Reconstrucción de la red del metabolismo de las antocianinas y procesos asociados en papa

dc.contributor.advisorLiliana López, Kleinespa
dc.contributor.advisorRoda Fornaguera, Federicospa
dc.contributor.authorArias Zambrano, Andrés Davidspa
dc.contributor.refereeChaib De Mares, Maryamspa
dc.contributor.refereeSilva Arias, Gustavo Adolfospa
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biología de Sistemasspa
dc.date.accessioned2025-08-22T18:01:02Z
dc.date.available2025-08-22T18:01:02Z
dc.date.issued2025-08-18
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLas variedades de papa pigmentadas son una fuente rica de antocianinas, las cuales despiertan gran interés por sus propiedades nutricionales y cosméticas, y su importancia en procesos de defensa de la planta contra diversos tipos de estrés. Aunque la ruta de biosı́ntesis de antocianinas se encuentra bien descrita y se conocen los genes estructurales que participan en esta, aún se desconocen múltiples procesos regulatorios y los genes implicados en estos. Algunos estudios de redes de co-expresión se han dirigido con el fin de ampliar el conocimiento que se tiene a este respecto, aunque con un limitado número de variedades de papa. En el presente trabajo de tesis se empleó una aproxi- mación pangenómica con el fin de reconstruir la red de co-expresión génica de la biosı́ntesis en papa empleando 37 variedades de origen colombiano, re- sultando en la identificación de una serie de genes de potencial importancia en la regulación de este y otros procesos asociados. (Texto tomado de la fuente).spa
dc.description.abstractPigmented potato varieties are a rich source of anthocyanins, which have attracted great interest due to their nutritional and cosmetic properties, as well as their role in plant defense against different types of stress. Although the anthocyanin biosynthesis pathway is well described and the structural genes involved in it are known, many regulatory processes and the genes implicated in them remain unknown. Some co-expression network studies have been conducted in order to expand knowledge in this regard, although with a limited number of potato varieties. In the present thesis, a pangenomic approach was employed to reconstruct the gene co-expression network of biosynthesis in potato using 37 varieties of Colombian origin, resulting in the identification of a series of genes with potential importance in the regulation of this and other associated processes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioinformáticaspa
dc.description.researchareaBiología de sistemasspa
dc.description.sponsorshipUniversidad Nacional de Colombia, Mincienciasspa
dc.format.extent73 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88438
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAboshi, T., Ishiguri, S., Shiono, Y., & Murayama, T. (2018). Flavonoid glyco- sides in Malabar spinach Basella alba inhibit the growth of Spodopte- ra litura larvae. Bioscience, Biotechnology, and Biochemistry, 82 (1), 9-14. https://doi.org/10.1080/09168451.2017.1403697spa
dc.relation.referencesAhmad, P., Ashraf, M., Hakeem, K. R., Azooz, M. M., Rasool, S., Chandna, R., & Akram, N. A. (2014). Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. Journal of Plant Interactions, 9, 1-9. https://doi.org/10.1080/17429145.2013. 855774spa
dc.relation.referencesAlappat, B., & Alappat, J. (2020). Anthocyanin Pigments: Beyond Aesthe- tics. Molecules, 25, 5500. https://doi.org/10.3390/molecules25235500spa
dc.relation.referencesAoki, K., Ogata, Y., & Shibata, D. (2007). Approaches for Extracting Practi- cal Information from Gene Co-expression Networks in Plant Biology. Plant and Cell Physiology, 48, 381-390. https://doi.org/10.1093/pcp/ pcm013spa
dc.relation.referencesBenoit, M., Jenike, K. M., Satterlee, J. W., Ramakrishnan, S., Gentile, I., Hendelman, A., Passalacqua, M. J., Suresh, H., Shohat, H., Robitaille, G. M., Fitzgerald, B., Alonge, M., Wang, X., Santos, R., He, J., Ou, S., Golan, H., Green, Y., Swartwood, K., . . . Lippman, Z. B. (2024). Solanum pan-genomics and pan-genetics reveal paralogs as contingen- cies in crop engineering. bioRxiv. https://doi.org/10.1101/2024.09. 10.612244spa
dc.relation.referencesBi, H., Guo, M., Wang, J., Qu, Y., Du, W., & Zhang, K. (2018). Trans- criptome analysis reveals anthocyanin acts as a protectant in Begonia semperflorens under low temperature. Acta Physiologiae Plantarum, 40, 1-12. https://doi.org/10.1007/s11738-018-2770-2spa
dc.relation.referencesBonar, N., Liney, M., Zhang, R., Austin, C., Dessoly, J., Davidson, D., Stephens, J., McDougall, G., Taylor, M., Bryan, G. J., & Hornyik, C. (2018). Potato miR828 is associated with purple tuber skin and flesh color. Frontiers in Plant Science, 9, 1742. https://doi.org/10. 3389/fpls.2018.01742spa
dc.relation.referencesBozan, I., Achakkagari, S. R., Anglin, N. L., & Strömvik, M. V. (2023). Pan- genome analyses reveal impact of transposable elements and ploidy on the evolution of potato species [Edited by Ronald Sederoff, North Carolina State University, Raleigh, NC; received June 28, 2022; accep- ted June 9, 2023]. Proceedings of the National Academy of Sciences, 120 (31), e2211117120. https://doi.org/10.1073/pnas.2211117120spa
dc.relation.referencesBuchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12 (1), 59-60. https : //doi.org/10.1038/nmeth.3176spa
dc.relation.referencesCamire, M. E., Kubow, S., & Donnelly, D. J. (2009). Potatoes and Human Health. Critical Reviews in Food Science and Nutrition, 49, 823-840. https://doi.org/10.1080/10408390903041996spa
dc.relation.referencesCaramanico, L., Rustioni, L., & De Lorenzis, G. (2017). Iron deficiency sti- mulates anthocyanin accumulation in grapevine apical leaves. Plant Physiology and Biochemistry, 119, 286-293. https://doi.org/10.1016/ j.plaphy.2017.08.011spa
dc.relation.referencesCastellarin, S. D., Pfeiffer, A., Sivilotti, P., Degan, M., Peterlunger, E., & Di Gaspero, G. (2007). Transcriptional Regulation of Anthocyanin Biosynthesis in Ripening Fruits of Grapevine under Seasonal Water Deficit. Plant, Cell & Environment, 30, 1381-1399. https://doi.org/ 10.1111/j.1365-3040.2007.01716.xspa
dc.relation.referencesCho, K., Cho, K.-S., Sohn, H.-B., Ha, I. J., Hong, S.-Y., Lee, H., Kim, Y.-M., & Nam, M. H. (2016). Network analysis of the metabolome and trans- criptome reveals novel regulation of potato pigmentation [Epub 2016 Jan 4]. Journal of Experimental Botany, 67 (5), 1519-1533. https:// doi.org/10.1093/jxb/erv549spa
dc.relation.referencesCsardi, G., & Nepusz, T. (2006). igraph: Network Analysis and Visualization [R package version 1.4.0]. https://igraph.orgspa
dc.relation.referencesDabravolski, S. A., & Isayenkov, S. V. (2023). The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses. Plants, 12, 2558. https://doi.org/10.3390/plants12132558spa
dc.relation.referencesD’Amelia, V., Aversano, R., Batelli, G., Caruso, I., Castellano Moreno, M., Castro-Sanz, A. B., Chiaiese, P., Fasano, C., Palomba, F., & Carputo, D. (2014). High AN1 variability and interaction with basic helix-loop- helix co-factors related to anthocyanin biosynthesis in potato leaves. Plant Journal, 80, 527-540. https://doi.org/10.1111/tpj.12653spa
dc.relation.referencesD’Amelia, V., Villano, C., Batelli, G., Çobanoglu, Ö., Carucci, F., Melito, S., Chessa, M., Chiaiese, P., Aversano, R., & Carputo, D. (2020). Genetic and epigenetic dynamics affecting anthocyanin biosynthesis in potato cell culture. Plant Science, 298, 110597. https://doi.org/10.1016/j. plantsci.2020.110597spa
dc.relation.referencesDe Jong, H. (1987). Inheritance of pigmented tuber flesh in cultivated diploid potatoes. American Potato Journal, 64, 337-343. https://doi.org/10. 1007/bf02853595spa
dc.relation.referencesEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accu- racy and high throughput. Nucleic Acids Research, 32 (5), 1792-1797. https://doi.org/10.1093/nar/gkh340spa
dc.relation.referencesElo, L. L., Järvenpää, H., Orešič, M., Lahesmaa, R., & Aittokallio, T. (2007). Systematic construction of gene coexpression networks with applica- tions to human T helper cell differentiation process. Bioinformatics, 23, 2096-2103. https://doi.org/10.1093/bioinformatics/btm309spa
dc.relation.referencesEmms, D. (2023). Orthofinder [Accessed: 2024-04-21]. https://github.com/ davidemms/OrthoFinderspa
dc.relation.referencesFeltus, F. A., Ficklin, S. P., Gibson, S. M., & Smith, M. C. (2013). Ma- ximising capture of gene co-expression network relationships through pre-clustering of input expression samples: an Arabidopsis case study. BMC Systems Biology, 7, 44. doi:%2010.1186/1752-0509-7-44spa
dc.relation.referencesGhosh, D., & Konishi, T. (2007). Anthocyanins and Anthocyanin-Rich Ex- tracts: Role in Diabetes and Eye Function. Asia Pacific Journal of Clinical Nutrition, 16, 200-208.spa
dc.relation.referencesGirvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99, 7821-7826. https://doi.org/10. 1073/pnas.122653799spa
dc.relation.referencesGoodman, C. D., Casati, P., & Walbot, V. (2004). A multidrug resistance- associated protein involved in anthocyanin transport in Zea mays. Plant Cell, 16, 1812-1826. https://doi.org/10.1105/tpc.022574spa
dc.relation.referencesGuo, Y. (2023). Pangenome and the diversity of potato species [Published 22 August 2023]. Nature Food, 4, 638. https://doi.org/10.1038/s43016- 023-00830-wspa
dc.relation.referencesHarvard Chan Bioinformatics Core. (2024). DGE workshop: Differential Ge- ne Expression (DGE) analysis using DESeq2 [Accessed: 2024-07-24]. https : / / hbctraining . github . io / DGE workshop / lessons / 04 DGE DESeq2 analysis.htmlspa
dc.relation.referencesHe, J., & Giusti, M. M. (2010). Anthocyanins: Natural Colorants with Health- Promoting Properties. Annual Review of Food Science and Techno- logy, 1, 163-187. https://doi.org/10.1146/annurev.food.080708.100754spa
dc.relation.referencesHe, W.-D., Gao, J., Dou, T.-X., Shao, X.-H., Bi, F.-C., Sheng, O., Deng, G.-M., Li, C.-Y., Hu, C.-H., Liu, J.-H., Zhang, S., Yang, Q.-S., & Yi, G.-J. (2018). Early Cold-Induced Peroxidases and Aquaporins Are Associated With High Cold Tolerance in Dajiao (Musa spp. ‘Dajiao’). Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00282spa
dc.relation.referencesHeijde, M., & Ulm, R. (2012). UV-B photoreceptor-mediated signalling in plants. Trends in Plant Science, 17 (4), 230-237. https://doi.org/10. 1016/j.tplants.2012.01.007spa
dc.relation.referencesHinojosa-Gómez, J., San Martı́n-Hernández, C., Heredia, J. B., León-Félix, J., Osuna-Enciso, T., & Muy-Rangel, M. D. (2020). Anthocyanin In- duction by Drought Stress in the Calyx of Roselle Cultivars. Molecu- les, 25 (7), 1555. https://doi.org/10.3390/molecules25071555spa
dc.relation.referencesHuang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). DAVID: Databa- se for Annotation, Visualization, and Integrated Discovery. Genome Biology, 10 (1), R1. https://david.ncifcrf.gov/spa
dc.relation.referencesIzbiańska, K., Arasimowicz-Jelonek, M., & Deckert, J. (2014). Phenylpropa- noid pathway metabolites promote tolerance response of lupine roots to lead stress. Ecotoxicology and Environmental Safety, 110, 61-67. https://doi.org/10.1016/j.ecoenv.2014.08.002spa
dc.relation.referencesJaakola, L. (2013a). New insights into the regulation of anthocyanin biosynthe- sis in fruits. Trends in Plant Science, 18, 477-483. https://doi.org/10. 1016/j.tplants.2013.06.003spa
dc.relation.referencesJaakola, L. (2013b). New insights into the regulation of anthocyanin biosynthe- sis in fruits. Trends in Plant Science, 18 (9), 477-483. https://doi.org/ 10.1016/j.tplants.2013.06.003spa
dc.relation.referencesJulca, I., Tan, Q. W., & Mutwil, M. (2023). Toward kingdom-wide analyses of gene expression. Trends in Plant Science, 28 (2), 235-249. https : //doi.org/10.1016/j.tplants.2022.09.007spa
dc.relation.referencesJung, C., Griffiths, H., De Jong, D., Cheng, S., Bodis, M., & De Jong, W. (2005). The potato P locus codes for flavonoid 3’, 5’-hydroxylase. Theoretical and Applied Genetics, 110, 269-275. https : / / doi . org / 10.1007/s00122-004-1829-zspa
dc.relation.referencesKaur, S., Tiwari, V., Kumari, A., Chaudhary, E., Sharma, A., Ali, U., & Garg, M. (2023). Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustai- nable agriculture. Journal of Biotechnology, 361, 12-29. https://doi. org/10.1016/j.jbiotec.2022.11.009spa
dc.relation.referencesLaimbeer, F. P. E., Bargmann, B. O. R., Holt, S. H., Pratt, T., Peterson, B., Doulis, A. G., Buell, C. R., & Veilleux, R. E. (2020). Characterization of the F Locus Responsible for Floral Anthocyanin Production in Po- tato. G3: Genes, Genomes, Genetics (Bethesda), 10 (10), 3871-3879. https://doi.org/10.1534/g3.120.401684spa
dc.relation.referencesLee, K., Lee, H., & Back, K. (2018). Rice histone deacetylase 10 and Arabi- dopsis histone deacetylase 14 genes encode N-acetylserotonin deacety- lase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. Journal of Pineal Research, 64, e12460. https://doi.org/10.1111/jpi.12460spa
dc.relation.referencesLev-Yadun, S., & Gould, K. (2008). Role of Anthocyanins in Plant Defence [Chapter 2]. En Anthocyanins: Biosynthesis, Functions, and Applica- tions. Springer. https://doi.org/10.1007/978-0-387-77335-3 2spa
dc.relation.referencesLi, J., Ma, J., Guo, H., Zong, J., Chen, J., Wang, Y., Li, D., Li, L., Wang, J., & Liu, J. (2018). Growth and Physiological Responses of Two Phenoty- pically Distinct Accessions of Centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to Salt Stress. Plant Physiology and Biochemistry, 126, 1-10.spa
dc.relation.referencesLi, W., Tan, L., Zou, Y., Tan, X., Huang, J., Chen, W., & Tang, Q. (2020). The effects of ultraviolet A/B treatments on anthocyanin accumu- lation and gene expression in dark-purple tea cultivar ‘ziyan’ (Ca- mellia sinensis). Mspa
dc.relation.referencesLi, W., Wang, B., Wang, M., Chen, M., Yin, J.-M., Kaleri, G. M., & Yang, Q. (2014). Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation. Journal of Integrative Plant Biology, 56 (4), 364-372. https://doi.org/10.1111/jipb.12136spa
dc.relation.referencesLi, Y., Wang, L., Sun, G., Li, X., Chen, Z., Feng, J., & Yang, Y. (2021). Digital gene expression analysis of the response to Ralstonia solana- cearum between resistant and susceptible tobacco varieties. Scientific Reports, 11 (1), 3887. https://doi.org/10.1038/s41598-021-82576-8spa
dc.relation.referencesLin, R., & Wang, H. (2004). Arabidopsis FHY3/FAR1 gene family and dis- tinct roles of its members in light control of Arabidopsis development. Plant Physiology, 136 (4), 4010-4022. https://doi.org/10.1104/pp.104. 052191spa
dc.relation.referencesLiu, Y., Li, Y., Liu, Z., Wang, L., Lin-Wang, K., Zhu, J., Bi, Z., Sun, C., Zhang, J., & Bai, J. (2023). Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience, 26 (2), 105903. https://doi.org/10.1016/j.isci. 2022.105903spa
dc.relation.referencesLiu, Y., Lin-Wang, K., Espley, R. V., Wang, L., Li, Y., Liu, Z., Zhou, P., Zeng, L., Zhang, X., Zhang, J., & Allan, A. C. (2019). StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato. Journal of Experimental Botany, 70 (12), 3809-3824. https: //doi.org/10.1093/jxb/erz194spa
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Bio- logy, 15 (12), 550. https://doi.org/10.1186/s13059-014-0550-8spa
dc.relation.referencesMarinova, K., Pourcel, L., Weder, B., Schwarz, M., Barron, D., Routaboul, J. M., Debeaujon, I., & Klein, M. (2007). The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell, 19 (6), 2023-2038. https://doi.org/10.1105/tpc.106.046029spa
dc.relation.referencesMarson, N. A., Gallio, A. E., Mandal, S. K., Laskowski, R. A., & Raven, E. L. (2024). In silico prediction of heme binding in proteins. Journal of Biological Chemistry, 300 (5), 107250. https://doi.org/10.1016/j. jbc.2024.107250spa
dc.relation.referencesMontenegro, J. (2022). Gene Co-expression Network Analysis. Methods in Molecular Biology, 2443, 387-404. https://doi.org/10.1007/978- 1- 0716-2067-0 19spa
dc.relation.referencesMueller, L. A., Goodman, C. D., Silady, R. A., & Walbot, V. (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestra- tion, is a flavonoid-binding protein. Plant Physiology, 123 (4), 1561-1570. https://doi.org/10.1104/pp.123.4.1561spa
dc.relation.referencesNie, T., Sun, X., Wang, S., Wang, D., Ren, Y., & Chen, Q. (2023). Genome- Wide Identification and Expression Analysis of the 4-Coumarate: CoA Ligase Gene Family in Solanum tuberosum. International Journal of Molecular Sciences, 24 (2), 1642. https://doi.org/10.3390/ijms24021642spa
dc.relation.referencesOvens, K., Eames, B. F., & McQuillan, I. (2021). Comparative Analyses of Gene Co-expression Networks: Implementations and Applications in the Study of Evolution. Frontiers in Genetics, 12. https://doi.org/ 10.3389/fgene.2021.695399spa
dc.relation.referencesR, S. E. A., Harm, N., M, H. H. W., & Wilco, L. (2016). Learning from Co- expression Networks: Possibilities and Challenges. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00444spa
dc.relation.referencesR Core Team. (2024). R: A Language and Environment for Statistical Com- puting [R version 4.3.0]. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/spa
dc.relation.referencesRaghavachari, N., & Garcia-Reyero, N. (2018). Network Analysis of Gene Expression. En Gene Expression Analysis (pp. 325-341, Vol. 1783). Springer. https://doi.org/10.1007/978-1-4939-7834-2 16spa
dc.relation.referencesRao, X., & Dixon, R. A. (2019). Co-expression networks for plant biology: why and how. Acta Biochim Biophys Sin (Shanghai), 51, 981-988. doi:%2010.1093/abbs/gmz080spa
dc.relation.referencesRommens, C., Richael, C., Yan, H., Navarre, D., Ye, J., Krucker, M., & Swords, K. (2008). Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnology Jour- nal, 6, 870-886. https://doi.org/10.1111/j.1467-7652.2008.00362.xspa
dc.relation.referencesSegal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., & Fried- man, N. (2003). Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34, 166-176. https://doi.org/10.1038/ng1165spa
dc.relation.referencesSerin, E. A., Nijveen, H., Hilhorst, H. W., & Ligterink, W. (2016). Learning from co-expression networks: possibilities and challenges. Frontiers in Plant Science, 7, 444. https://doi.org/10.3389/fpls.2016.00444spa
dc.relation.referencesShannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interac- tion Networks. Genome Research, 13 (11), 2498-2504. https://www. cytoscape.org/spa
dc.relation.referencesSharan, R., Ulitsky, I., & Shamir, R. (2007). Network-based prediction of protein function. Molecular Systems Biology, 3, 88. https://doi.org/ 10.1038/msb4100129spa
dc.relation.referencesSheerin, D. J., & Hiltbrunner, A. (2017). Molecular mechanisms and ecolo- gical function of far-red light signalling. Plant, Cell & Environment, 40, 2509-2529. https://doi.org/10.1111/pce.12915spa
dc.relation.referencesStrygina, K., & Khlestkina, E. (2017). Anthocyanins synthesis in Potato (So- lanum tuberosum L.): Genetic markers for smart breeding (review). Sel’skokhozyaistvennaya Biologiya, 52, 37-49. https : / / doi . org / 10 . 15389/agrobiology.2017.1.37engspa
dc.relation.referencesStrygina, K., Kochetov, A., & Khlestkina, E. (2019). Genetic control of anthocyanin pigmentation of potato tissues. BMC Genetics, 20, 27. https://doi.org/10.1186/s12863-019-0728-xspa
dc.relation.referencesStushnoff, C., Ducreux, L., Hancock, R., Hedley, P., Holm, D., Mcdougall, G., Mcnicol, J., Morris, J., Morris, W., Sungurtas, J., et al. (2010). Flavo- noid profiling and transcriptome analysis reveals new gene-metabolite correlations in tubers of Solanum tuberosum L. Journal of Experimen- tal Botany, 61, 1225-1238. https://doi.org/10.1093/jxb/erp394spa
dc.relation.referencesSubramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lan- der, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the Uni- ted States of America, 102, 15545-15550. https://doi.org/10.1073/ pnas.0506580102spa
dc.relation.referencesSun, Q., Zhang, N., Wang, J., Cao, Y., Li, X., Zhang, H., & Guo, Y.-D. (2016). A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumula- tion upon postharvest in tomato. Journal of Pineal Research, 61 (2), 138-153. https://doi.org/10.1111/jpi.12315spa
dc.relation.referencesTanaka, Y., & Brugliera, F. (2013a). Flower colour and cytochromes P450. Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1612), 20120432. https://doi.org/10.1098/rstb.2012.0432spa
dc.relation.referencesTanaka, Y., & Brugliera, F. (2013b). Flower colour and cytochromes P450. Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1612), 20120432. https://doi.org/10.1098/rstb.2012.0432spa
dc.relation.referencesTang, D., Jia, Y., Zhang, J., et al. (2022). Genome evolution and diversity of wild and cultivated potatoes. Nature, 606, 535-541. https://doi.org/ 10.1038/s41586-022-04822-xspa
dc.relation.referencesTrognitz, F., Manosalva, P., Gysin, R., Niño-Liu, D., Simon, R., Herrera, M. d. R., Trognitz, B., Ghislain, M., & Nelson, R. (2002). Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja × dihaploid S. tuberosum hybrids. Mole- cular Plant-Microbe Interactions, 15 (6), 587-597. https://doi.org/10. 1094/MPMI.2002.15.6.587spa
dc.relation.referencesUmaerus, V. (1959). The relationship between peroxidase activity in pota- to leaves and resistance to Phytophthora infestans. American Potato Journal, 36 (4), 124-131. https://doi.org/10.1007/BF02857274spa
dc.relation.referencesValiñas, M., Lanteri, M., ten Have, A., & Andreu, A. (2015). Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Po- tato Tuber (Solanum tuberosum). Journal of Agricultural and Food Chemistry, 63 (19), 4902-4913. https://doi.org/10.1021/jf505777pspa
dc.relation.referencesWang, X., Dalkic, E., Wu, M., & Chan, C. (2008). Gene module level analysis: identification to networks and dynamics. Current Opinion in Biotech- nology, 19 (5), 482-491. https://doi.org/10.1016/j.copbio.2008.07.011spa
dc.relation.referencesWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd). Springer-Verlag New York. https://ggplot2.tidyverse.orgspa
dc.relation.referencesWu, X., & Prior, R. L. (2005). Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. Journal of Agricultural and Food Chemistry, 53, 2589-2599. https://doi.org/10.1021/jf048068bspa
dc.relation.referencesWu, Z., Wang, M., Yang, S., Chen, S., Chen, X., Liu, C., Wang, S., Wang, H., Zhang, B., Liu, H., Qin, R., & Wang, X. (2019). A global coex- pression network of soybean genes gives insights into the evolution of nodulation in nonlegumes and legumes [First published: 12 April 2019]. New Phytologist. https://doi.org/10.1111/nph.15845spa
dc.relation.referencesZhang, B., & Horvath, S. (2005). A general framework for weighted gene co- expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4, Article 17. doi:10.2202/1544-6115.1128spa
dc.relation.referencesZhang, Q., Zhai, J., Shao, L., Lin, W., & Peng, C. (2019). Accumulation of anthocyanins: an adaptation strategy of Mikania micrantha to low temperature in winter. Frontiers in Plant Science, 10, 1049. https : //doi.org/10.3389/fpls.2019.01049spa
dc.relation.referencesZhang, Y., Cheng, S., De Jong, D., Griffiths, H., Halitschke, R., & De Jong, W. (2009). The potato R locus codes for dihydroflavonol 4-reductase. Theoretical and Applied Genetics, 119, 931-937. https://doi.org/10. 1007/s00122-009-1100-8spa
dc.relation.referencesZhang, Y., Jung, C., & De Jong, W. (2009). Genetic analysis of pigmented tuber flesh in potato. Theoretical and Applied Genetics, 119, 143-150. https://doi.org/10.1007/s00122-009-1024-3spa
dc.relation.referencesZhang, Y., Jung, C. S., & Jong, W. S. D. (2009). Genetic analysis of pig- mented tuber flesh in potato. Theoretical and Applied Genetics, 119, 143-150. https://doi.org/10.1007/s00122-009-1024-3spa
dc.relation.referencesZhao, L., Zou, M., Jiang, S., Dong, X., Deng, K., Na, T., Wang, J., Xia, Z., & Wang, F. (2023). Insights into the genetic determination of the autotetraploid potato plant height. Genes, 14 (2), 507. https://doi. org/10.3390/genes14020507spa
dc.relation.referencesZhao, L., Lu, J., Zhang, J., Wu, P.-Y., Yang, S., & Wu, K. (2024). Identifica- tion and characterization of histone deacetylases in tomato (Solanum lycopersicum) [† indicates co-first authors]. Journal Name, Volume Number, Page Numbers. https://doi.org/DOINumberspa
dc.relation.referencesZhao, Y. W., Wang, C. K., Huang, X. Y., & Hu, D. G. (2021). Anthocyanin stability and degradation in plants. Plant Signaling Behavior, 16 (12), 1987767. https://doi.org/10.1080/15592324.2021.1987767spa
dc.relation.referencesZheng, H. Z., Wei, H., Guo, S. H., Yang, X., Feng, M. X., Jin, X. Q., Fang, Y. L., Zhang, Z. W., Xu, T. F., & Meng, J. F. (2020). Nitrogen and phosphorus co-starvation inhibits anthocyanin synthesis in the callus 71of grape berry skin. Plant Cell, Tissue and Organ Culture (PCTOC), 142 (2), 313-325. https://doi.org/10.1007/s11240-020-01889-2spa
dc.relation.referencesZipor, G., Duarte, P., Carqueijeiro, I., Shahar, L., Ovadia, R., Teper-Bamnolker, P., Eshel, D., Levin, Y., Doron-Faigenboim, A., Sottomayor, M., & Oren-Shamir, M. (2015). In planta anthocyanin degradation by a va- cuolar class III peroxidase in Brunfelsia calycina flowers. New Phyto- logist, 205 (2), 653-665. https://doi.org/10.1111/nph.13038spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.agrovocAntocianina
dc.subject.agrovocanthocyanins
dc.subject.agrovocHortaliza
dc.subject.agrovocvegetables
dc.subject.agrovocEstructura genética
dc.subject.agrovocgenetic structures
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionados
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.proposalRedes de co-expresiónspa
dc.subject.proposalBiologı́a de sistemasspa
dc.subject.proposalPapaspa
dc.subject.proposalAntocianinasspa
dc.subject.proposalFlavonoidesspa
dc.subject.proposalPangenomaspa
dc.subject.proposalOrto-gruposeng
dc.subject.proposalCo-expression networkseng
dc.subject.proposalSystems biologyeng
dc.subject.proposalPotatoeng
dc.subject.proposalAnthocyaninseng
dc.subject.proposalFlavonoidseng
dc.subject.proposalPangenomeeng
dc.subject.proposalOrthogroupseng
dc.titleReconstrucción de la red del metabolismo de las antocianinas y procesos asociados en papaspa
dc.title.translatedReconstruction of the anthocyanin metabolism network and associated processes in potatoeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014221119.2025.pdf
Tamaño:
6.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: