Reconstrucción de la red del metabolismo de las antocianinas y procesos asociados en papa
dc.contributor.advisor | Liliana López, Kleine | spa |
dc.contributor.advisor | Roda Fornaguera, Federico | spa |
dc.contributor.author | Arias Zambrano, Andrés David | spa |
dc.contributor.referee | Chaib De Mares, Maryam | spa |
dc.contributor.referee | Silva Arias, Gustavo Adolfo | spa |
dc.contributor.researchgroup | Grupo de Investigación en Bioinformática y Biología de Sistemas | spa |
dc.date.accessioned | 2025-08-22T18:01:02Z | |
dc.date.available | 2025-08-22T18:01:02Z | |
dc.date.issued | 2025-08-18 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Las variedades de papa pigmentadas son una fuente rica de antocianinas, las cuales despiertan gran interés por sus propiedades nutricionales y cosméticas, y su importancia en procesos de defensa de la planta contra diversos tipos de estrés. Aunque la ruta de biosı́ntesis de antocianinas se encuentra bien descrita y se conocen los genes estructurales que participan en esta, aún se desconocen múltiples procesos regulatorios y los genes implicados en estos. Algunos estudios de redes de co-expresión se han dirigido con el fin de ampliar el conocimiento que se tiene a este respecto, aunque con un limitado número de variedades de papa. En el presente trabajo de tesis se empleó una aproxi- mación pangenómica con el fin de reconstruir la red de co-expresión génica de la biosı́ntesis en papa empleando 37 variedades de origen colombiano, re- sultando en la identificación de una serie de genes de potencial importancia en la regulación de este y otros procesos asociados. (Texto tomado de la fuente). | spa |
dc.description.abstract | Pigmented potato varieties are a rich source of anthocyanins, which have attracted great interest due to their nutritional and cosmetic properties, as well as their role in plant defense against different types of stress. Although the anthocyanin biosynthesis pathway is well described and the structural genes involved in it are known, many regulatory processes and the genes implicated in them remain unknown. Some co-expression network studies have been conducted in order to expand knowledge in this regard, although with a limited number of potato varieties. In the present thesis, a pangenomic approach was employed to reconstruct the gene co-expression network of biosynthesis in potato using 37 varieties of Colombian origin, resulting in the identification of a series of genes with potential importance in the regulation of this and other associated processes. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Bioinformática | spa |
dc.description.researcharea | Biología de sistemas | spa |
dc.description.sponsorship | Universidad Nacional de Colombia, Minciencias | spa |
dc.format.extent | 73 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88438 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Bioinformática | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Aboshi, T., Ishiguri, S., Shiono, Y., & Murayama, T. (2018). Flavonoid glyco- sides in Malabar spinach Basella alba inhibit the growth of Spodopte- ra litura larvae. Bioscience, Biotechnology, and Biochemistry, 82 (1), 9-14. https://doi.org/10.1080/09168451.2017.1403697 | spa |
dc.relation.references | Ahmad, P., Ashraf, M., Hakeem, K. R., Azooz, M. M., Rasool, S., Chandna, R., & Akram, N. A. (2014). Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. Journal of Plant Interactions, 9, 1-9. https://doi.org/10.1080/17429145.2013. 855774 | spa |
dc.relation.references | Alappat, B., & Alappat, J. (2020). Anthocyanin Pigments: Beyond Aesthe- tics. Molecules, 25, 5500. https://doi.org/10.3390/molecules25235500 | spa |
dc.relation.references | Aoki, K., Ogata, Y., & Shibata, D. (2007). Approaches for Extracting Practi- cal Information from Gene Co-expression Networks in Plant Biology. Plant and Cell Physiology, 48, 381-390. https://doi.org/10.1093/pcp/ pcm013 | spa |
dc.relation.references | Benoit, M., Jenike, K. M., Satterlee, J. W., Ramakrishnan, S., Gentile, I., Hendelman, A., Passalacqua, M. J., Suresh, H., Shohat, H., Robitaille, G. M., Fitzgerald, B., Alonge, M., Wang, X., Santos, R., He, J., Ou, S., Golan, H., Green, Y., Swartwood, K., . . . Lippman, Z. B. (2024). Solanum pan-genomics and pan-genetics reveal paralogs as contingen- cies in crop engineering. bioRxiv. https://doi.org/10.1101/2024.09. 10.612244 | spa |
dc.relation.references | Bi, H., Guo, M., Wang, J., Qu, Y., Du, W., & Zhang, K. (2018). Trans- criptome analysis reveals anthocyanin acts as a protectant in Begonia semperflorens under low temperature. Acta Physiologiae Plantarum, 40, 1-12. https://doi.org/10.1007/s11738-018-2770-2 | spa |
dc.relation.references | Bonar, N., Liney, M., Zhang, R., Austin, C., Dessoly, J., Davidson, D., Stephens, J., McDougall, G., Taylor, M., Bryan, G. J., & Hornyik, C. (2018). Potato miR828 is associated with purple tuber skin and flesh color. Frontiers in Plant Science, 9, 1742. https://doi.org/10. 3389/fpls.2018.01742 | spa |
dc.relation.references | Bozan, I., Achakkagari, S. R., Anglin, N. L., & Strömvik, M. V. (2023). Pan- genome analyses reveal impact of transposable elements and ploidy on the evolution of potato species [Edited by Ronald Sederoff, North Carolina State University, Raleigh, NC; received June 28, 2022; accep- ted June 9, 2023]. Proceedings of the National Academy of Sciences, 120 (31), e2211117120. https://doi.org/10.1073/pnas.2211117120 | spa |
dc.relation.references | Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12 (1), 59-60. https : //doi.org/10.1038/nmeth.3176 | spa |
dc.relation.references | Camire, M. E., Kubow, S., & Donnelly, D. J. (2009). Potatoes and Human Health. Critical Reviews in Food Science and Nutrition, 49, 823-840. https://doi.org/10.1080/10408390903041996 | spa |
dc.relation.references | Caramanico, L., Rustioni, L., & De Lorenzis, G. (2017). Iron deficiency sti- mulates anthocyanin accumulation in grapevine apical leaves. Plant Physiology and Biochemistry, 119, 286-293. https://doi.org/10.1016/ j.plaphy.2017.08.011 | spa |
dc.relation.references | Castellarin, S. D., Pfeiffer, A., Sivilotti, P., Degan, M., Peterlunger, E., & Di Gaspero, G. (2007). Transcriptional Regulation of Anthocyanin Biosynthesis in Ripening Fruits of Grapevine under Seasonal Water Deficit. Plant, Cell & Environment, 30, 1381-1399. https://doi.org/ 10.1111/j.1365-3040.2007.01716.x | spa |
dc.relation.references | Cho, K., Cho, K.-S., Sohn, H.-B., Ha, I. J., Hong, S.-Y., Lee, H., Kim, Y.-M., & Nam, M. H. (2016). Network analysis of the metabolome and trans- criptome reveals novel regulation of potato pigmentation [Epub 2016 Jan 4]. Journal of Experimental Botany, 67 (5), 1519-1533. https:// doi.org/10.1093/jxb/erv549 | spa |
dc.relation.references | Csardi, G., & Nepusz, T. (2006). igraph: Network Analysis and Visualization [R package version 1.4.0]. https://igraph.org | spa |
dc.relation.references | Dabravolski, S. A., & Isayenkov, S. V. (2023). The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses. Plants, 12, 2558. https://doi.org/10.3390/plants12132558 | spa |
dc.relation.references | D’Amelia, V., Aversano, R., Batelli, G., Caruso, I., Castellano Moreno, M., Castro-Sanz, A. B., Chiaiese, P., Fasano, C., Palomba, F., & Carputo, D. (2014). High AN1 variability and interaction with basic helix-loop- helix co-factors related to anthocyanin biosynthesis in potato leaves. Plant Journal, 80, 527-540. https://doi.org/10.1111/tpj.12653 | spa |
dc.relation.references | D’Amelia, V., Villano, C., Batelli, G., Çobanoglu, Ö., Carucci, F., Melito, S., Chessa, M., Chiaiese, P., Aversano, R., & Carputo, D. (2020). Genetic and epigenetic dynamics affecting anthocyanin biosynthesis in potato cell culture. Plant Science, 298, 110597. https://doi.org/10.1016/j. plantsci.2020.110597 | spa |
dc.relation.references | De Jong, H. (1987). Inheritance of pigmented tuber flesh in cultivated diploid potatoes. American Potato Journal, 64, 337-343. https://doi.org/10. 1007/bf02853595 | spa |
dc.relation.references | Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accu- racy and high throughput. Nucleic Acids Research, 32 (5), 1792-1797. https://doi.org/10.1093/nar/gkh340 | spa |
dc.relation.references | Elo, L. L., Järvenpää, H., Orešič, M., Lahesmaa, R., & Aittokallio, T. (2007). Systematic construction of gene coexpression networks with applica- tions to human T helper cell differentiation process. Bioinformatics, 23, 2096-2103. https://doi.org/10.1093/bioinformatics/btm309 | spa |
dc.relation.references | Emms, D. (2023). Orthofinder [Accessed: 2024-04-21]. https://github.com/ davidemms/OrthoFinder | spa |
dc.relation.references | Feltus, F. A., Ficklin, S. P., Gibson, S. M., & Smith, M. C. (2013). Ma- ximising capture of gene co-expression network relationships through pre-clustering of input expression samples: an Arabidopsis case study. BMC Systems Biology, 7, 44. doi:%2010.1186/1752-0509-7-44 | spa |
dc.relation.references | Ghosh, D., & Konishi, T. (2007). Anthocyanins and Anthocyanin-Rich Ex- tracts: Role in Diabetes and Eye Function. Asia Pacific Journal of Clinical Nutrition, 16, 200-208. | spa |
dc.relation.references | Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99, 7821-7826. https://doi.org/10. 1073/pnas.122653799 | spa |
dc.relation.references | Goodman, C. D., Casati, P., & Walbot, V. (2004). A multidrug resistance- associated protein involved in anthocyanin transport in Zea mays. Plant Cell, 16, 1812-1826. https://doi.org/10.1105/tpc.022574 | spa |
dc.relation.references | Guo, Y. (2023). Pangenome and the diversity of potato species [Published 22 August 2023]. Nature Food, 4, 638. https://doi.org/10.1038/s43016- 023-00830-w | spa |
dc.relation.references | Harvard Chan Bioinformatics Core. (2024). DGE workshop: Differential Ge- ne Expression (DGE) analysis using DESeq2 [Accessed: 2024-07-24]. https : / / hbctraining . github . io / DGE workshop / lessons / 04 DGE DESeq2 analysis.html | spa |
dc.relation.references | He, J., & Giusti, M. M. (2010). Anthocyanins: Natural Colorants with Health- Promoting Properties. Annual Review of Food Science and Techno- logy, 1, 163-187. https://doi.org/10.1146/annurev.food.080708.100754 | spa |
dc.relation.references | He, W.-D., Gao, J., Dou, T.-X., Shao, X.-H., Bi, F.-C., Sheng, O., Deng, G.-M., Li, C.-Y., Hu, C.-H., Liu, J.-H., Zhang, S., Yang, Q.-S., & Yi, G.-J. (2018). Early Cold-Induced Peroxidases and Aquaporins Are Associated With High Cold Tolerance in Dajiao (Musa spp. ‘Dajiao’). Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00282 | spa |
dc.relation.references | Heijde, M., & Ulm, R. (2012). UV-B photoreceptor-mediated signalling in plants. Trends in Plant Science, 17 (4), 230-237. https://doi.org/10. 1016/j.tplants.2012.01.007 | spa |
dc.relation.references | Hinojosa-Gómez, J., San Martı́n-Hernández, C., Heredia, J. B., León-Félix, J., Osuna-Enciso, T., & Muy-Rangel, M. D. (2020). Anthocyanin In- duction by Drought Stress in the Calyx of Roselle Cultivars. Molecu- les, 25 (7), 1555. https://doi.org/10.3390/molecules25071555 | spa |
dc.relation.references | Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). DAVID: Databa- se for Annotation, Visualization, and Integrated Discovery. Genome Biology, 10 (1), R1. https://david.ncifcrf.gov/ | spa |
dc.relation.references | Izbiańska, K., Arasimowicz-Jelonek, M., & Deckert, J. (2014). Phenylpropa- noid pathway metabolites promote tolerance response of lupine roots to lead stress. Ecotoxicology and Environmental Safety, 110, 61-67. https://doi.org/10.1016/j.ecoenv.2014.08.002 | spa |
dc.relation.references | Jaakola, L. (2013a). New insights into the regulation of anthocyanin biosynthe- sis in fruits. Trends in Plant Science, 18, 477-483. https://doi.org/10. 1016/j.tplants.2013.06.003 | spa |
dc.relation.references | Jaakola, L. (2013b). New insights into the regulation of anthocyanin biosynthe- sis in fruits. Trends in Plant Science, 18 (9), 477-483. https://doi.org/ 10.1016/j.tplants.2013.06.003 | spa |
dc.relation.references | Julca, I., Tan, Q. W., & Mutwil, M. (2023). Toward kingdom-wide analyses of gene expression. Trends in Plant Science, 28 (2), 235-249. https : //doi.org/10.1016/j.tplants.2022.09.007 | spa |
dc.relation.references | Jung, C., Griffiths, H., De Jong, D., Cheng, S., Bodis, M., & De Jong, W. (2005). The potato P locus codes for flavonoid 3’, 5’-hydroxylase. Theoretical and Applied Genetics, 110, 269-275. https : / / doi . org / 10.1007/s00122-004-1829-z | spa |
dc.relation.references | Kaur, S., Tiwari, V., Kumari, A., Chaudhary, E., Sharma, A., Ali, U., & Garg, M. (2023). Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustai- nable agriculture. Journal of Biotechnology, 361, 12-29. https://doi. org/10.1016/j.jbiotec.2022.11.009 | spa |
dc.relation.references | Laimbeer, F. P. E., Bargmann, B. O. R., Holt, S. H., Pratt, T., Peterson, B., Doulis, A. G., Buell, C. R., & Veilleux, R. E. (2020). Characterization of the F Locus Responsible for Floral Anthocyanin Production in Po- tato. G3: Genes, Genomes, Genetics (Bethesda), 10 (10), 3871-3879. https://doi.org/10.1534/g3.120.401684 | spa |
dc.relation.references | Lee, K., Lee, H., & Back, K. (2018). Rice histone deacetylase 10 and Arabi- dopsis histone deacetylase 14 genes encode N-acetylserotonin deacety- lase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. Journal of Pineal Research, 64, e12460. https://doi.org/10.1111/jpi.12460 | spa |
dc.relation.references | Lev-Yadun, S., & Gould, K. (2008). Role of Anthocyanins in Plant Defence [Chapter 2]. En Anthocyanins: Biosynthesis, Functions, and Applica- tions. Springer. https://doi.org/10.1007/978-0-387-77335-3 2 | spa |
dc.relation.references | Li, J., Ma, J., Guo, H., Zong, J., Chen, J., Wang, Y., Li, D., Li, L., Wang, J., & Liu, J. (2018). Growth and Physiological Responses of Two Phenoty- pically Distinct Accessions of Centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to Salt Stress. Plant Physiology and Biochemistry, 126, 1-10. | spa |
dc.relation.references | Li, W., Tan, L., Zou, Y., Tan, X., Huang, J., Chen, W., & Tang, Q. (2020). The effects of ultraviolet A/B treatments on anthocyanin accumu- lation and gene expression in dark-purple tea cultivar ‘ziyan’ (Ca- mellia sinensis). M | spa |
dc.relation.references | Li, W., Wang, B., Wang, M., Chen, M., Yin, J.-M., Kaleri, G. M., & Yang, Q. (2014). Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation. Journal of Integrative Plant Biology, 56 (4), 364-372. https://doi.org/10.1111/jipb.12136 | spa |
dc.relation.references | Li, Y., Wang, L., Sun, G., Li, X., Chen, Z., Feng, J., & Yang, Y. (2021). Digital gene expression analysis of the response to Ralstonia solana- cearum between resistant and susceptible tobacco varieties. Scientific Reports, 11 (1), 3887. https://doi.org/10.1038/s41598-021-82576-8 | spa |
dc.relation.references | Lin, R., & Wang, H. (2004). Arabidopsis FHY3/FAR1 gene family and dis- tinct roles of its members in light control of Arabidopsis development. Plant Physiology, 136 (4), 4010-4022. https://doi.org/10.1104/pp.104. 052191 | spa |
dc.relation.references | Liu, Y., Li, Y., Liu, Z., Wang, L., Lin-Wang, K., Zhu, J., Bi, Z., Sun, C., Zhang, J., & Bai, J. (2023). Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience, 26 (2), 105903. https://doi.org/10.1016/j.isci. 2022.105903 | spa |
dc.relation.references | Liu, Y., Lin-Wang, K., Espley, R. V., Wang, L., Li, Y., Liu, Z., Zhou, P., Zeng, L., Zhang, X., Zhang, J., & Allan, A. C. (2019). StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato. Journal of Experimental Botany, 70 (12), 3809-3824. https: //doi.org/10.1093/jxb/erz194 | spa |
dc.relation.references | Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Bio- logy, 15 (12), 550. https://doi.org/10.1186/s13059-014-0550-8 | spa |
dc.relation.references | Marinova, K., Pourcel, L., Weder, B., Schwarz, M., Barron, D., Routaboul, J. M., Debeaujon, I., & Klein, M. (2007). The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell, 19 (6), 2023-2038. https://doi.org/10.1105/tpc.106.046029 | spa |
dc.relation.references | Marson, N. A., Gallio, A. E., Mandal, S. K., Laskowski, R. A., & Raven, E. L. (2024). In silico prediction of heme binding in proteins. Journal of Biological Chemistry, 300 (5), 107250. https://doi.org/10.1016/j. jbc.2024.107250 | spa |
dc.relation.references | Montenegro, J. (2022). Gene Co-expression Network Analysis. Methods in Molecular Biology, 2443, 387-404. https://doi.org/10.1007/978- 1- 0716-2067-0 19 | spa |
dc.relation.references | Mueller, L. A., Goodman, C. D., Silady, R. A., & Walbot, V. (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestra- tion, is a flavonoid-binding protein. Plant Physiology, 123 (4), 1561-1570. https://doi.org/10.1104/pp.123.4.1561 | spa |
dc.relation.references | Nie, T., Sun, X., Wang, S., Wang, D., Ren, Y., & Chen, Q. (2023). Genome- Wide Identification and Expression Analysis of the 4-Coumarate: CoA Ligase Gene Family in Solanum tuberosum. International Journal of Molecular Sciences, 24 (2), 1642. https://doi.org/10.3390/ijms24021642 | spa |
dc.relation.references | Ovens, K., Eames, B. F., & McQuillan, I. (2021). Comparative Analyses of Gene Co-expression Networks: Implementations and Applications in the Study of Evolution. Frontiers in Genetics, 12. https://doi.org/ 10.3389/fgene.2021.695399 | spa |
dc.relation.references | R, S. E. A., Harm, N., M, H. H. W., & Wilco, L. (2016). Learning from Co- expression Networks: Possibilities and Challenges. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00444 | spa |
dc.relation.references | R Core Team. (2024). R: A Language and Environment for Statistical Com- puting [R version 4.3.0]. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ | spa |
dc.relation.references | Raghavachari, N., & Garcia-Reyero, N. (2018). Network Analysis of Gene Expression. En Gene Expression Analysis (pp. 325-341, Vol. 1783). Springer. https://doi.org/10.1007/978-1-4939-7834-2 16 | spa |
dc.relation.references | Rao, X., & Dixon, R. A. (2019). Co-expression networks for plant biology: why and how. Acta Biochim Biophys Sin (Shanghai), 51, 981-988. doi:%2010.1093/abbs/gmz080 | spa |
dc.relation.references | Rommens, C., Richael, C., Yan, H., Navarre, D., Ye, J., Krucker, M., & Swords, K. (2008). Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnology Jour- nal, 6, 870-886. https://doi.org/10.1111/j.1467-7652.2008.00362.x | spa |
dc.relation.references | Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., & Fried- man, N. (2003). Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34, 166-176. https://doi.org/10.1038/ng1165 | spa |
dc.relation.references | Serin, E. A., Nijveen, H., Hilhorst, H. W., & Ligterink, W. (2016). Learning from co-expression networks: possibilities and challenges. Frontiers in Plant Science, 7, 444. https://doi.org/10.3389/fpls.2016.00444 | spa |
dc.relation.references | Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interac- tion Networks. Genome Research, 13 (11), 2498-2504. https://www. cytoscape.org/ | spa |
dc.relation.references | Sharan, R., Ulitsky, I., & Shamir, R. (2007). Network-based prediction of protein function. Molecular Systems Biology, 3, 88. https://doi.org/ 10.1038/msb4100129 | spa |
dc.relation.references | Sheerin, D. J., & Hiltbrunner, A. (2017). Molecular mechanisms and ecolo- gical function of far-red light signalling. Plant, Cell & Environment, 40, 2509-2529. https://doi.org/10.1111/pce.12915 | spa |
dc.relation.references | Strygina, K., & Khlestkina, E. (2017). Anthocyanins synthesis in Potato (So- lanum tuberosum L.): Genetic markers for smart breeding (review). Sel’skokhozyaistvennaya Biologiya, 52, 37-49. https : / / doi . org / 10 . 15389/agrobiology.2017.1.37eng | spa |
dc.relation.references | Strygina, K., Kochetov, A., & Khlestkina, E. (2019). Genetic control of anthocyanin pigmentation of potato tissues. BMC Genetics, 20, 27. https://doi.org/10.1186/s12863-019-0728-x | spa |
dc.relation.references | Stushnoff, C., Ducreux, L., Hancock, R., Hedley, P., Holm, D., Mcdougall, G., Mcnicol, J., Morris, J., Morris, W., Sungurtas, J., et al. (2010). Flavo- noid profiling and transcriptome analysis reveals new gene-metabolite correlations in tubers of Solanum tuberosum L. Journal of Experimen- tal Botany, 61, 1225-1238. https://doi.org/10.1093/jxb/erp394 | spa |
dc.relation.references | Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lan- der, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the Uni- ted States of America, 102, 15545-15550. https://doi.org/10.1073/ pnas.0506580102 | spa |
dc.relation.references | Sun, Q., Zhang, N., Wang, J., Cao, Y., Li, X., Zhang, H., & Guo, Y.-D. (2016). A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumula- tion upon postharvest in tomato. Journal of Pineal Research, 61 (2), 138-153. https://doi.org/10.1111/jpi.12315 | spa |
dc.relation.references | Tanaka, Y., & Brugliera, F. (2013a). Flower colour and cytochromes P450. Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1612), 20120432. https://doi.org/10.1098/rstb.2012.0432 | spa |
dc.relation.references | Tanaka, Y., & Brugliera, F. (2013b). Flower colour and cytochromes P450. Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1612), 20120432. https://doi.org/10.1098/rstb.2012.0432 | spa |
dc.relation.references | Tang, D., Jia, Y., Zhang, J., et al. (2022). Genome evolution and diversity of wild and cultivated potatoes. Nature, 606, 535-541. https://doi.org/ 10.1038/s41586-022-04822-x | spa |
dc.relation.references | Trognitz, F., Manosalva, P., Gysin, R., Niño-Liu, D., Simon, R., Herrera, M. d. R., Trognitz, B., Ghislain, M., & Nelson, R. (2002). Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja × dihaploid S. tuberosum hybrids. Mole- cular Plant-Microbe Interactions, 15 (6), 587-597. https://doi.org/10. 1094/MPMI.2002.15.6.587 | spa |
dc.relation.references | Umaerus, V. (1959). The relationship between peroxidase activity in pota- to leaves and resistance to Phytophthora infestans. American Potato Journal, 36 (4), 124-131. https://doi.org/10.1007/BF02857274 | spa |
dc.relation.references | Valiñas, M., Lanteri, M., ten Have, A., & Andreu, A. (2015). Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Po- tato Tuber (Solanum tuberosum). Journal of Agricultural and Food Chemistry, 63 (19), 4902-4913. https://doi.org/10.1021/jf505777p | spa |
dc.relation.references | Wang, X., Dalkic, E., Wu, M., & Chan, C. (2008). Gene module level analysis: identification to networks and dynamics. Current Opinion in Biotech- nology, 19 (5), 482-491. https://doi.org/10.1016/j.copbio.2008.07.011 | spa |
dc.relation.references | Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd). Springer-Verlag New York. https://ggplot2.tidyverse.org | spa |
dc.relation.references | Wu, X., & Prior, R. L. (2005). Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. Journal of Agricultural and Food Chemistry, 53, 2589-2599. https://doi.org/10.1021/jf048068b | spa |
dc.relation.references | Wu, Z., Wang, M., Yang, S., Chen, S., Chen, X., Liu, C., Wang, S., Wang, H., Zhang, B., Liu, H., Qin, R., & Wang, X. (2019). A global coex- pression network of soybean genes gives insights into the evolution of nodulation in nonlegumes and legumes [First published: 12 April 2019]. New Phytologist. https://doi.org/10.1111/nph.15845 | spa |
dc.relation.references | Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co- expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4, Article 17. doi:10.2202/1544-6115.1128 | spa |
dc.relation.references | Zhang, Q., Zhai, J., Shao, L., Lin, W., & Peng, C. (2019). Accumulation of anthocyanins: an adaptation strategy of Mikania micrantha to low temperature in winter. Frontiers in Plant Science, 10, 1049. https : //doi.org/10.3389/fpls.2019.01049 | spa |
dc.relation.references | Zhang, Y., Cheng, S., De Jong, D., Griffiths, H., Halitschke, R., & De Jong, W. (2009). The potato R locus codes for dihydroflavonol 4-reductase. Theoretical and Applied Genetics, 119, 931-937. https://doi.org/10. 1007/s00122-009-1100-8 | spa |
dc.relation.references | Zhang, Y., Jung, C., & De Jong, W. (2009). Genetic analysis of pigmented tuber flesh in potato. Theoretical and Applied Genetics, 119, 143-150. https://doi.org/10.1007/s00122-009-1024-3 | spa |
dc.relation.references | Zhang, Y., Jung, C. S., & Jong, W. S. D. (2009). Genetic analysis of pig- mented tuber flesh in potato. Theoretical and Applied Genetics, 119, 143-150. https://doi.org/10.1007/s00122-009-1024-3 | spa |
dc.relation.references | Zhao, L., Zou, M., Jiang, S., Dong, X., Deng, K., Na, T., Wang, J., Xia, Z., & Wang, F. (2023). Insights into the genetic determination of the autotetraploid potato plant height. Genes, 14 (2), 507. https://doi. org/10.3390/genes14020507 | spa |
dc.relation.references | Zhao, L., Lu, J., Zhang, J., Wu, P.-Y., Yang, S., & Wu, K. (2024). Identifica- tion and characterization of histone deacetylases in tomato (Solanum lycopersicum) [† indicates co-first authors]. Journal Name, Volume Number, Page Numbers. https://doi.org/DOINumber | spa |
dc.relation.references | Zhao, Y. W., Wang, C. K., Huang, X. Y., & Hu, D. G. (2021). Anthocyanin stability and degradation in plants. Plant Signaling Behavior, 16 (12), 1987767. https://doi.org/10.1080/15592324.2021.1987767 | spa |
dc.relation.references | Zheng, H. Z., Wei, H., Guo, S. H., Yang, X., Feng, M. X., Jin, X. Q., Fang, Y. L., Zhang, Z. W., Xu, T. F., & Meng, J. F. (2020). Nitrogen and phosphorus co-starvation inhibits anthocyanin synthesis in the callus 71of grape berry skin. Plant Cell, Tissue and Organ Culture (PCTOC), 142 (2), 313-325. https://doi.org/10.1007/s11240-020-01889-2 | spa |
dc.relation.references | Zipor, G., Duarte, P., Carqueijeiro, I., Shahar, L., Ovadia, R., Teper-Bamnolker, P., Eshel, D., Levin, Y., Doron-Faigenboim, A., Sottomayor, M., & Oren-Shamir, M. (2015). In planta anthocyanin degradation by a va- cuolar class III peroxidase in Brunfelsia calycina flowers. New Phyto- logist, 205 (2), 653-665. https://doi.org/10.1111/nph.13038 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.agrovoc | Antocianina | |
dc.subject.agrovoc | anthocyanins | |
dc.subject.agrovoc | Hortaliza | |
dc.subject.agrovoc | vegetables | |
dc.subject.agrovoc | Estructura genética | |
dc.subject.agrovoc | genetic structures | |
dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | |
dc.subject.proposal | Redes de co-expresión | spa |
dc.subject.proposal | Biologı́a de sistemas | spa |
dc.subject.proposal | Papa | spa |
dc.subject.proposal | Antocianinas | spa |
dc.subject.proposal | Flavonoides | spa |
dc.subject.proposal | Pangenoma | spa |
dc.subject.proposal | Orto-grupos | eng |
dc.subject.proposal | Co-expression networks | eng |
dc.subject.proposal | Systems biology | eng |
dc.subject.proposal | Potato | eng |
dc.subject.proposal | Anthocyanins | eng |
dc.subject.proposal | Flavonoids | eng |
dc.subject.proposal | Pangenome | eng |
dc.subject.proposal | Orthogroups | eng |
dc.title | Reconstrucción de la red del metabolismo de las antocianinas y procesos asociados en papa | spa |
dc.title.translated | Reconstruction of the anthocyanin metabolism network and associated processes in potato | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1014221119.2025.pdf
- Tamaño:
- 6.4 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Bioinformática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: