Meta- Analysis. Academic Press, Orlando.spa
dc.relation.referencesHennekens, C. H. and Buring, J. E. (1987). Epidemiology in medicine. Little, Brown and Company, Boston, Toronto.spa
dc.relation.referencesHiggins, J. P. T. and Thompson, S. G. (2002). Quantifying heterogeneity in a metaanalysis. Statistics in Medicine, 21:1539-1558.spa
dc.relation.referencesJimenez, C. A., Lopez, D., Alonso, A., Aleixandre, R., Solano, S., and de Granda, J. I. (2021). Covid-19 y tabaquismo: revision sistematica y metaanalisis de la evidencia. Achivos de bronconeumologia, 57:21-34.spa
dc.relation.referencesJohnson, R. A. and Wichern, D. W. (2002). Applied multivariate statistical analysis. Prentice Hall.spa
dc.relation.referencesLin, L. (2017). Statistical methods for meta-analysis. Tesis de doctorado, University of minnesota.spa
dc.relation.referencesLin, L. and Chu, H. (2022). altmeta: Alternative Meta-Analysis Methods. R Foundation for Statistical Computing.spa
dc.relation.referencesMacmahon, S., Peto, R., Cutler, J., Collins, R., Sorlie, P., Neaton, J., Abbott, R., Godwin, J., Dyer, A., and Stamler, J. (1990). Blood pressure, stroke, and coronary heart disease. part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. The Lancet, 335:765-774.spa
dc.relation.referencesMayorga, A. J. H. (2004). Inferencia Estadística. Universidad Nacional de Colombia.spa
dc.relation.referencesMcneish, D. (2016). On using bayesian methods to address small sample problems. Structural equation modeling: a multidisciplinary journal, 00:1-24.spa
dc.relation.referencesNelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of the royal statistical society, 135:370-384.spa
dc.relation.referencesPiggot, T. D. (2012). Advances in Meta-Analysis. Springer.spa
dc.relation.referencesR Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.spa
dc.relation.referencesRuiz, A. and Morillo, L. E. (2004). Epidemiologia clinica: investigacion clinica aplicada. Editorial medica panamericana.spa
dc.relation.referencesSchloerke, B. Allen, J. (2021). plumber: An API Generator for R. R Foundation for Statistical Computing.spa
dc.relation.referencesSchwarzer, G., Carpenter, J. R., and Rucker, G. (2015). Meta-Analysis with R. Springer.spa
dc.relation.referencesSmyth, G. K. (1989). Generalized linear models with varying dispersion. Journal of the royal statistical society, 51:47-60.spa
dc.relation.referencesTang, J. and Liu, J. L. (2000). Misleading funnel plot for detection of bias in meta-analysis. Journal of Clinical Epidemiology, 53:477-484.spa
dc.relation.referencesUrruatia, G., Tort, S., and Bon ll, X. (2005). Metaanáalisis (quorum). Medicina Clínica (Barcelona), 125:32-37.spa
dc.relation.referencesWhitehead, A. and Whitehead, J. (1991). A general parametric approach to the metaanalysis of randomized clinical trials. Statistics in Medicine, 10:1665-1677.spa
dc.relation.referencesWhitehead, J. (1997). The Design and Analysis of Sequential Clinical Trials. Statistics in Practice.spa
dc.relation.referencesWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.spa
dc.relation.referencesWickham, H. (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R Foundation for Statistical Computing.spa
dc.relation.referencesWickham, H. (2020). forcats: Tools for Working with Categorical Variables (Factors). R Foundation for Statistical Computing.spa
dc.relation.referencesWickham, H., Francois, R., Henry, L., and Muller, K. (2020). dplyr: A Grammar of Data Manipulation. R Foundation for Statistical Computing.spa
dc.relation.referencesWickham, H. and Henry, L. (2020a). purrr: Functional Programming Tools. R Foundation for Statistical Computing.spa
dc.relation.referencesWickham, H. and Henry, L. (2020b). tidyr: Tidy Messy Data. R Foundation for Statistical Computing.spa
dc.relation.referencesWickham, H., Hester, J., and Francois, R. (2018). readr: Read Rectangular Text Data. R Foundation for Statistical Computing.spa
dc.relation.referencesWickham, H. and Muller, K. (2021). tibble: Simple Data Frames. R Foundation for Statistical Computing.spa
dc.relation.referencesYusuf, S. (1987). Obtaining medically meaningful answers from a overview of randomized clinical trials. Statistics in medicine, 6:281-286.spa
dc.relation.referencesZhou, Z., Liang, Y., Zhang, X., Xu, J., Lin, J., Zhang, R., Kang, K., Liu, C., Zhao, C., and Zhao, M. (2020). Low-density lipoprotein cholesterol and alzheimer's disease: a systematic review and meta-analysis. Frontiers in aging neuroscience, 12.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.decsCholesteroleng
dc.subject.decsColesterolspa
dc.subject.lembAnálisis biológicospa
dc.subject.lembBiological analysiseng
dc.subject.proposalMetaanálisisspa
dc.subject.proposalModelo de efectos fijosspa
dc.subject.proposalModelo de efectos aleatoriosspa
dc.subject.proposalHeterogeneidadspa
dc.subject.proposalEpidemiologíaspa
dc.subject.proposalMeta-analysiseng
dc.subject.proposalFixed-effects modeleng
dc.subject.proposalRandom-effects modeleng
dc.subject.proposalHeterogeneityeng
dc.subject.proposalEpidemiologyeng
dc.titleUso de medidas alternativas para determinar la presencia de heterogeneidad en un metaanálisisspa
dc.title.translatedUse of alternative measures to establish the presence of heterogeneity in a meta-analysiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026259070.2023.pdf
Tamaño:
950.27 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: