Estudio preliminar de la interacción de geminivirus tomando como modelo plantas de tomate y tabaco

dc.contributor.advisorVaca Vaca, Juan Carlos
dc.contributor.advisorLópez López, Karina
dc.contributor.authorGarcía Torres, Alexandra
dc.contributor.researchgroupIPMA Interacción Planta -Microorganismo -Ambientespa
dc.date.accessioned2021-09-02T15:00:21Z
dc.date.available2021-09-02T15:00:21Z
dc.date.issued2021-08
dc.descriptionIlustraciones, tablasspa
dc.description.abstractNumerosas enfermedades causadas por begomovirus han sido el resultado de eventos de pseudorecombinación, el cual involucra procesos de transcomplementación y transreplicación. El virus del mosaico amarillo de la papa (PYMV) es un begomovirus que afecta el cultivo del tomate en Colombia, el virus del mosaico dorado de croton (CohGMV), el virus del mosaico dorado de rhynchosia de Colombia (RhGMCV), y el virus moteado de verbena (VeMV) fueron aislados de las arvenses Croton hirtus, Rhynchosia minima y Verbena sp. respectivamente, todas ellas asociadas al cultivo de tomate en Valle del Cauca. El objetivo de este trabajo fue evaluar la posibilidad de que se presenten eventos de transcomplementación heteróloga entre los componentes genómicos A y B de los begomovirus aislados de estas arvenses y PYMV. Para cumplir este objetivo, se co- bombardearon por biobalistica hojas jóvenes de tomate y tabaco con mezclas de componentes genómicos de PYMV-A, PYMV-B, CohGMV-A, RhGMCV-A, y VeMV-B. Posibles interacciones virus-virus entre PYMV, CohGMV, RhGMCV, y VeMV, fueron estudiadas en tres niveles a los 21 y 45 dpi: replicación, movimiento y expresión de síntomas. La replicación y movimiento fue evaluada por la detección de los virus inoculados en hojas bombardeadas y hojas apicales jóvenes, mediante PCR empleando oligos específicos para cada virus estudiado. Finalmente, análisis bioinformaticos de los promotores de los genes AL1, AR1, BL1 y BR1 de PYMV, CohGMV, RhGMCV, y VeMV fueron realizados para identificar elementos cis regulatorios comprometidos en replicación (interones) y movimiento (CLEs). Se evidenciaron eventos de transreplicación y transcomplementación en todas las combinaciones heterólogas evaluadas en plantas de tomate, y en algunas evaluadas en tabaco. Este resultado podría indicar que a futuro podrían emerger nuevos pseudorecombinantes begomovirales a partir de la combinación de los componentes genómicos de PYMV, CohGMV, RhGMCV y VeMV, con probabilidad de mayor capacidad infectiva para el cultivo de tomate en Colombia (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsSe germinaron semillas de tabaco (Nicotiana tabacum var. xanthi) in vitro. Las semillas fueron desinfestadas con hipoclorito de sodio al 2%, etanol al 70% y agua destilada estéril, todo este proceso se llevó a cabo en la cabina de flujo laminar, ya que el proceso de germinación se realizó in vitro en medio basal MS (Murashige and Skoog, 1962). Se plantó una semilla por frasco, se llevaron al cuarto de crecimiento con condiciones controladas con un fotoperiodo 16 – 8 h de luz. Este proceso se llevó a cabo en el laboratorio de Cultivo de Téjidos Vegetales. Transcurridos 15 días de germinación y con cuatro hojas verdaderas las plántulas de tomate variedad Santa Clara fueron trasplantadas a materas con capacidad de 1 Kilo que previamente habían sido llenadas con suelo estéril, las plántulas se protegieron en jaulas con malla antitrips ubicándolas en la casa de malla de la Universidad Nacional de Colombia sede Palmira. Una vez pasados 7 días de trasplante, se realizó una fertilización con 15-15-15 complejo N-P-K CENAGRO ® de manera líquida, para ello se utilizaron 30 gr de fertilizante en un litro de agua dejando en agitación media por 24 horas, una vez diluido completamente el fertilizante se adiciono a cada planta a 20ml de la solución; esta fue aplicada hacia el plato de planta con el fin de evitar cualquier daño por quema. Esta fertilización se hizo con base a el manejo convencional que se hace en campo en este cultivo, así se evitaba posibles falsos positivos cuando se presentaran los síntomasspa
dc.description.researchareaProtección de Cultivosspa
dc.format.extent113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80078
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAccotto, G. P., Mullineaux, P. M., Brown, S. C., and Marie, D. (1993). Digitaria streak geminivirus replicative forms are abundant in Sphase nuclei of infected cells. Virology 195: 257-259spa
dc.relation.referencesAdams, M. J., E. J. Lefkowitz, A. M. Q. King, E.B. Cartens. 2013.Recently agreed changes to International Code of Virus Classification and Nomenclature. Arch. Virol. 158:2633-2639spa
dc.relation.referencesAdams, M. J., Lefkowitz, E. J., King, A. M., Harrach, B., Harrison, R. L., Knowles, N. J., ... y Davison, A. J. (2017). Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of virology, 162(8), 2505-2538.spa
dc.relation.referencesAguilar, E., Gomez, B. G., y Lozano-Duran, R. (2020). Recent advances on the plant manipulation by geminiviruses. Current Opinion in Plant Biology, 56, 56-64.spa
dc.relation.referencesAlves-Júnior, M., Alfenas-Zerbini, P., Andrade, E. C., Esposito, D. A., Silva, F. N., da Cruz,spa
dc.relation.referencesA. C. F., ... y Zerbini, F. M. (2009). Synergism and negative interference during co- infection of tomato and Nicotiana benthamiana with two bipartite begomoviruses. Virology, 387(2), 257-266.spa
dc.relation.referencesAmthor JS. 1995. Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biology 1, 243-274.spa
dc.relation.referencesAnderson,P.K.,A.A.Cunningham,N.G.Patel,F.J.Morales,P.R.Epstein,P.Daszak.2004.Emer ginginfectiousdiseasesofplants:pathogenpollution,climatechangeandagrotechnolog ydrivers.TrendsEcol.Evol.19:535544.spa
dc.relation.referencesAndrade, O., Latorre, A., y Escaffi, O. (n.d.). Tomato Mosaic Virus Associated with Shoestring Symptom in Chilean Tomatoes.spa
dc.relation.referencesApablaza,H.Gastón.1999.Patologíadecultivos.Epidemiologíaycontrolholístico.PrimeraEdic ión.EdicionesUniversidadCatólicadeChile.Santiago.Chile.347pspa
dc.relation.referencesArgüello-Astorga G, Herrera-Estrella L, y Rivera-Bustamante R (1994) Experimental and theoretical definition of geminivirus origin of replication. Plant Mol.Biol.26 (2): 553- 556.spa
dc.relation.referencesArgüello-Astorga, G. R., Guevara-González, R. G., Herrera-Estrella, L. R., y Rivera- Bustamante, R. F. (1994). Geminivirus replication origins have a group-specific organization of iterative elements: A model for replication. Virology. 203:90-100spa
dc.relation.referencesArgüello-Astorga, G. R., y Ruiz-Medrano, R. (2001). An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Archives of virology, 146(8), 1465-1485.spa
dc.relation.referencesArguello-Astorga, G., L. Lopez-Ochoa, L. J. Kong, B. M. Orozco, S. B. Settlage, L. Hanley- Bowdoin. 2004. A novel motifin geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J Virol. 78(9):4817-4826.spa
dc.relation.referencesAscencio-Ibañez, J. T., Monsalve-Fonnegra, Z. I., Pruna-Camacho, M. B., Díaz-Plaza, R., y Francisco, R.-B. R. (1999). Los geminivirus. Revista Mexicana de FITOPATOLOGIA, 17(2), 113–127.spa
dc.relation.referencesBarreto, S. (2012). Estudo de plantas invasoras como fonte de begomovírus para o tomateiro.spa
dc.relation.referencesBasavaprabhu, L. Patil, Chakraborty, S., Czosnek, H., Fiallo-Olivé, E., Gilbertson, R. L., Legg, J., ... y Zerbini, F. M. (2020). Plant resistance to geminiviruses.spa
dc.relation.referencesBass, H. W., Nagar, S., Hanley-Bowdoin, L., y Robertson, D. (2000). Chromosome condensation induced by geminivirus infection of mature plant cells. Journal of Cell Science, 113 (Pt 7, 1149–1160.spa
dc.relation.referencesBaulcombe, D. (2004). RNA silencing in plants. Nature 431: 356-363spa
dc.relation.referencesBaulcombe, D. (2007). Molecular biology: amplified silencing. Science 315:199-200 Bernardo P., M. Golden, M. Akram, Naimuddin, N. Nadarajan, E. Fernandez, M. Granier, A. G. Rebelo, M. Peterschmitt. D.P. Martin, P. Roumagnac. 2013. Identification and characterisation of a highly divergent Geminivirus: evolutionary and taxonomic implications. Virus Res.177: 35-45spa
dc.relation.referencesBisaro, D. M. 2006. Silencing suppression by geminivirus proteins. Virol. 344(1):158-168 Blanc S, Michalakis Y. 2016. Manipulation of hosts and vectors by plant viruses and impact of the environment. Current Opinion in Insect Science 16, 36-43.spa
dc.relation.referencesBlanco-Valdes, Y. (2016). Review The role of weeds as a component of biodiversity in agroecosystems. Cultivos Tropicales, 37(October), 34–56.spa
dc.relation.referencesBock KR .1982. Enfermedades geminivirus de cultivos tropicales. Plant Dis. 66: 266 – 70 Böttcher, B., Unseld, S., Ceulemans, H., Russell, R. B., y Jeske, H. (2004). Geminate structures of African cassava mosaic virus. Journal of virology, 78(13), 6758-6765. Briddon, R. W., Bedford, I. D., Tsai, J. H., y Markham, P. G. (1996). Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo- curly top virus, suggests a recombinant origin. Virology, 219(2), 387–394.spa
dc.relation.referencesBriddon, R. W., Bull S. E., Amin, I., Idris A. M., Mansoor S., Bedford I. D., Dhawan, P., Rishi,N, Siwatch, S. S., Abdel-Salam, A. M., Brown, J. K., Zafar, Y., Markham, P.G. (2003). Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology. 312: 106–121spa
dc.relation.referencesBriddon, R. W., Patil, B. L., Bagewadi, B., Nawaz-Ul-Rehman, M. S., y Fauquet, C. M. (2010). Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evolutionary Biology, 10(1).spa
dc.relation.referencesBrown J.K.,K. Mills Lujan, A.M.Idris.2001. Phylogenetic analysis of Melon chlorotic leaf curl virus from Guatemala: Another emergent species in the Squash leaf curl virus clade. Virus Res. 158:257-262.spa
dc.relation.referencesBrown, J. K., Idris, a M., Alteri, C., y Stenger, D. C. (2002). Emergence of a New Cucurbit- Infecting Begomovirus Species Capable of Forming Viable Reassortants with Related Viruses in the Squash leaf curl virus Cluster. Phytopathology, 92(7), 734– 42.spa
dc.relation.referencesBrown JK, Bird J. 1992. Whitefly-transmitted geminiviruses and associated disorders in the American and the Caribbean basin. Plant Dis. 76:220–25spa
dc.relation.referencesBrown, J. K., C. M. Fauquet, R. W. Briddon, M. Zerbini, E. Morions, J. Navas Castillo. 2012. Family Geminiviridae. En: King A.M.Q., M.J. Adams, E.B. Carstens, E.J. Lefkowitz (eds). Virus Taxonomy. Classification and Nomenclature of Viruses. Elsevier Academic Press. Ninth Report of the International Committee on Taxonomy of Viruses. London, UK.pp 351-373.spa
dc.relation.referencesBrown, J., Zerbini, F., Navas, J., Moriones, E., Ramos, R., Silva, J., … Varsani, A. (2015). Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology, 160(6), 1593–1619spa
dc.relation.referencesCanto T., M. A. Aranda, A. Fereres. 2009.Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran- borne plant viruses. Glob. Change Biol. 15:1884-1894spa
dc.relation.referencesCantú-Iris, M., Pastor-Palacios, G., Mauricio-Castillo, J. A., Bañuelos-Hernández, B., Avalos-Calleros, J. A., Juárez-Reyes, A., ... y Argüello-Astorga, G. R. (2019). Analysis of a new begomovirus unveils a composite element conserved in the CP gene promoters of several Geminiviridae genera: Clues to comprehend the complex regulation of late genes. PloS one, 14(1), e0210485spa
dc.relation.referencesCarrington, J. C., Kasschau, K. D., Mahajan, S. K., y Schaad, M. C. (1996). Cell-to-cell and long-distance transport of viruses in plants. The Plant Cell, 8(10), 1669.,spa
dc.relation.referencesCarvajal-Yepes, M., Zambrano, L., Bueno, J. M., Raatz, B., y Cuellar, W. J. (2017). Complete genome sequence of bean leaf crumple virus, a novel begomovirus infecting common bean in Colombia. Archives of Virology, 162(6), 1773–1776.spa
dc.relation.referencesCasco R .2002 . Matthews Plant Virology. Nueva York: Académica .1001 pp.spa
dc.relation.referencesCastillo-Urquiza, G. P., Beserra, J. E. a, Bruckner, F. P., Lima, A. T. M., Varsani, A., Alfenas-Zerbini, P., y Murilo Zerbini, F. (2008). Six novel Begomoviruses infecting tomato and associated weeds in Southeastern Brazil. Archives of Virology, 153(10), 1985–1989.spa
dc.relation.referencesCazzonelli, C. I., Burke, J., y Velten, J. (2005). Functional characterization of the geminiviral conserved late element (CLE) in uninfected tobacco. Plant Molecular Biology, 58(4), 465–81.spa
dc.relation.referencesChakraborty, S., Vanitharani, R., Chattopadhyay, B., y Fauquet, C. M. (2008). Supervirulent pseudorecombination and asymmetric synergism between genomic components of two distinct species of Begomovirus associated with severe tomato leaf curl disease in India. The Journal of General Virology, 89(Pt 3), 818–28. http://doi.org/10.1099/vir.0.82873-0spa
dc.relation.referencesChakraborty, S., P. K. Pandey, M. K. Banerjee, G. Kalloo, C. M. Fauquet. 2003. Tomato leaf curl Gujarat virus, a New Begomovirus Species Causing a Severe Leaf Curl Disease of Tomato in Varanasi, India.Phytopathology.93(12):1485-95.spa
dc.relation.referencesChellappan, P., Vanitharani, R., y Fauquet, C. M. (2004). Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. Journal of virology, 78(14), 7465-7477.spa
dc.relation.referencesCzosnek, H. (Ed.). (2007). Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance. Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance.spa
dc.relation.referencesDíaz-Pendón, J. A., Sánchez-Campos, S., Fortes, I. M., y Moriones, E. (2019). Tomato yellow leaf curl sardinia virus, a begomovirus species evolving by mutation and recombination: A challenge for virus control. Viruses, 11(1), 45.spa
dc.relation.referencesDa Silva, S., Castillo-Urquiza, G., Hora Júnior, B., Assunção, I., Lima, G. S., Pio-Ribeiro, G., … y Zerbini, F. M. (2011). High genetic variability and recombination in a Begomovirus population infecting the ubiquitous weed Cleome affinis in northeastern Brazil. Archives of Virology, 156(12), 2205–2213.spa
dc.relation.referencesDoebley, J., Stec, A., y Hubbard, L. (1997). The evolution of apical dominance in maize.Nature, 386(6624), 485–8.spa
dc.relation.referencesDomínguez-Durán, G., Rodríguez-Negrete, E. A., Morales-Aguilar, J. J., Camacho-Beltrán, E., Romero-Romero, J. L., Rivera-Acosta, M. A., Leyva-López, N. E., Arroyo- Becerra, A., y Méndez-Lozano, J. (2018). Molecular and biological characterization of Watermelon chlorotic stunt virus (WmCSV): An Eastern Hemisphere begomovirus introduced in the Western Hemisphere. Crop Protection, 51-55. Dry, I. B., Krake, L. R., Rigden, J. E., y Rezaian, M. A. (1997). A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proceedings of the National Academy of Sciences, 94(13), 7088-7093.spa
dc.relation.referencesDunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C., y Voinnet, O. (2004). RETRACTED: Probing the MicroRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. The Plant Cell, 16(5), 1235-1250.spa
dc.relation.referencesEagle, P. a, y Hanley-Bowdoin, L. (1997). cis elements that contribute to geminivirus transcriptional regulation and the efficiency of DNA replication. Journal of Virology, 71(9), 6947–6955.spa
dc.relation.referencesErdmann J. B., Shepherd D. N., Martin D. P., Varsani A., Rybicli E. P., Jeske H. Replicative intermediates of maize sreak virus found during leaf development. (2010). J. Gen. Virol. 91: 1077-81.spa
dc.relation.referencesFaria, J. C., R. L. Gilbertson, S. F. Hanson, F. J. Morales, P. Ahlquist,A. O. Loniello, D. P. Maxwell. 1994. Bean golden mosaic geminivirus type II isolates from the Dominican Republic and Guatemala: Nucleotide sequences, infectious pseudorecombinants, and phylogenetic relationships. Phytopathology 84:321-329.spa
dc.relation.referencesFauquet C. M., R. W. Briddon, J.K.Brown, E. Moriones, J. Stanley, M. Zerbini, X. Zhou. 2008. Geminivirus strain demarcation and nomenclature. Arch Virol. 153:783-821spa
dc.relation.referencesFargette, D., Konate, G., Fauquet, C., Muller, E., Peterschmitt, M., y Thresh, J. M. (2006). Molecular ecology and emergence of tropical plant viruses. Annu. Rev. Phytopathol., 44, 235-260.spa
dc.relation.referencesFauquet, C., J.C. Thouvenel.1977. Isolation of the rice yellow mottle virus in Ivory Coast.Plant Dis. Rep.61: 443-446.spa
dc.relation.referencesFondong, V. N. (2013). Geminivirus protein structure and function. Molecular Plant Pathology, 14(6), 635–649spa
dc.relation.referencesFontenele, R. S., Lamas, N. S., Lacorte, C., Lacerda, A. L. M., Varsani, A., y Ribeiro, S. G. (2017). A novel geminivirus identified in tomato and cleome plants sampled in Brazil. Virus Research, 240, 175–179.spa
dc.relation.referencesFontes, E. P., P. A. Eagle, P.S. Sipe, V. A. Luckow, L. Hanley-Bowdoin. 1994. Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J.Biol.Chem. 269(11):8459-65.spa
dc.relation.referencesFrischmuth S, Frischmuth T, Latham JR, y Stanley J (1993a) Transcriptional analysis of the virion-sense genes of the geminivirus beet curly top virus. Virology197 (1): 312-319.spa
dc.relation.referencesFrischmuth, T., Roberts, S., Von, A. A., and Stanley, J. 1993. Specificity of bipartite geminivirus movement proteins. Virology 196:666-673.spa
dc.relation.referencesFu X, Ye L, Kang L, Ge F. 2010. Elevated CO2 shifts the focus of tobacco plant defences from Cucumber mosaic virus to the green peach aphid. Plant, Cell and Environment 33, 2056-2064spa
dc.relation.referencesFu X, Ye L, Kang L, Ge F. 2010. Elevated CO2shifts the focus of tobacco plant defences from Cucumber mosaic virusto the green peach aphid. Plant, Cell and Environment 33, 2056-2064spa
dc.relation.referencesFuller, C. 1901. Maelie variegation. First report of the government entomologist 1899- 1900.17-19spa
dc.relation.referencesGafni Y y Epel BL (2002) The role of host and viral proetins in intra- and inter-celular trafficking of geminiviruses. Physiological and Molecular Plant Pathology60 231-241 García-Moreno, R. (2005). Desarrollo de un método molecular para la caracterización funcional rápida de promotores de geminivirus. Instituto Potosino de Investigación Científica y Tecnológica A.C.spa
dc.relation.referencesGarrido-Ramírez, E. R., M. R. Sudarshana, R. L. Gilbertson.2002. Bean golden yellow mosaic virus from Chiapas, Mexico: Characterization, Pseudorecombination with other Bean-Infecting Geminiviruses and Germ Plasm Screening. Phytopathology. 90(11):1224-32.spa
dc.relation.referencesGergerich, R. C., V. V. Dolja. 2006. Introduction to Plant Viruses, the Invisible Foe. The Plant Health Instructor. DOI: 10.1094/PHI-I-2006-0414-01 URL: https://www.apsnet.org/edcenter/disandpath/viral/introduction/Pages/PlantViruses. aspx. Consultado: 10/01/2020spa
dc.relation.referencesGilbertson, R. L., Hidayat, S. H., Paplomatas, E. J., Rojas, M. R., Hou, Y. M., y Maxwell, D. P. (1993). Pseudorecombination between infectious cloned DNA components of tomato mottle and bean dwarf mosaic geminiviruses. The Journal of General Virology, 74 (Pt 1), 23–31.spa
dc.relation.referencesGilbertson, R. L., Sudarshana, M., Jiang, H., Rojas, M. R., y Lucas, W. J. (2003). Limitations on geminivirus genome size imposed by plasmodesmata and virus- encoded movement protein: insights into DNA trafficking. The Plant Cell, 15(11), 2578-2591.spa
dc.relation.referencesGutierrez, C. (2000). "Geminiviruses and the plant cell cycle." Plant Mol Biol 43(5-6): 763- Gutierrez, C. (2002). Strategies for geminivirus DNA replication and cell cycle interference. Physiological and Molecular Plant Pathology, 60(5), 219–230.spa
dc.relation.referencesHaible, D., Kober, S., y Jeske, H. (2006). Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. Journal of Virological Methods, 135(1), 9–16.spa
dc.relation.referencesHammond J, Lecoq H, Raccah B. 1999. Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes. Advances in Virus Research 54, 189- 314.spa
dc.relation.referencesHanley-Bowdoin L., S. B. Settlage, B. M. Orozco, S. Nagar, D. Robertson. 1999. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Plant Sci. 18:71-106.spa
dc.relation.referencesHanley-Bowdoin, L., Settlage, S. B., y Robertson, D. (2004). Reprogramming plant gene expression: A prerequisite to geminivirus DNA replication. Molecular Plant Pathology.spa
dc.relation.referencesHanley-Bowdoin, L., Bejarano, E. R., Robertson, D., y Mansoor, S. (2013). Geminiviruses: masters at redirecting and reprogramming plant processes. Nature Reviews Microbiology, 11(11), 777–788.spa
dc.relation.referencesHarrington R, Clark SJ, Welham SJ, Verrier PJ, Denholm CH, Hullé M, Maurice D, Rounsevell MD, Cocu N. 2007. Environmental change and the phenology of European aphids. Global Change Biology 13, 1550-1564.spa
dc.relation.referencesHarrison, B. D., y Robinson, D. J. (1999). Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (begomoviruses). Annual review of phytopathology, 37(1), 369-398.spa
dc.relation.referencesHernández Barrera, J. R. (2020). IDENTIFICACIÓN Y CARACTERIZACIÓN MOLECULAR DE Cucurbit leaf crumple virus (CuLCrV); UN BEGOMOVIRUS BIPARTITA ASOCIADO AL MELÓN DE BAJA CALIFORNIA SUR (Masters thesis, Centro de Investigaciones Biológicas del Noroeste, SC).spa
dc.relation.referencesHernández-Espinal LA, Enríquez-Verdugo I, Melgoza-Villagómez CM, Retes-Manjarrez JE, Velarde-Félix S, Linares-Flores PJ, et al., . Análisis filogenético y distribución de Begomovirus en el cultivo del Chile (Capsicum annuum L.) en Sinaloa, México. Rev Fitotec Mex. 2018;41(2):149-157spa
dc.relation.referencesHernández-Zepeda, C., Argüello-Astorga, G., Idris, A. M., Carnevali, G., Brown, J. K., y Moreno-Valenzuela, O. A. (2009). Molecular characterization and phylogenetic relationships of Desmodium leaf distortion virus (DeLDV): A new begomovirus infecting Desmodium glabrum in Yucatan, Mexico. Virus Genes, 39(3), 371–374.spa
dc.relation.referencesHernández-Zepeda, C., Brown, J. K., Moreno-Valenzuela, O. A., Argüello-Astorga, G., Idris, A. M., Carnevali, G., y Rivera-Bustamante, R. F. (2010). Characterization of Rhynchosia yellow mosaic Yucatan virus, a new recombinant begomovirus associated with two fabaceous weeds in Yucatan, Mexico. Archives of Virology, 155(10), 1571–1579.spa
dc.relation.referencesHernández-Zepeda, C., Idris, A. M., Carnevali, G., Brown, J., y Moreno-Valenzuela, O. A. (2007). Preliminary identification and coat protein gene phylogenetic relationships of begomoviruses associated with native flora and cultivated plants from the Yucatan Peninsula of Mexico. Virus Genes, 35(3), 825–833.spa
dc.relation.referencesHerrera-Vásquez, J. A., Alfaro-Fernández, A., Córdoba-Sellés, M., Cebrián, M. C., Font, M. I., y Jordá, Y. C. (2009). First Report of Tomato torrado virus Infecting Tomato in Single and Mixed Infections with Cucumber mosaic virus in Panama. Plant Disease Journal, 93, 198. https://doi.org/https://doi.org/10.1094/PDIS-93-2-0198Aspa
dc.relation.referencesHipper, C., Brault, V., Ziegler-Graff, V., y Revers, F. (2013). Viral and cellular factors involved in phloem transport of plant viruses. Frontiers in plant science, 4, 154.spa
dc.relation.referencesHöfer, P., Engel, M., Jeske, H., y Frischmuth, T. (1997). Host range limitation of a pseudorecombinant virus produced by two distinct bipartite geminiviruses. Molecular Plant-Microbe Interactions, 10(8), 1019–1022.spa
dc.relation.referencesHou, Y. M., and Gilbertson, R. L. (1996). Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J. Virol. 70: 5430- 5436spa
dc.relation.referencesHull, R. 2002. Matthews Plant Virology. 4th Edition. Academic Press, San Diego, CA.1056p.spa
dc.relation.referencesHung, H. C., y Petty, I. T. (2001). Functional equivalence of late gene promoters in bean golden mosaic virus with those in tomato golden mosaic virus. Journal of General Virology, 82(3), 667-672.spa
dc.relation.referencesInernational Committee on Taxonomy of Viruses (ICTV). 2020. El Coité Internacional de Taxonomía de Virus; ICTV, se ocupa se la designación y denominación de taxones (nombre y clasificación) de los virus URL: https://talk.ictvonline.orgspa
dc.relation.referencesInoue-Nagata, A. K., Lima, M. F., y Gilbertson, R. L. (2016). A review of geminivirus diseases in vegetables and other crops in Brazil: current status and approaches for management. Horticultura Brasileira, 34(1), 8-18.spa
dc.relation.referencesJara Tejada, F., López López, K., y Vaca Vaca, J. (2016). Diversidad de Begomovirus presentes en arvenses asociadas a cultivos de tomate (Solanum lycopersicum L) en el Suroriente del Valle del Cauca. Universidad Nacional de Colombia sede Palmiraspa
dc.relation.referencesJaramillo, J. E., y Tamayo, P. J. (2013). Enfermedades del tomate, berenjena en Colombia.Guía para su diagnóstico y manejo.spa
dc.relation.referencesJeske H. (2009) Geminiviruses. In: de Villiers EM., Hausen H.. (eds) TT Viruses. Current Topics in Microbiology and Immunology, vol 331. Springer, Berlin, Heidelbergspa
dc.relation.referencesJeske, H., Lütgemeier, M., y Preiß, W. (2001). DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO Journal, 20(21), 6158–6167.spa
dc.relation.referencesJohne, R., Müller, H., Rector, A., van Ranst, M., y Stevens, H. (2009). Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends in Microbiology, 17(5), 205–211.spa
dc.relation.referencesJohnson J. 1922. The relation of air temperature to the mosaic disease of potatoes and other plants. Phytopathology 12, 438-440.spa
dc.relation.referencesJovel, J., Reski, G., Rothenstein, D., Ringel, M., Frischmuth, T., y Jeske, H. (2004). Sida micrantha mosaic is associated with a complex infection of begomoviruses different from Abutilon mosaic virus. Archives of Virology, 149(4), 829–841. https://doi.org/10.1007/s00705-003-0235-1spa
dc.relation.referencesJuárez, M., Rabádan, M. P., Díaz-Martínez, L., Tayahi, M., Grande-Pérez, A., y Gómez, P. (2019). Natural hosts and genetic diversity of the emerging tomato leaf curl New Delhi virus in Spain. Frontiers in Microbiology, 10(FEB)spa
dc.relation.referencesJyothsna, P., Haq, Q. M. I., Singh, P., Sumiya, K. V., Praveen, S., Rawat, R., ... y Malathi, V. G. (2013). Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Applied microbiology and biotechnology, 97(12), 5457-5471.spa
dc.relation.referencesKanakala, S., Jyothsna, P., Shukla, R., Tiwari, N., Veer, B. S., Swarnalatha, P., ... y Malathi,V. G. (2013). Asymmetric synergism and heteroencapsidation between two bipartite begomoviruses, tomato leaf curl New Delhi virus and tomato leaf curl Palampur virus. Virus research, 174(1-2), 126-136.spa
dc.relation.referencesKleinow, T., Nischang, M., Beck, A., Kratzer, U., Tanwir, F., Preiss, W., … Jeske, H. (2009). Three C-terminal phosphorylation sites in the Abutilon mosaic virus movement protein affect symptom development and viral DNA accumulation. Virology, 390(1), 89–101.spa
dc.relation.referencesKosugi, S., y Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant Journal, 30(3), 337–348.spa
dc.relation.referencesKumar, R. V. (2019). Classification, Taxonomy and Gene Function of Geminiviruses and Their Satellites. In Geminiviruses (pp. 1-16). Springer, Cham.spa
dc.relation.referencesLa gestión de los geminivirus es un reto mundial debido a la amplia distribución de enfermedades económicamente importantes causadas por estos virus.spa
dc.relation.referencesLaufs, J., Jupin, I., David, C., Schumacher, S., Heyraud-Nitschke, F., and Gronenborn, B. (1995). Geminivirus replication: genetic and biochemical characterization of Rep protein function, a review. Biochimie 77: 765-773.spa
dc.relation.referencesLaufs, J., Schumacher, S., Geisler, N., Jupin, I., y Gronenborn, B. (1995). Identification of the nicking tyrosine of geminivirus Rep protein. FEBS Letters, 377(2), 258–262.spa
dc.relation.referencesLazarowitz, S. G., y Shepherd, R. J. (1992). Geminiviruses: Genome structure and gene function. Critical Reviews in Plant Sciences, 11(4), 327–349.spa
dc.relation.referencesLazarowitz, S. G., y Beachy, R. N. (1999). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. The Plant Cell Online, 11(4), 535- 548.spa
dc.relation.referencesLefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G., y Smith, D. B. (2018). Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Research, 46(D1), D708–D717. https://doi.org/10.1093/nar/gkx932spa
dc.relation.referencesLegg, J. P., Owor, B., Sseruwagi, P., y Ndunguru, J. (2006). Cassava mosaic virus disease in East and Central Africa: epidemiology and management of a regional pandemic. Advances in virus research, 67, 355-418.spa
dc.relation.referencesLegg, J., C. Fauquet.2004. Cassava mosaic geminiviruses in Africa. Plant. Mol. Bio. 56:585. Londoño, A., Riego-Ruiz, L., y Argüello-Astorga, G. R. (2010). DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs. Archives of Virology, 155(7), 1033–1046.spa
dc.relation.referencesLópez-López, K., Jara-Tejada, F., y Vaca-Vaca, J. C. (2014). Nuevos hospederos alternativos de Begomovirus identificados en el Valle del Cauca. Revista Fitopatología Colombiana, 38(September), 19–23.spa
dc.relation.referencesLópez-López, K., Morales-Eusse, J., y Vaca-Vaca, J. C. (2017). Caracterización molecular de un begomovirus que afecta Capsicum spp. en Colombia. Congreso de Fitopatología, 35. Termas de Chillán (Chile).spa
dc.relation.referencesLópez-López, K.; Rodríguez-Mora, D.; y Vaca-Vaca, J. (2013). Optimización de las condiciones de inoculación por biobalística de un Begomovirusen tomate y tabaco. Rev. Col. Biot. 15(2), 8 - 17.spa
dc.relation.referencesLough, T., Lucas, W.J.2006. Integrative plant biology: Role of phloem long-distance macromolecular trafficking. Annual Review of Plant Biology. 57:203-232.spa
dc.relation.referencesLozano, G., Trenado, H., Fiallo, E., Chirinos, D., Geraud, F., Briddon, R., y Navas, J. (2016). Characterization of Non-coding DNA Satellites Associated with Sweepoviruses (Genus Begomovirus , Geminiviridae ) – Definition of a Distinct Class of Begomovirus-Associated Satellites. Frontiers in Microbiology, 7(February), 1–13spa
dc.relation.referencesLucas W. J. 2006. Plant viral movement proteins: agents for cell to-cell trafficking of viral genomes. Virology. 344 (1): 169-184spa
dc.relation.referencesMadsen E. 1973. Effect of CO2-concentration on the morphological, histological and cytological changes in tomato plants. Acta Agriculturae Scandinavica 23, 241-246. Martínez, A., Karine, A., Morales, G., y Vallejo Cabrera, F. A. (2008). Caracterización molecular de un Begomovirusdel tomate en el Valle del Cauca, Colombia, y búsqueda de fuentes de resistencia para el mejoramiento de la variedad Unapal Maravilla. Acta Agronómica, 57(3), 167-173.spa
dc.relation.referencesMarwal A., A. K. Sahu, R. K. Gaur. 2014. Chapter 7 – Transmission and host interaction of Geminivirus in weeds. En: Gaur, R.K., T. Hohn. P. Sharma(eds). Plant Virus- Host Interaction. Academic Press. First edition. USA. pp 143-161spa
dc.relation.referencesMéndez-Lozano, J., Torres-Pacheco, I., Fauquet, C. M., y Rivera-Bustamante, R. F. (2003). Interactions between geminiviruses in a naturally occurring mixture: Pepper huasteco virus and Pepper golden mosaic virus. Phytopathology, 93(3), 270-277.spa
dc.relation.referencesMéndez-Lozano, J., R.F.Rivera-Bustamante,C.M.Fauquet, and R. De la Torre- Almaraz. 2001. Pepper golden mosaic virus are geminivirus affecting tomatillo (Physalis ixocarpa) crops in Mexico. Plant Dis.85:1291.spa
dc.relation.referencesMoffat, A.S.1999. PLANT PATHOLOGY: Geminiviruses Emerge as Serious Crop Threat. Science. 286(5446):1835-1835.spa
dc.relation.referencesMorales, F. J., Muñoz, C., Castaño, M., y Velasco, A. C. (2000). Geminivirus transmitidos por mosca blanca en Colombia. Fitopatología colombiana, 24(1-2), 95–98.spa
dc.relation.referencesMorales, Francisco y Anderson, P. (2001). The emergence and dissemination of white y- transmitted geminiviruses in Latin America Brief Review. Archives of Virology, 415– 441.spa
dc.relation.referencesMore, P., Agarwal, P., y Agarwal, P. K. (2019). Geminiviruses: Molecular biodiversity and global distribution in Jatropha. Physiological and Molecular Plant Pathology, 108, 101439spa
dc.relation.referencesMorra, M. R., y Petty, I. T. (2000). Tissue specificity of geminivirus infection is genetically determined. The Plant Cell, 12(11), 2259-2270.spa
dc.relation.referencesMurashige T y Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol.Plant.15 473-497spa
dc.relation.referencesNakhla MK, Maxwell DP. 1998. Epidemiology and management of tomato leaf curl disease. In Plant Virus Disease Control, ed. A Hadidi, RK Khetarpal, H Koganezawa, pp. 565–83. St. Paul: APS Pressspa
dc.relation.referencesNavas-Castillo J., Fiallo-Olive E., Sanchez-Campos S. (2011). Enfermedades de virus emergentes transmitidas por moscas blancas. Annu Rev. Phytopathol. 49 219– 248. 10.1146 / annurev-phyto-072910-095235spa
dc.relation.referencesNawaz-ul-Rehman, M. S., y Fauquet, C. M. (2009). Evolution of geminiviruses and their satellites. FEBS Letters, 583(12), 1825–32.spa
dc.relation.referencesNCBI. (2019). National Center for Biotechnology Information. Retrieved May 30, 2019, from GenBank website: https://www.ncbi.nlm.nih.gov/genbank/spa
dc.relation.referencesNoueiry, A. O., J. L. William, R. L. Gilbertson. 1994. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell. 76(5):925-932spa
dc.relation.referencesObregón, V.2017. Guía para la identificación delas enfermedades de las cucurbitáceas. Ediciones INTA. Primera Edición. Corrientes, Argentina 35p.spa
dc.relation.referencesOwor, B., Legg, J. P., Okao‐Okuja, G., Obonyo, R., y Ogenga‐Latigo, M. W. (2004). The effect of cassava mosaic geminiviruses on symptom severity, growth and root yield of a cassava mosaic virus disease‐susceptible cultivar in Uganda. Annals of applied biology, 145(3), 331-337.spa
dc.relation.referencesPadidam, M., Sawyer, S., y Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology, 265(2), 218–225.spa
dc.relation.referencesPetty, l.T.D., Miller. C.G., Meade-Hash, T.J., and Schaffer, R. L.1995 Complementable host adaptation defects in bipartite geminivirus. Virology 212:263-267spa
dc.relation.referencesPita, J. S., Fondong, V. N., Sangaré, A., Kokora, R. N. N., y Fauquet, C. M. (2001). Genomic and biological diversity of the African cassava geminiviruses. Euphytica, 120(1), 115–125.spa
dc.relation.referencesPradhan, B., Tien, V. Van, Dey, N., y Mukherjee, S. K. (2017). Molecular Biology of Geminivirus DNA Replication. Viral Replication, 2–31.spa
dc.relation.referencesPradhan, B., Van Tien, V., Dey, N., y, y Mukherjee, S. K. (2017). Molecular Biology of Geminivirus DNA Replication. Avid Science, (May). Retrieved from https://www.researchgate.net/publication/316456253spa
dc.relation.referencesPreiss, W., H. Jeske. 2003. Multitasking in replication is common among geminiviruses. J.Virol. 77(5):2972-80.spa
dc.relation.referencesPrior SA, Runion GB, Marble SC, Rogers HH, Gilliam CH, Torbert HA. 2011. A review of elevated atmospheric CO2effects on plant growth and water relations: implications for horticulture. HortScience 46, 158-162spa
dc.relation.referencesPrior SA, Runion GB, Marble SC, Rogers HH, Gilliam CH, Torbert HA. 2011. A review of elevated atmospheric CO2effects on plant growth and water relations: implications for horticulture. HortScience 46, 158-162.spa
dc.relation.referencesRaghavan, V., Malik, P. S., Choudhury, N. R. y Mukherjee, S. K. 2004. The DNA-A Component of a Plant Geminivirus (Indian Mung Bean Yellow Mosaic Virus) Replicates in Budding Yeast Cells. J. Virol. 78:2405–2413spa
dc.relation.referencesRamos, P. L., Guevara-González, R. G., Peral, R., Ascencio-Ibañez, J. T., Polston, J. E., Argüello-Astorga, G. R., … Rivera-Bustamante, R. F. (2003). Tomato mottle Taino virus pseudorecombines with PYMV but not with ToMoV: Implications for the delimitation of cis- and trans-acting replication specificity determinants. Archives of Virology, 148(9), 1697–1712.spa
dc.relation.referencesRamesh, S. V., Sahu, P. P., Prasad, M., Praveen, S., y Pappu, H. R. (2017). Geminiviruses and plant hosts: a closer examination of the molecular Arms race. Viruses, 9(9), 256.spa
dc.relation.referencesRentería-Canett, I., Xoconostle-Cázares, B., Ruiz-Medrano, R., y Rivera-Bustamante, R. F. (2011). Geminivirus mixed infection on pepper plants: synergistic interaction between PHYVV and PepGMV. Virology journal, 8(1), 104spa
dc.relation.referencesRodríguez, I., Morales, H., Bueno, J. M., y Cardona, C. (2005). El biotipo B de bemisia tabaci (Homoptera: Aleyrodidae) adquiere mayor importancia en el valle del cauca. Revista Colombiana de Entomologia, 31(1), 21–28.spa
dc.relation.referencesRodríguez-Negrete, E. A., Carrillo-Tripp, J., y Rivera-Bustamante, R. F. (2009). RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. Journal of virology, 83(3), 1332-1340.spa
dc.relation.referencesRojas, M. R., Hagen, C., Lucas, W. J., y Gilbertson, R. L. (2005). Exploiting Chinks in the Plant’s Armor: Evolution and Emergence of Geminiviruses. Annual Review of Phytopathology, 43(1), 361–394.spa
dc.relation.referencesRoossinck, M. J., y García-Arenal, F. (2015). Ecosystem simplification, biodiversity loss and plant virus emergence. Current Opinion in Virology, 10, 56–62.spa
dc.relation.referencesRoye, M. E., McLaughlin, W. a, Nakhla, M. K., y Maxwell, D. P. (1997). Genetic diversity among geminiviruses associated with the weed species Sida spp., Macroptilium lathyroides, and Wissadula amplissima from Jamaica. Plant Disease, 81(11), 1251– 1258spa
dc.relation.referencesRuiz-Medrano R, Guevara-Gonzalez RG, Arguello-Astorga GR, Monsalve-Fonnegra Z, Herrera-Estrella LR, y Rivera-Bustamante RF (1999) Identification of a sequence element involved in AC2-mediated transactivation of the pepper huasteco virus coat protein gene. Virology253 (2): 162-169.spa
dc.relation.referencesRybicki E. P., G. Pietersen. 1999. Plant Virus Disease Problems in The Developing World. Adv. Virus Res 53: 127-175spa
dc.relation.referencesSaenz, A. I., Fraile, A., Garcıa-Arenal, F., Zhou, X., Robinson, D. J., Khalid, S., y Harrison, B. D. (2000). Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. Journal of General Virology, 81(7), 1839-1849spa
dc.relation.referencesSalati R, Nahkla MK, Rojas MR, Guzman P, Jaquez J, et al., . 2002. Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92:487–96spa
dc.relation.referencesSalazar, L., y Hincapié, E. (2011). Las arvenses y su manejo en los cafetales. In Sistema de Producción del Café en Colombia (Vol. 5, p. 30).spa
dc.relation.referencesSánchez-Campos, S., Díaz, J. A., Monci, F., Bejarano, E. R., Reina, J., Navas-Castillo, J.,Moriones, E. (2002). High Genetic Stability of the Begomovirus Tomato yellow leaf curl Sardinia virus in Southern Spain Over an 8-Year Period. Phytopathology, 92(8), 842–849spa
dc.relation.referencesSanderfoot, A. A., S. G. Lazarowitz. 1996. Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol. 6(9):353-8.spa
dc.relation.referencesSaunders, K., Bedford, I. D., Tetsukazu, Y. and Stanley, J. 2003. Aetiology: The earliest recorded plant virus disease. Nature 422: 831.spa
dc.relation.referencesSchnippenkoetter, W. H., Martin, D. P., Hughes, F. L., Fyvie, M., Willment, J. A., James, D., … Rybicki, E. P. (2001). The relative infectivities and genomic characterisation of three distinct mastreviruses from South Africa. Archives of Virology, 146(6), 1075–1088.spa
dc.relation.referencesSeal, S. E., F. vandenBosch, M.J. Jeger. 2006. Factors Influencing Begomovirus Evolution and Their IncreasingGlobal Significance: Implications for Sustainable Control. Critical Reviews in Plant Sciences, 25(1), 23–46spa
dc.relation.referencesShimada-Beltrán, H., y Rivera-Bustamante, R. F. (2007). Early and late gene expression in pepper huasteco yellow vein virus. Journal of General Virology, 88(11), 3145– 3153.spa
dc.relation.referencesShukla, N., Verma, S., Babu, G., y Saxena, S. (2017). Strategy for Generic Resistance Against Begomoviruses Through RNAi. In Begomoviruses: Occurrence and Management in Asia and Africa (pp. 137–156). Singapore: Springer Nature Singapore Pte Ltd. 2017. https://doi.org/10.1007/978-981-10-5984-1spa
dc.relation.referencesSilva, S. J. C., Castillo-Urquiza, G. P., Hora-Júnior, B. T., Assunção, I. P., Lima, G. S. a, Pio-Ribeiro, G., … Zerbini, F. M. (2012). Species diversity, phylogeny and genetic variability of Begomovirus populations infecting leguminous weeds in northeastern Brazil. Plant Pathology, 61(3), 457–467.spa
dc.relation.referencesSinghal, P., Nabi, S.U., Yadav, M.K. et al., . Mixed infection of plant viruses: diagnostics, interactions and impact on host. J Plant Dis Prot (2020)spa
dc.relation.referencesSingh, A. K., Chattopadhyay, B., y Chakraborty, S. (2012). Biology and interactions of two distinct monopartite begomoviruses and betasatellites associated with radish leaf curl disease in India. Virology journal, 9(1), 43.spa
dc.relation.referencesSmith, H. A., Seijo, T. E., Vallad, G. E., Peres, N. A., y Druffel, K. L. (2015). Evaluating weeds as hosts of tomato yellow leaf curl virus. Environmental Entomology, 44(4), 1101–1107.spa
dc.relation.referencesSobrinho, R. R., Xavier, C. a. D., Pereira, H. M. D. B., Lima, G. S. D. a., Assuncao, I. P., Mizubuti, E. S. G., … Zerbini, F. M. (2014). Contrasting genetic structure between two Begomoviruses infecting the same leguminous hosts. Journal of General Virology, 95(Pt_11), 2540–2552.spa
dc.relation.referencesSolórzano-Morales, Á., Castro-Vásquez, R., Barboza-Vargas, N., Hernández-Jiménez, E., Hammond, R. W., y Ramírez-Fonseca, P. (2017). Detección de crinivirus y begomovirus en plántulas de tomate y arvenses asociadas a semilleros Crinivirus and begomovirus detection in tomato plantlets and weeds associated to nurseries. Agron Mesoam., 28(2), 477–488.spa
dc.relation.referencesSoto MJ, Gilbertson RL. 2003. Distribution and rate of movement of the curtovirus Beet mild curly top virus (Family Geminiviridae) in the beet leafhopper.spa
dc.relation.referencesStenger DC, McMahon CL. 1997. Genotypic diversity of beet curly top virus populations in the western United States. Phytopathology 87:737–44spa
dc.relation.referencesStewart, C., Kon, T., Rojas, M., Graham, A., Martin, D., Gilbertson, R., y Roye, M. (2014). Mixed infection of Sidajamaicensis in Jamaica reveals the presence of three recombinant Begomovirus DNA A components. Archives of Virology, 2509–2512.spa
dc.relation.referencesSun Y, Guo H, Ge F, Michael J, Ryalls W.2016. Plant –Aphid interactions under elevated CO2: some cues from aphid feeding behavior. Frontiers in Plant Science 7, 1-10spa
dc.relation.referencesSunter G y Bisaro DM (1991) Transactivation in a geminivirus: AL2 gene product is needed for coat protein expression. Virology180 (1): 416-419.spa
dc.relation.referencesSunter G y Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell4 (10): 1321-1331.spa
dc.relation.referencesSunter G y Bisaro DM (2003) Identification of a minimal sequence required for activation of the tomato golden mosaic virus coat protein promoter in protoplasts. Virology305 (2): 452-462.spa
dc.relation.referencesSunter G, Stenger DC, y Bisaro DM (1994) Heterologous complementation by geminivirus AL2 and AL3 genes. Virology203 (2): 203-210.spa
dc.relation.referencesSyller, J. (2012). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13(2), 204–216.spa
dc.relation.referencesTeng N, Wang J, Chen T, Wu X, Wang Y, Lin J. 2006. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. The New Phytologist 172, 92-103spa
dc.relation.referencesTorres-Pacheco, I., Garzón-Tiznado, A., Brown, J.K., Becerra-Flora, A., and Rivera- Bustamante, R.F. (1996). Detection and distribution of geminiviruses in Mexico and the southern United States. Phytopathology. 86: 1186-1192.spa
dc.relation.referencesUmaharan, P., Padidam, M., Phelps, R. H., Beachy, R. N., y Fauquet, C. M. (1998). Distribution and diversity of Geminiviruses in Trinidad and Tobago.Phytopathology, 88(12), 1262-1268.spa
dc.relation.referencesVaca-Vaca, J. C., Betancur-Pérez, J. F., y López-López, K. (2012). Distribución y diversidad genética de Begomovirus que infectan tomate (Solanum lycopersicum L) en Colombia. Revista Colombiana de Biotecnología, 14(1), 60–76.spa
dc.relation.referencesVaca-Vaca, J. C., Carrasco-Lozano, E. C., y López-López, K. (2017). Molecular identification of a new begomovirus infecting yellow passion fruit (Passiflora edulis) in Colombia. Archives of Virology, 162(2), 573–576..spa
dc.relation.referencesVaca-Vaca, J. C., Corredor-Saenz, V., Jara-Tejada, F., Betancourt-Andrade, D., y López- López, K. (2019). Nuevos hospederos alternativos de begomovirus asociados al cultivo de ají en el Valle del Cauca. Acta Agronómica, 68(1), 56–60. https://doi.org/10.15446/acag.v68n1.77487spa
dc.relation.referencesVaca-Vaca, J. C., Jara-Tejada, F., y López-López, K. (2018). Croton golden mosaic virus: a new bipartite begomovirus isolated from Croton hirtus in Colombia. Archives of virology, 163(11), 3199-3202.spa
dc.relation.referencesVaca-Vaca, J. C., Morales-Euse, J., Rivera-Toro, D. M., y López-López, K. (2019). Primer reporte de begomovirus infectando cultivos de ají (Capsicum spp.) en Colombia. Acta Biológica Colombiana, 24(3), 452–462.spa
dc.relation.referencesVaca-Vaca, J. C., Otavo-Fiscal, D., y López-López, K. (2011). Identificación de arvenses como hospederos naturales de Begomovirus en el Valle del Cauca, Colombia. Revista Fitopatología Colombiana, 35, 69–72.spa
dc.relation.referencesVaca-Vaca, J. C., Pulido-Rendón, A. J., y López-López, K. (2015). Optimization of low pressure biobalistics conditions for analysis of transient expression of heterologous gene in tobacco leaves tobacco cultivated in vitro. Acta Agronómica, 64(2), 146- 155.spa
dc.relation.referencesVaca-Vaca, J. C., Morales-Euse, J.,y López-López, K. (2015). Detección de Begomovirus en arvenses asociadas al cultivo de tomate en Fusagasuga, Cundinamarca.spa
dc.relation.referencesVoinnet, O. (2005). Induction and suppression of RNA silencing: insights from viral infections. Nature Reviews Genetics, 6(3), 206-220.spa
dc.relation.referencesVoinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4), 669- 687.Warburg, O. 1984. Die kulturpflanzen usambaras. Mitt. Deutsh. Schutzgeb. 7:131-99.spa
dc.relation.referencesVuorinen, A. L., Kelloniemi, J., y Valkonen, J. P. (2011). Why do viruses need phloem for systemic invasion of plants?. Plant science, 181(4), 355-363.spa
dc.relation.referencesVon Arnim, A., y Stanley, J. (1992). Determinants of tomato golden mosaic virus symptom development located on DNA B. Virology, 186(1), 286-293.spa
dc.relation.referencesWege, C. 2007. Movement and localization of tomato yellow leaf curl viruses in the infected plant. In Tomato yellow curl virus disease. Springer Netherlands. Pp185-206spa
dc.relation.referencesWu H., M. Li, N. Hong, B. Peng, Q. Gu. 2020. Molecular and biological characterization of melon-infecting squash leaf curl China virus in China. J. Integr. Agric. 19(2): 570- 577spa
dc.relation.referencesWyant, P., Gotthardt, D., Schäfer, B., Krenz, B. y, y Jeske, H. (2011). The genomes of four novel Begomoviruses and a new Sida micrantha mosaic virus strain from Bolivian weeds. Archives of Virology, 156(2), 347–352.spa
dc.relation.referencesWolf, S., C.M. Deom, R. Beachy, and W.J. Lucas.1991. Plasmodesmatal function is probed usingtransgenic tobacco plants that express a virusmovement protein. The Plant Cell 3: 593-604.spa
dc.relation.referencesYang, X., W. Guo, F. Li, G. Sunter, X. Zhou. 2019. Geminivirus – Associated Betasatellites: Exploiting Chinks in the Antiviral Arsenal of Plants. Trends Plant Sci. 24(6):519-529 Zerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P., Moriones, E., Navas-Castillo, J., … Varsani, A. (2017). ICTV virus taxonomy profile: Geminiviridae. Journal of General Virology, 98(2), 131–133.spa
dc.relation.referencesZhang, W., Olson, N. H., Baker, T. S., Faulkner, L., Agbandje-McKenna, M., Boulton, M. I., McKenna, R. (2001). Structure of the maize streak virus geminate particle. Virology, 279(2), 471–477.spa
dc.relation.referencesZhou, Y.-C., Garrido-Ramirez, E. R., Sudarshana, M. R., Yendluri, S., y Gilbertson, R. L. (2007). The N-terminus of the Begomovirus nuclear shuttle protein (BV1) determines virulence or avirulence in Phaseolus vulgarisspa
dc.relation.referencesZhou, Y., Rojas, M. R., Park, M. R., Seo, Y. S., Lucas, W. J., y Gilbertson, R. L. (2011). Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. Journal of virology, 85(22), 11821-11832.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombia, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocBegomovirus
dc.subject.agrovocGenómica
dc.subject.agrovocInoculación de virus
dc.subject.ddc580 - Plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalGeminivirusspa
dc.subject.proposalTomatespa
dc.subject.proposalTabacospa
dc.subject.proposalBiobalísticaspa
dc.subject.proposalPseudorecombinaciónspa
dc.titleEstudio preliminar de la interacción de geminivirus tomando como modelo plantas de tomate y tabacospa
dc.title.translatedPreliminary study of the interaction of geminivirus taking tomato and tobacco plants as modeleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle“Evaluación de la capacidad de infectar cultivos de tomate (solanum lycopersicum L.) y tabaco (nicotiana tabacum L.) de begomovirus aislados de arvenses localizadas en el Valle del Cauca, Colombia”.spa
oaire.fundernameDIPALspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52954110.2021.pdf
Tamaño:
1.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestria en ciencias agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: