Uso de medidas alternativas para determinar la presencia de heterogeneidad en un metaanálisis
dc.contributor.advisor | Rodríguez Malagón, María Nelcy | |
dc.contributor.author | Gil Velásquez, José de Jesús | |
dc.date.accessioned | 2023-07-07T20:24:32Z | |
dc.date.available | 2023-07-07T20:24:32Z | |
dc.date.issued | 2023 | |
dc.description.abstract | El presente trabajo presenta dos tipos de medidas alternativas que fueron desarrolladas en 2017 para cuantifi car la presencia de heterogeneidad y las aplica en 2 conjuntos de datos distintos. Los datos utilizados hacen parte de 2 revisiones sistemáticas. Una relacionada con niveles de LDL-c en pacientes con Alzheimer y sin demencia. La otra referida al desarrollo de complicaciones por COVID en personas fumadoras y que nunca han fumado. (Texto tomado de la fuente) | spa |
dc.description.abstract | This work presents two types of alternative measures developed in 2017 in order to quantify the presence of heterogeneity and applied them into 2 different datasets. Data came from two systematic reviews. The first one refer to the LDL-c levels in patients with Alzheimer and non-demantia. The other related to the development of COVID complications in smokers and people who have never smoked. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Estadística | spa |
dc.format.extent | xv, 46páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84169 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá,Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
dc.relation.references | Agresti, A. (2002). Categorical data analysis. Wiley. | spa |
dc.relation.references | Aitkin, M. (1999). Meta-analysis by random effect modelling in generalized linear models. Statistics in medicine, 18:2343-2351. | spa |
dc.relation.references | Balduzzi, S., Rucker, G., and Schwarzer, G. (2019). How to perform a meta-analysis with r: a practical tutorial. Evidence-Based Mental Health, pages 153-160. | spa |
dc.relation.references | Berkey, C. S., Hoaglin, D. C., Mosteller, F., and Colditz, G. A. (1995). A random-effects regression model for meta-analysis. Statistics in medicine, 14:395-411. | spa |
dc.relation.references | Borenstein, M., Hedges, L. V., Higgins, J. P., and Rothsein, H. (2009). Introduction to Meta-Analysis. Wiley. | spa |
dc.relation.references | Brockwell, S. E. and Gordon, I. R. (2001). A comparison of statistical methods for meta-analysis. Statistics in medicine, 20:825-840. | spa |
dc.relation.references | Canal, S. Y., Alvarez, N. G., and Vargas, J. A. (2011). Cartas de control T2 multivariadas usando R y SAS. Universidad Nacional de Colombia. | spa |
dc.relation.references | Centro Cochrane Iberoamericano, t. (2012). Ma- nual Cochrane de Revisiones Sistematicas de Intervenciones, version 5.1.0 [actualizada en marzo de 2011] [Internet]. Barcelona: Centro Cochrane Iberoamericano. | spa |
dc.relation.references | Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., and Borges, B. (2021). shiny: Web Application Framework for R. R Foundation for Statistical Computing. | spa |
dc.relation.references | Collins, R., Peto, R., MacMahon, S., Hebert, P., Fiebach, N. H., Eberlein, K. A., Godwin, J., Qizilbash, N., Taylor, J. O., and Hennekens, C. H. (1990). Blood pressure, stroke, and coronary heart disease. part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. The Lancet, 335:827-838. | spa |
dc.relation.references | Demidenko, E. (2013). Mixed models: theory and applications with R. John Wiley & Sons. | spa |
dc.relation.references | DerSimonian, R. and Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7:177-188. | spa |
dc.relation.references | Dewey, M. (2020). CRAN Task View: Meta-Analysis. R Foundation for Statistical Computing, dewey.myzen.co.uk. | spa |
dc.relation.references | Dowle, M. and Srinivasan, A. (2019). data.table: Extension of `data.frame`. R Foundation for Statistical Computing. | spa |
dc.relation.references | Emerson, J. D. (1994). Combining estimates of the odds ratio: the state of the art. Statistical methods in medical research, 3:157-178. | spa |
dc.relation.references | Goodwin, P. J. and Boyd, N. F. (1988). Mammographic parenchymal pattern and breast cancer risk: a critical appraisal of the evidence. American Journal of Epidemiology, 127:1097-1108. | spa |
dc.relation.references | Hardy, R. J. and Thompson, S. G. (1996). A likelihood approach to meta-analysis with random effects. Statistics in medicine, 15:619-629. | spa |
dc.relation.references | Hedges, L. V. and Olkin, I. (1985). Statistical Method for Meta- Analysis. Academic Press, Orlando. | spa |
dc.relation.references | Hennekens, C. H. and Buring, J. E. (1987). Epidemiology in medicine. Little, Brown and Company, Boston, Toronto. | spa |
dc.relation.references | Higgins, J. P. T. and Thompson, S. G. (2002). Quantifying heterogeneity in a metaanalysis. Statistics in Medicine, 21:1539-1558. | spa |
dc.relation.references | Jimenez, C. A., Lopez, D., Alonso, A., Aleixandre, R., Solano, S., and de Granda, J. I. (2021). Covid-19 y tabaquismo: revision sistematica y metaanalisis de la evidencia. Achivos de bronconeumologia, 57:21-34. | spa |
dc.relation.references | Johnson, R. A. and Wichern, D. W. (2002). Applied multivariate statistical analysis. Prentice Hall. | spa |
dc.relation.references | Lin, L. (2017). Statistical methods for meta-analysis. Tesis de doctorado, University of minnesota. | spa |
dc.relation.references | Lin, L. and Chu, H. (2022). altmeta: Alternative Meta-Analysis Methods. R Foundation for Statistical Computing. | spa |
dc.relation.references | Macmahon, S., Peto, R., Cutler, J., Collins, R., Sorlie, P., Neaton, J., Abbott, R., Godwin, J., Dyer, A., and Stamler, J. (1990). Blood pressure, stroke, and coronary heart disease. part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. The Lancet, 335:765-774. | spa |
dc.relation.references | Mayorga, A. J. H. (2004). Inferencia Estadística. Universidad Nacional de Colombia. | spa |
dc.relation.references | Mcneish, D. (2016). On using bayesian methods to address small sample problems. Structural equation modeling: a multidisciplinary journal, 00:1-24. | spa |
dc.relation.references | Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of the royal statistical society, 135:370-384. | spa |
dc.relation.references | Piggot, T. D. (2012). Advances in Meta-Analysis. Springer. | spa |
dc.relation.references | R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. | spa |
dc.relation.references | Ruiz, A. and Morillo, L. E. (2004). Epidemiologia clinica: investigacion clinica aplicada. Editorial medica panamericana. | spa |
dc.relation.references | Schloerke, B. Allen, J. (2021). plumber: An API Generator for R. R Foundation for Statistical Computing. | spa |
dc.relation.references | Schwarzer, G., Carpenter, J. R., and Rucker, G. (2015). Meta-Analysis with R. Springer. | spa |
dc.relation.references | Smyth, G. K. (1989). Generalized linear models with varying dispersion. Journal of the royal statistical society, 51:47-60. | spa |
dc.relation.references | Tang, J. and Liu, J. L. (2000). Misleading funnel plot for detection of bias in meta-analysis. Journal of Clinical Epidemiology, 53:477-484. | spa |
dc.relation.references | Urruatia, G., Tort, S., and Bon ll, X. (2005). Metaanáalisis (quorum). Medicina Clínica (Barcelona), 125:32-37. | spa |
dc.relation.references | Whitehead, A. and Whitehead, J. (1991). A general parametric approach to the metaanalysis of randomized clinical trials. Statistics in Medicine, 10:1665-1677. | spa |
dc.relation.references | Whitehead, J. (1997). The Design and Analysis of Sequential Clinical Trials. Statistics in Practice. | spa |
dc.relation.references | Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. | spa |
dc.relation.references | Wickham, H. (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R Foundation for Statistical Computing. | spa |
dc.relation.references | Wickham, H. (2020). forcats: Tools for Working with Categorical Variables (Factors). R Foundation for Statistical Computing. | spa |
dc.relation.references | Wickham, H., Francois, R., Henry, L., and Muller, K. (2020). dplyr: A Grammar of Data Manipulation. R Foundation for Statistical Computing. | spa |
dc.relation.references | Wickham, H. and Henry, L. (2020a). purrr: Functional Programming Tools. R Foundation for Statistical Computing. | spa |
dc.relation.references | Wickham, H. and Henry, L. (2020b). tidyr: Tidy Messy Data. R Foundation for Statistical Computing. | spa |
dc.relation.references | Wickham, H., Hester, J., and Francois, R. (2018). readr: Read Rectangular Text Data. R Foundation for Statistical Computing. | spa |
dc.relation.references | Wickham, H. and Muller, K. (2021). tibble: Simple Data Frames. R Foundation for Statistical Computing. | spa |
dc.relation.references | Yusuf, S. (1987). Obtaining medically meaningful answers from a overview of randomized clinical trials. Statistics in medicine, 6:281-286. | spa |
dc.relation.references | Zhou, Z., Liang, Y., Zhang, X., Xu, J., Lin, J., Zhang, R., Kang, K., Liu, C., Zhao, C., and Zhao, M. (2020). Low-density lipoprotein cholesterol and alzheimer's disease: a systematic review and meta-analysis. Frontiers in aging neuroscience, 12. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.decs | Cholesterol | eng |
dc.subject.decs | Colesterol | spa |
dc.subject.lemb | Análisis biológico | spa |
dc.subject.lemb | Biological analysis | eng |
dc.subject.proposal | Metaanálisis | spa |
dc.subject.proposal | Modelo de efectos fijos | spa |
dc.subject.proposal | Modelo de efectos aleatorios | spa |
dc.subject.proposal | Heterogeneidad | spa |
dc.subject.proposal | Epidemiología | spa |
dc.subject.proposal | Meta-analysis | eng |
dc.subject.proposal | Fixed-effects model | eng |
dc.subject.proposal | Random-effects model | eng |
dc.subject.proposal | Heterogeneity | eng |
dc.subject.proposal | Epidemiology | eng |
dc.title | Uso de medidas alternativas para determinar la presencia de heterogeneidad en un metaanálisis | spa |
dc.title.translated | Use of alternative measures to establish the presence of heterogeneity in a meta-analysis | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1026259070.2023.pdf
- Tamaño:
- 950.27 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de maestría en Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: