Estudio del potencial inhibitorio de los constituyentes químicos presentes en Hypericum mexicanum (Hypericaceae) sobre las enzimas lipasa pancreática y α-glucosidasa
dc.contributor.advisor | Patiño Ladino, Oscar Javier | spa |
dc.contributor.advisor | Prieto Rodríguez, Juliet Angélica | spa |
dc.contributor.author | Rodriguez Larrota, Harold | spa |
dc.date.accessioned | 2025-04-07T17:03:00Z | |
dc.date.available | 2025-04-07T17:03:00Z | |
dc.date.issued | 2025-04-04 | |
dc.description | ilustraciones, diagramas, fotografías a color, tablas | spa |
dc.description.abstract | La obesidad y la diabetes, dos de las principales causas de mortalidad, también contribuyen al desarrollo de otras enfermedades crónicas como las cardiovasculares y renales. Un enfoque prometedor para el tratamiento de estas patologías es la inhibición de las enzimas lipasa pancreática (LP) y α-glucosidasa (AG), clave en el metabolismo de lípidos y carbohidratos. Aunque los fármacos sintéticos como orlistat y acarbosa son efectivos, sus efectos secundarios han impulsado la búsqueda de alternativas más seguras, como los compuestos vegetales (flavonoides, terpenoides y ácidos fenólicos), que han mostrado propiedades inhibitorias. La presente investigación contribuye a la búsqueda de moléculas con potencial inhibitorio frente a LP y AG a partir del estudio químico y de inhibición enzimática de metabolitos secundarios presentes en las partes aéreas de Hypericum mexicanum. La metodología incluyó el desarrollo de un estudio fitoquímico del extracto etanólico de partes aéreas de H. mexicanum para aislar e identificar compuestos que posteriormente se evaluaron como inhibidores de las enzimas LP y AG. Finalmente, se determinaron los mecanismos de inhibición enzimática sobre las dos enzimas de los compuestos bioactivos provenientes de H. mexicanum. El estudio fitoquímico permitió determinar que las fracciones DCM, AcOMe, iPrOH y EtOH: H2O 8:2 tienen la capacidad de inhibir la LP y AG. Sin embargo, las fracciones DCM y AcOMe concentraron la mayor diversidad química y están entre las fracciones más activas, por lo que fueron seleccionadas para continuar con el estudio químico. A partir de estas fracciones se aislaron: dos dímeros de acilfloroglucinol (3-preniluliginosina C (Hm-1) y uliginosina C (Hm-2)), tres xantonas preniladas (hyperixantona B (Hm-3), hyperixantona A (Hm-4) y assiguxantona A (Hm-12)), tres acilfloroglucinoles tipo cromano (mexicacina A-C (Hm-5, Hm-6 y Hm-7)), cuatro acilfloroglucinoles prenilados (mexicalina A-D (Hm-8, Hm-9, Hm-10 y Hm-11)) y un flavonoide (quercetina (Hm-13)). Cabe destacar que los compuestos Hm-4, Hm-8, Hm-10–Hm-13 son reportados por primera vez en esta especie, mientras que Hm-3, Hm-5, Hm-6, Hm-7 y Hm-9 hasta nuestro conocimiento no han sido reportados previamente en la literatura. Los compuestos Hm-1, Hm-3 y la mezcla Hm-8/9 fueron las sustancias activas sobre LP, siendo Hm-1 el más activo con CI50 de 22.88 µM. Para AG, el compuesto Hm-12 y la mezcla Hm-10/11 causaron inhibición de la enzima, siendo Hm-12 el más activo con un CI50 de 109.52 µM, superando incluso el valor del control positivo (acarbosa). Los estudios cinéticos sugirieron que Hm-1 y la mezcla Hm-8/9 actúan como inhibidores mixtos de LP, mientras que Hm-3 mostró un mecanismo acompetitivo. En cuanto a AG, Hm-12 presentó un mecanismo no competitivo, lo que resalta su potencial farmacológico como antihiperglucemiante en el tratamiento de la diabetes tipo 2. Además, se lograron establecer relaciones estructura-actividad. En la inhibición de la LP, la presencia de un grupo isoprenilo y O-prenilo mejoraron la actividad de los acilfloroglucinoles. Asimismo, las xantonas con un anillo tetrahidrofuránico aumentaron la inhibición de LP. En la inhibición de la AG, en los núcleos de acilfloroglucinoles la presencia de un grupo isoprenilo mejora significativamente la actividad inhibidora, mientras que los grupos O-prenilo disminuyen la inhibición. En las xantonas, la introducción de dos grupos prenilo y un grupo carbonilo α,β-insaturado reduce la actividad inhibitoria sobre AG. Este estudio constituye el primer reporte sobre el efecto del extracto etanólico, las fracciones y los compuestos obtenidos de las partes aéreas de H. mexicanum frente a LP y AG, ya que no existen registros previos en la literatura del potencial frente a estas enzimas, abriendo nuevas posibilidades para el desarrollo de terapias farmacológicas contra la obesidad y la diabetes tipo 2 (Texto tomado de la fuente). | spa |
dc.description.abstract | Obesity and diabetes, two of the leading causes of mortality, also contribute to the development of other chronic conditions such as cardiovascular and renal diseases. A promising approach for the treatment of these pathologies is the inhibition of pancreatic lipase (PL) and α-glucosidase (AG), key enzymes in lipid and carbohydrate metabolism. Although synthetic drugs such as orlistat and acarbose are effective, their side effects have driven the search for safer alternatives, such as plant-derived compounds (flavonoids, terpenoids, and phenolic acids), which have shown inhibitory properties. This research contributes to the search for molecules with inhibitory potential against PL and AG through the chemical and enzymatic inhibition study of secondary metabolites present in the aerial parts of Hypericum mexicanum. The methodology included a phytochemical study of the ethanolic extract of aerial parts of H. mexicanum to isolate and identify compounds that were subsequently evaluated as inhibitors of PL and AG. Finally, the enzymatic inhibition mechanisms of the bioactive compounds from H. mexicanum were determined. The phytochemical study revealed that the DCM, AcOMe, iPrOH, and EtOH:H₂O 8:2 fractions have the ability to inhibit PL and AG. However, the DCM and AcOMe fractions showed the greatest chemical diversity and were among the most active, thus selected for further chemical investigation. From these fractions, the following compounds were isolated: two acylphloroglucinol dimers (Hm-1, Hm-2), three prenylated xanthones (Hm-3, Hm-4, Hm-12), three chromane-type acylphloroglucinols (Hm-5, Hm-6, Hm-7), four prenylated acylphloroglucinols (Hm-8, Hm-9, Hm-10, Hm-11), and one flavonoid (Hm-13). Notably, compounds Hm-4, Hm-8, Hm-10–Hm-13 are reported for the first time in this species, while Hm-3, Hm-5, Hm-6, Hm-7, and Hm-9 have not, to our knowledge, been previously reported in the literature. Compounds Hm-1, Hm-3, and the Hm-8/9 mixture were active against PL, with Hm-1 being the most active, showing an IC₅₀ of 22.88 µM. Regarding AG, compound Hm-12 and the Hm-10/11 mixture inhibited the enzyme, with Hm-12 being the most active (IC₅₀ = 109.52 µM), even outperforming the positive control (acarbose). Kinetic studies suggested that Hm-1 and the Hm-8/9 mixture act as mixed-type inhibitors of PL, while Hm-3 exhibited an uncompetitive mechanism. For AG, Hm-12 showed a non-competitive inhibition mechanism, highlighting its pharmacological potential as an antihyperglycemic agent in the treatment of type 2 diabetes. Additionally, structure–activity relationships were established. In PL inhibition, the presence of isoprenyl and O-prenyl groups enhanced the activity of acylphloroglucinols. Similarly, xanthones containing a tetrahydrofuran ring increased PL inhibition. Regarding AG inhibition, in acylphloroglucinol cores, the presence of an isoprenyl group significantly enhanced inhibitory activity, whereas O-prenyl groups reduced inhibition. In xanthones, the introduction of two prenyl groups and an α,β-unsaturated carbonyl group reduced inhibitory activity against AG. This study constitutes the first report on the effect of the ethanolic extract, fractions, and isolated compounds from the aerial parts of H. mexicanum against PL and AG, as no prior records exist in the literature regarding their potential toward these enzymes, opening new avenues for the development of pharmacological therapies against obesity and type 2 diabetes. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias Farmacéuticas | spa |
dc.description.methods | Para el fraccionamiento del extracto se empleó cromatografía líquida al vacío (CLV) utilizando como fase estacionaria sílica gel 60 F254 SiliaPlate de tamaño 5-20 μm (SiliCycle® Inc, Quebec, Canadá). Las separaciones cromatográficas se realizaron mediante dos técnicas: cromatografía flash (CF) y cromatografía por exclusión de tamaño (SEC). Para la CF, se utilizaron fases estacionarias de sílica gel P60 SiliaFlash® de tamaños de 40-63 μm y 20-45 μm (SiliCycle® Inc, Quebec, Canadá), así como sílica gel C18 (Merck®, Darmstadt, Alemania). En el caso de la SEC, se empleó Sephadex LH20 (Merck®, Darmstadt, Alemania) como fase estacionaria. Los estudios cromatográficos incluyeron el monitoreo del fraccionamiento y las purificaciones, que se realizaron mediante cromatografía en capa delgada (CCD) para el monitoreo y cromatografía en capa delgada preparativa (CCDP) para la purificación. Se emplearon cromatoplacas de sílica gel 60 F254 SiliaPlate™ (SiliCycle® Inc, Quebec - Canadá) y se utilizaron como reveladores luz UV (254 y 365 nm), vapores de yodo y vainillina al 0.1% en H2SO4. Los solventes utilizados para las separaciones cromatográficas fueron adquiridos grado técnico, se destilaron y secaron antes de su uso. La elucidación de los compuestos aislados se realizó mediante el empleo de técnicas espectroscópicas y por comparación con datos de literatura. Los espectros de RMN 1H, APT, COSY, HMQC y/o HMBC fueron tomados en el equipo Bruker Avance AC-400 (Bruker®, Billerica, MA, EE. UU.) utilizando solventes deuterados a una temperatura de 25 °C. Los desplazamientos químicos (δ) están expresados en partes por millón (ppm) y las constantes de acoplamiento (J) en Hertz (Hz). Las multiplicidades están asignadas como s = singlete, d = doblete, t = triplete, q= cuarteto, sext= sexteto, sept= septeto, dd = doble doblete y m = multiplete. Para la obtención de los espectros infrarrojo (IR) se empleó en un espectrómetro IRTracer-100 (Shimadzu®, Kioto, Japón). Para el análisis de espectrometría de masas de alta resolución (HRMS) se utilizó un sistema LC-MS-TOF (Shimadzu®, Kioto, Japón). Adicionalmente, los puntos de fusión se determinaron en un Electrothermal IA9000 (Electrothermal, Essex, Reino Unido). Las enzimas y sustratos empleados para los estudios de inhibición enzimática fueron adquiridas en Sigma-Aldrich, Darmstadt, Alemania: lipasa pancreática tipo (LP) II derivada del páncreas porcino (100-500 U/mg proteína, Sigma-Aldrich, EC. 3.1.1.3) y α-glucosidasa (AG) tipo I derivada de Saccharomyces cerevisiae (polvo liofilizado, ≥ 10 U/mg proteína, Sigma-Aldrich, EC. 3.2.1.20). Como sustratos se usaron los compuestos dodecanoato de 4-nitrofenilo (Sigma-Aldrich) para LP y 4-nitrofenol-α-D-glucopiranósido (Sigma-Aldrich) para AG. Los demás reactivos utilizados en los ensayos enzimáticos fueron de grado analítico, adquiridos comercialmente y usados sin tratamiento adicional. Las lecturas de absorbancia se realizaron en un lector de microplacas Thermo Scientific Multiskan GO (Thermo Fisher Scientific, Waltham, MA, EE. UU.) Utilizando el software Skanlt RE 7.0.2. (Thermo Fisher Scientific, Waltham, MA, EE. UU.). | spa |
dc.description.researcharea | Química de Productos Naturales | spa |
dc.format.extent | 154 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87869 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas | spa |
dc.relation.references | Abdullah, N. H., Salim, F., & Ahmad, R. (2016). Chemical constituents of malaysian U. cordata var. ferruginea and their in Vitro α-glucosidase inhibitory activities. Molecules, 21(5). | spa |
dc.relation.references | Akyüz, S., Kurt-Celep, İ., İnan, Y., Özdemir, O. E., Celep, E., & Yesilada, E. (2021). In vitro evaluation of the bioactivity and bioaccessibility of Hypericum olympicum L. South African Journal of Botany, 142, 316–324. | spa |
dc.relation.references | Alizadeh, S. R., & Ebrahimzadeh, M. A. (2022). O‐Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure–activity relationship for drug design, a review. Phytotherapy Research, 36(2), 778–807. | spa |
dc.relation.references | Alonso-Castro, A. J., Domínguez, F., Zapata-Morales, J. R., & Carranza-Álvarez, C. (2015). Plants used in the traditional medicine of Mesoamerica (Mexico and Central America) and the Caribbean for the treatment of obesity. Journal of Ethnopharmacology, 175, 335–345. | spa |
dc.relation.references | Andrade-Cetto, A., Becerra-Jiménez, J., & Cárdenas-Vázquez, R. (2008). Alfa-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. Journal of Ethnopharmacology, 116(1), 27–32. | spa |
dc.relation.references | Assefa, S. T., Yang, E. Y., Chae, S. Y., Song, M., Lee, J., Cho, M. C., & Jang, S. (2020). Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants, 9(1). | spa |
dc.relation.references | Auranwiwat, C., Laphookhieo, S., Rattanajak, R., Kamchonwongpaisan, S., Pyne, S. G., & Ritthiwigrom, T. (2016). Antimalarial polyoxygenated and prenylated xanthones from the leaves and branches of Garcinia mckeaniana. Tetrahedron, 72(43), 6837–6842. | spa |
dc.relation.references | Badiali, C., Petruccelli, V., Brasili, E., & Pasqua, G. (2023). Xanthones: Biosynthesis and Trafficking in Plants, Fungi and Lichens. Plants, 12(4). | spa |
dc.relation.references | Baeshen, N. A., Baeshen, M. N., Sheikh, A., Bora, R. S., Morsi, M., Ahmed, M., Ramadan, H. A. I., Saini, K. S., & Redwan, E. M. (2014). Cell factories for insulin production. Microbial Cell Factories, 13–141. | spa |
dc.relation.references | Barnes, A. S., & Coulter, S. A. (2011). The Epidemic of Obesity and Diabetes Cardiovascular Disease in Women. Epidemic of Obesity and Diabetes, 38(2). | spa |
dc.relation.references | Barski, L., Golbets, E., Jotkowitz, A., & Schwarzfuchs, D. (2023). Management of diabetic ketoacidosis. European Journal of Internal Medicine, 117, 38–44. | spa |
dc.relation.references | Benito-Gallo, P., Franceschetto, A., Wong, J. C. M., Marlow, M., Zann, V., Scholes, P., & Gershkovich, P. (2015). Chain length affects pancreatic lipase activity and the extent and pH-time profile of triglyceride lipolysis. European Journal of Pharmaceutics and Biopharmaceutics, 93, 353–362. | spa |
dc.relation.references | Birari, R. B., & Bhutani, K. K. (2007). Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discovery Today, 12(19–20), 879–889. | spa |
dc.relation.references | Bisswanger, H. (2014). Enzyme assays. Perspectives in Science, 1(1–6), 41–55. | spa |
dc.relation.references | Bremner, P. D., & Meyer, J. J. M. (2000). Prenyl-butyrylphloroglucinol and kaurenoic acid: Two antibacterial compounds from Helichrysum kraussii. South African Journal of Botany, 66(2), 115–117. | spa |
dc.relation.references | Bridi, H., Meirelles, G. de C., & von Poser, G. L. (2018). Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. Phytochemistry, 155, 203–232. | spa |
dc.relation.references | Buchholz, T., & Melzig, M. F. (2016). Medicinal Plants Traditionally Used for Treatment of Obesity and Diabetes Mellitus - Screening for Pancreatic Lipase and α-Amylase Inhibition. Phytotherapy Research, 30(2), 260–266 | spa |
dc.relation.references | Bule, M., Abdurahman, A., Nikfar, S., Abdollahi, M., & Amini, M. (2019). Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food and Chemical Toxicology, 125, 494–502. | spa |
dc.relation.references | Bustanji, Y., Al-Masri, I. M., Mohammad, M., Hudaib, M., Tawaha, K., Tarazi, H., & Alkhatib, H. S. (2011). Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba. Journal of Enzyme Inhibition and Medicinal Chemistry, 26(4), 453–459. | spa |
dc.relation.references | Butryn, M. L., Webb, V., & Wadden, T. A. (2011). Behavioral treatment of obesity. Psychiatric Clinics of North America, 34(4), 841–859. | spa |
dc.relation.references | Caldeira, G. I., Gouveia, L. P., Serrano, R., & Silva, O. D. (2022). Hypericum Genus as a Natural Source for Biologically Active Compounds. In Plants (Vol. 11, Issue 19). MDPI | spa |
dc.relation.references | Cann, M. R., Davis, A.-M., & Shannon, P. V. R. (1984). The Synthesis of Some Novel Deoxyhumulone Analogues. Observations on the Air-oxidation of 2’,4’,6’-Tri hydroxy-3’-isopentyl-5’-(3-methyl but-2-eny1)isovalerophenone and its corresponding Humulone Derivatives. Journal of the Chemical Society, 1412–1421. | spa |
dc.relation.references | Cardozo-Muñoz, J., Cuca-Suárez, L. E., Prieto-Rodríguez, J. A., Lopez-Vallejo, F., & Patiño-Ladino, O. J. (2022). Multitarget Action of Xanthones from Garcinia mangostana against α-Amylase, α-Glucosidase and Pancreatic Lipase. Molecules, 27(10). | spa |
dc.relation.references | Carvajal, C. (2014). Lipoproteínas: Metabolismo y Lipoproteínas Aterogénicas. In Medicina Legal de Costa Rica (Vol. 31, Issue 2). | spa |
dc.relation.references | Ccana-Ccapatinta, G. V., de Barros, F. M. C., Bridi, H., & von Poser, G. L. (2015). Dimeric acylphloroglucinols in Hypericum species from sections Brathys and Trigynobrathys. In Phytochemistry Reviews (Vol. 14, Issue 1, pp. 25–50). Kluwer Academic Publishers. | spa |
dc.relation.references | Chakhtoura, M., Haber, R., Ghezzawi, M., Rhayem, C., Tcheroyan, R., & Mantzoros, C. S. (2023). Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. EClinicalMedicine, 58, 1–29. | spa |
dc.relation.references | Chen, Y. T., Long, P. T., Xu, H. X., Wang, W. J., & Zhang, Q. F. (2024). The inhibitory activity of Flos Sophorae Immaturus extract and its major flavonoid components on pancreatic lipase. International Journal of Biological Macromolecules, 277. | spa |
dc.relation.references | Çirak, C., Radušienė, J., Ivanauskas, L., & Janulis, V. (2007). Variation of bioactive secondary metabolites in Hypericum origanifolium during its phenological cycle. Acta Physiologiae Plantarum, 29(3), 197–203. | spa |
dc.relation.references | Corzo B., D. C., & Gaitán V., D. M. (2017). Evaluación de la efectividad de distintas formulaciones de jabón con extracto de Hypericum mexicanum L. Revista de Investigacion Agraria y Ambiental, 8(1), 131–138. | spa |
dc.relation.references | Couladis, M., Baziou, P., Verykokidou, E., & Loukis, A. (2002). Antioxidant Activity of Polyphenols from Hypericum triquetrifolium Turra. Phytotherapy Research, 16(8), 769–770. | spa |
dc.relation.references | Crispin, M. C., Hur, M., Park, T., Kim, Y. H., & Wurtele, E. S. (2013). Identification and biosynthesis of acylphloroglucinols in Hypericum gentianoides. Physiologia Plantarum, 148(3), 354–370. | spa |
dc.relation.references | Crockett, S., Eberhardt, M., Kunert, O., & Schühly, W. (2010). Hypericum species in the Páramos of Central and South America: A special focus upon H. irazuense Kuntze ex N. Robson. Phytochemistry Reviews, 9(2), 255–269. | spa |
dc.relation.references | Crockett, S. L., & Robson, N. K. B. (2011). Taxonomy and Chemotaxonomy of the Genus Hypericum. Med Amromat Plant Sci Biotechnol, 5(1), 1–13. | spa |
dc.relation.references | Crujeiras, A. B., Carreira, M. C., Cabia, B., Andrade, S., Amil, M., & Casanueva, F. F. (2015). Leptin resistance in obesity: An epigenetic landscape. Life Sciences, 140, 57–63. | spa |
dc.relation.references | Cusi, K. (2010). The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. Current Diabetes Reports, 10(4), 306–315. | spa |
dc.relation.references | Dahlén, A. D., Dashi, G., Maslov, I., Attwood, M. M., Jonsson, J., Trukhan, V., & Schiöth, H. B. (2022). Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Frontiers in Pharmacology, 12. | spa |
dc.relation.references | Dall’Agnol, R., Ferraz, A., Bernardi, A. P., Albring, D., Nör, C., Sarmento, L., Lamb, L., Hass, M., Von Poser, G. L., & Schapoval, E. E. S. (2003). Antimicrobial activity of some Hypericum species. Phytomedicine, 10(6–7), 511–516. | spa |
dc.relation.references | De Caro, J., Carrie, F., Barboni, P., Giller, T., Verger, R., & De Caro, A. (1998). Pancreatic lipase-related protein 1 (PLRP1) is present in the pancreatic juice of several species. Biochimica et Biophysica Acta, 331–341. | spa |
dc.relation.references | DeFronzo, R. A. (2004). Pathogenesis of type 2 diabetes mellitus. Medical Clinics of North America, 88(4), 787–835. | spa |
dc.relation.references | Demirkiran, O. (2007). Xanthones in Hypericum: Synthesis and Biological Activities. In Top Heterocycl Chem (Vol. 9, pp. 139–178). Springer Berlin Heidelberg. | spa |
dc.relation.references | Diabetes. (2023, April 5). World Health Organization. https://www.who.int/news-room/fact-sheets/detail/diabetes | spa |
dc.relation.references | Drewes, S. E., & van Vuuren, S. F. (2008). Antimicrobial acylphloroglucinols and dibenzyloxy flavonoids from flowers of Helichrysum gymnocomum. Phytochemistry, 69(8), 1745–1749. | spa |
dc.relation.references | Durán, S., Valderrama, Z., Valenzuela Montero, A., Hernández, P., Jelley, T., Valenzuela B. Alfonso, Vio, F., Ratner, R., Mahecha Matsudo, S. M., Godoy, D., Álvarez Cordero, R., & de Melo, M. E. (2016). Los costos económicos y sociales de la obesidad en América Latina: un llamado a la acción. | spa |
dc.relation.references | Esposito, C., Johansson, C., & Di Micco, S. (2022). Editorial: Novel Strategies in Drug Development Against Multifactorial Diseases. Frontiers in Chemistry, 10. | spa |
dc.relation.references | Feng, L., Maddox, M. M., Alam, M. Z., Tsutsumi, L. S., Narula, G., Bruhn, D. F., Wu, X., Sandhaus, S., Lee, R. B., Simmons, C. J., Tse-Dinh, Y. C., Hurdle, J. G., Lee, R. E., & Sun, D. (2014). Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as Olympicin A and derivatives. Journal of Medicinal Chemistry, 57(20), 8398–8420. | spa |
dc.relation.references | Fernando, W. I. T., Attanayake, A. M. K. C., Perera, H. K. I., Sivakanesan, R., Jayasinghe, L., Araya, H., & Fujimoto, Y. (2019). Isolation, identification and characterization of pancreatic lipase inhibitors from Trigonella foenum-graecum seeds. South African Journal of Botany, 121, 418–421. | spa |
dc.relation.references | Galati, E. M., Contartese, G., Miceli, N., Taviano, M. F., Sdrafkakis, V., Couladis, M., Tzakou, O., & Lanuzza, F. (2008). Antiinflammatory and Antioxidant ActivityofHypericum rumeliacum Boiss. subsp. apollinis(Boiss. & Heldr.) Robson & Strid Methanol Extract. Phytother, 22, 766–771. | spa |
dc.relation.references | García-De La Cruz, L., Galvan-Goiz, Y., Caballero-Caballero, S., Zamudio, S., Alfaro, A., & Navarrete, A. (2013). Hypericum silenoides Juss. and Hypericum philonotis Cham. & Schlecht. extracts: In-vivo hypolipidaemic and weight-reducing effects in obese rats. Journal of Pharmacy and Pharmacology, 65(4), 591–603. | spa |
dc.relation.references | Geddes, R., & Taylor, J. A. (1985). Lysosomal glycogen storage induced by Acarbose, a 1,4-a-glucosidase inhibitor. Biochem. J, 228, 319–324. | spa |
dc.relation.references | George, J. H., Hesse, M. D., Baldwin, J. E., & Adlington, R. M. (2010). Biomimetic synthesis of polycyclic polyprenylated acylphloroglucinol natural products isolated from hypericum papuanum. Organic Letters, 12(15), 3532–3535. | spa |
dc.relation.references | Gibbons, S., Moser, E., Hausmann, S., Stavri, M., Smith, E., & Clennett, C. (2005). An anti-staphylococcal acylphloroglucinol from Hypericum foliosum. Phytochemistry, 66(12), 1472–1475 | spa |
dc.relation.references | Golay, A., & Ybarra, J. (2005). Link between obesity and type 2 diabetes. Best Practice and Research: Clinical Endocrinology and Metabolism, 19(4), 649–663. | spa |
dc.relation.references | Gomes, J. H. de S., Mbiakop, U. C., Oliveira, R. L., Stehmann, J. R., Pádua, R. M. de, Cortes, S. F., & Braga, F. C. (2021). Polyphenol-rich extract and fractions of Terminalia phaeocarpa Eichler possess hypoglycemic effect, reduce the release of cytokines, and inhibit lipase, α-glucosidase, and α-amilase enzymes. Journal of Ethnopharmacology, 271. | spa |
dc.relation.references | González, H. (2016). Managing Patients with Obesity. Springer. | spa |
dc.relation.references | Gore, R. J., Diallo, S., & Padilla, J. (2015). You are what you tweet: Connecting the geographic variation in America’s obesity rate to twitter content. PLOS ONE, 10(9), 1–16. | spa |
dc.relation.references | Grafakou, M. E., Barda, C., Karikas, G. A., & Skaltsa, H. (2022). Hypericum Essential Oils—Composition and Bioactivities: An Update (2012–2022). Molecules, 27(16), 1–22. | spa |
dc.relation.references | Guedes, A. P., Franklin, G., & Fernandes-Ferreira, M. (2012). Hypericum sp.: Essential oil composition and biological activities. Phytochemistry Reviews, 11(1), 127–152. | spa |
dc.relation.references | Guillen Quispe, Y. N., Hwang, S. H., Wang, Z., Zuo, G., & Lim, S. S. (2017). Screening in vitro targets related to diabetes in herbal extracts from Peru: Identification of active compounds in hypericum laricifolium juss. by offline high-performance liquid chromatography. International Journal of Molecular Sciences, 18(12). | spa |
dc.relation.references | Guo, Y., Zhang, N., Chen, C., Huang, J., Li, X. N., Liu, J., Zhu, H., Tong, Q., Zhang, J., Luo, Z., Xue, Y., & Zhang, Y. (2017). Tricyclic Polyprenylated Acylphloroglucinols from St John’s Wort, Hypericum perforatum. Journal of Natural Products, 80(5), 1493–1504. | spa |
dc.relation.references | Habtemariam, S. (2013). Antihyperlipidemic components of Cassia auriculata aerial parts: Identification through in vitro studies. Phytotherapy Research, 27(1), 152–155. | spa |
dc.relation.references | Hernández-Saavedra, D., Pérez-Ramírez, I. F., Ramos-Gómez, M., Mendoza-Díaz, S., Loarca-Piña, G., & Reynoso-Camacho, R. (2016). Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Medicinal Chemistry Research, 25(1), 163–172. | spa |
dc.relation.references | Herscovics, A. (1999). Glycosidases of the Asparagine-linked Oligosaccharide Processing Pathway. Comprehensive Natural Products Chemistry, 13–35. | spa |
dc.relation.references | Hou, X. D., Guan, X. Q., Cao, Y. F., Weng, Z. M., Hu, Q., Liu, H. Bin, Jia, S. N., Zang, S. Z., Zhou, Q., Yang, L., Ge, G. B., & Hou, J. (2020). Inhibition of pancreatic lipase by the constituents in St. John’s Wort: In vitro and in silico investigations. International Journal of Biological Macromolecules, 145, 620–633. | spa |
dc.relation.references | Hu, Y. L., Hu, K., Kong, L. M., Xia, F., Yang, X. W., & Xu, G. (2019). Norascyronones A and B, 2,3,4- nor-Polycyclic Polyprenylated Acylphloroglucinols from Hypericum ascyron. Organic Letters, 21(4), 1007–1010. | spa |
dc.relation.references | Husain, G. M., Chatterjee, S. S., Singh, P. N., & Kumar, V. (2011). Hypolipidemic and Antiobesity-Like Activity of Standardised Extract of Hypericum perforatum L. in Rats. ISRN Pharmacology, 2011, 1–7. | spa |
dc.relation.references | International Diabetes Federation. (2021). IDF Diabetes Atlas. www.diabetesatlas.org | spa |
dc.relation.references | Inthongkaew, P., Chatsumpun, N., Supasuteekul, C., Kitisripanya, T., Putalun, W., Likhitwitayawuid, K., & Sritularak, B. (2017). α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum. Revista Brasileira de Farmacognosia, 27(4), 480–487. | spa |
dc.relation.references | Ion, V., Ielciu, I., Cârje, A. G., Muntean, D. L., Crişan, G., & Păltinean, R. (2022). Hypericum spp.—An Overview of the Extraction Methods and Analysis of Compounds. Separations, 9(1). | spa |
dc.relation.references | Ito, C., Miyamoto, Y., Nakayama, M., Kawai, Y., Rao, K. S., & Furukawa, H. (1997). A Novel Depsidone and Some New Xanthones from Garcinia Species. Chem Pharm Bull, 45(9), 1403–1413. | spa |
dc.relation.references | Iwai, K. (2008). Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-Ay mice. Plant Foods for Human Nutrition, 63(4), 163–169. | spa |
dc.relation.references | Jakupqvic, J., Kl, J., Schuster, H. A., Netwally, M. A., & Bohlmann, F. (1986). Phloroglucinol derivatives and other constituents from South African Helichrysum species. Phytochemistry, 25(5), 1133–1142. | spa |
dc.relation.references | Jibril, S., Sirat, H., & Basar, N. (2017). Bioassay-Guided Isolation of Antioxidants and alpha-Glucosidase Inhibitors from the Root of Cassia sieberiana DC (Fabaceae). Records of Natural Products. | spa |
dc.relation.references | Jin, D. X., He, J. F., Luo, X. G., & Zhang, T. C. (2019). Hypoglycemic effect of Hypericum attenuatum Choisy extracts on type 2 diabetes by regulating glucolipid metabolism and modulating gut microbiota. Journal of Functional Foods, 52, 479–491. | spa |
dc.relation.references | Jo, Y. H., Kim, S. B., Liu, Q., Lee, J. W., Hwang, B. Y., & Lee, M. K. (2015). Benzylated and prenylated flavonoids from the root barks of Cudrania tricuspidata with pancreatic lipase inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 25(17), 3455–3457. | spa |
dc.relation.references | Kashtoh, H., & Baek, K. H. (2022). Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants, 11(20). | spa |
dc.relation.references | Kumar Veeramachaneni, G., Raj, K. K., Madhuri Chalasani, L., Krishna Annamraju, S., JS, B., & Talluri, V. R. (2015). Shape based virtual screening and molecular docking towards designing novel pancreatic lipase inhibitors. Bioinformation, 11(12), 535–542. | spa |
dc.relation.references | Kusari, S., Zühlke, S., Borsch, T., & Spiteller, M. (2009). Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum. Phytochemistry, 70(10), 1222–1232. | spa |
dc.relation.references | Kushner, R. F. (2016). Obesity management. In NON-SURGICAL TREATMENT OF OSA/HS (pp. 51–59). | spa |
dc.relation.references | Lévuok-Mena, K. P., Patiño-Ladino, O. J., & Prieto-Rodríguez, J. A. (2023). In Vitro Inhibitory Activities against α-Glucosidase, α-Amylase, and Pancreatic Lipase of Medicinal Plants Commonly Used in Chocó (Colombia) for Type 2 Diabetes and Obesity Treatment. Scientia Pharmaceutica, 91(4), 49. | spa |
dc.relation.references | Li, M. M., Chen, Y. T., Ruan, J. C., Wang, W. J., Chen, J. G., & Zhang, Q. F. (2023). Structure-activity relationship of dietary flavonoids on pancreatic lipase. Current Research in Food Science, 6. | spa |
dc.relation.references | Li, Y. P., Hu, K., Yang, X. W., & Xu, G. (2018). Antibacterial Dimeric Acylphloroglucinols from Hypericum japonicum. Journal of Natural Products, 81(4), 1098–1102. | spa |
dc.relation.references | Li, Y. Q., Zhou, F. C., Gao, F., Bian, J. S., & Shan, F. (2009). Comparative Evaluation of Quercetin, Isoquercetin and Rutin as Inhibitors of α-Glucosidase. Journal of Agricultural and Food Chemistry, 57(24), 11463–11468. | spa |
dc.relation.references | Limanto, A., Simamora, A., Santoso, A. W., & Timotius, K. H. (2019). Antioxidant, α-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Molecular and Cellular Biomedical Sciences, 3(2), 67–74. | spa |
dc.relation.references | Liu, T. T., Liu, X. T., Chen, Q. X., & Shi, Y. (2020). Lipase Inhibitors for Obesity: A Review. Biomedicine and Pharmacotherapy, 128. | spa |
dc.relation.references | Lobstein, T., Jackson-Leach, R., Powis, J., Brinsden, H., & Gray, M. (2023). World Obesity Atlas 2023. | spa |
dc.relation.references | Lou, H. Y., Li, Y. N., Yi, P., Jian, J. Y., Hu, Z. X., Gu, W., Huang, L. J., Li, Y. M., Yuan, C. M., & Hao, X. J. (2020). Hyperfols A and B: Two highly modified polycyclic polyprenylated acylphloroglucinols from hypericum perforatum. Organic Letters, 22(17). | spa |
dc.relation.references | Lowe, M. E., Rosenblum, J. L., & Strauss, A. W. (1989). Cloning and characterization of human pancreatic lipase cDNA. Journal of Biological Chemistry, 264(33), 20042–20048. | spa |
dc.relation.references | Lozada, Y. S. (2023). Búsqueda de moléculas de origen natural con acción multidiana sobre enzimas pancreáticas digestivas: α-glucosidasa, α-amilasa y lipasa pancreática [Tesis de Maestria ]. Universidad Nacional de Colombia. | spa |
dc.relation.references | Mazandarani, M., Yassaghi, S., Rezaei, M. B., Mansourian, A. R., & Ghaemi, E. O. (2007). Ethnobotany and antibacterial activities of two endemic species of Hypericum in North-East of Iran. Asian Journal of Plant Sciences, 6(2), 354–358. | spa |
dc.relation.references | Meek, T. D. (2021). Enzymes as Drug Targets. In Burger’s Medicinal Chemistry and Drug Discovery (pp. 1–51). Wiley. | spa |
dc.relation.references | Mendes, A. A., Oliveira, P. C., & De Castro, H. F. (2012). Properties and biotechnological applications of porcine pancreatic lipase. Journal of Molecular Catalysis B: Enzymatic, 78, 119–134. | spa |
dc.relation.references | Meng, Y., Su, A., Yuan, S., Zhao, H., Tan, S., Hu, C., Deng, H., & Guo, Y. (2016). Evaluation of Total Flavonoids, Myricetin, and Quercetin from Hovenia dulcis Thunb. As Inhibitors of α-Amylase and α-Glucosidase. Plant Foods for Human Nutrition, 71(4), 444–449. | spa |
dc.relation.references | Mingrone, G., Castagneto-Gissey, L., & Bornstein, S. R. (2022). New Horizons: Emerging Antidiabetic Medications. Journal of Clinical Endocrinology and Metabolism, 107(12), E4333–E4340. | spa |
dc.relation.references | Ministerio de Salud. (2015). Encuesta Nacional de la Situación Nutricional-ENSIN 2015. | spa |
dc.relation.references | Ministerio de Salud. (2016). Guía de Práctica Clínica - para la prevención, diagnóstico y tratamiento del sobrepeso y la obesidad en adultos. | spa |
dc.relation.references | Ministerio de Salud. (2022, November 14). En el Día Mundial de la Diabetes: MinSalud promueve prácticas de vida saludable. https://www.minsalud.gov.co/Paginas/En-el-Dia-Mundial-de-la-Diabetes-MinSalud-promueve-praticas-de-vida-saludable.aspx#:~:text=En%20Colombia%20los%20reportes%20de,Antioquia%20y%20Valle%20del%20Cauca. | spa |
dc.relation.references | Moisela, M. M. M., Brel, O., Bourdy, G., Gonzales De, M., & Cruz, L. (2018). Xanthones from Hypericum laricifolium Juss., and their antiproliferative activity against HEP3B cells. Rev Soc Quím Perú, 428(4). | spa |
dc.relation.references | Moremen, K. W., Trimble, R. B., & Herscovics, A. (1994). Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology, 4(2), 113–125. | spa |
dc.relation.references | Moreno G., M. (2012). Definition and classification of obesity. Revista Medica Clinica Las Condes, 23(2), 124–128. | spa |
dc.relation.references | Mozaffarian, D. (2020). Dietary and policy priorities to reduce the global crises of obesity and diabetes. In Nature Food (Vol. 1, Issue 1, pp. 38–50). Springer Nature | spa |
dc.relation.references | Mushtaq, A., Azam, U., Mehreen, S., & Naseer, M. M. (2023). Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. European Journal of Medicinal Chemistry, 249. | spa |
dc.relation.references | Nagia, M., Gaid, M., Beuerle, T., & Beerhues, L. (2017). Successive xanthone prenylation in Hypericum sampsonii. Planta Medica International Open, 4(S 01), Tu-SL-01. | spa |
dc.relation.references | Nedialkov, P. T., Ilieva, Y., Momekov, G., & Kokanova-Nedialkova, Z. (2018). Cytotoxic prenylated acylphloroglucinols from Hypericum annulatum. Fitoterapia, 127, 375–382. | spa |
dc.relation.references | Niaz, K., & Khan, F. (2020). Analysis of polyphenolics. In Recent Advances in Natural Products Analysis (pp. 39–197). Elsevier. | spa |
dc.relation.references | Nigutová, K., Kusari, S., Sezgin, S., Petijová, L., Henzelyová, J., Bálintová, M., Spiteller, M., & Čellárová, E. (2018). Chemometric evaluation of hypericin and related phytochemicals in 17 in vitro cultured Hypericum species, hairy root cultures and hairy root-derived transgenic plants. Journal of Pharmacy and Pharmacology, 71(1), 46–57. | spa |
dc.relation.references | Nuangnaowarat, W., Phupong, W., & Isaka, M. (2010). New xanthones from the barks of Cratoxylum sumatranum ssp. neriifolium. Heterocycles, 81(10), 2335–2341. | spa |
dc.relation.references | Nürk, N. M., Madriñán, S., Carine, M. A., Chase, M. W., & Blattner, F. R. (2013). Molecular phylogenetics and morphological evolution of St. John’s wort (Hypericum; Hypericaceae). Molecular Phylogenetics and Evolution, 66(1), 1–16. | spa |
dc.relation.references | Pal Singh, I., & Bharate, S. B. (2006). Phloroglucinol compounds of natural origin. In Natural Product Reports (Vol. 23, Issue 4, pp. 558–591). | spa |
dc.relation.references | Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338, 128119. | spa |
dc.relation.references | Patiño-Bayona, W. R., Plazas, E., Bustos-Cortes, J. J., Prieto-Rodríguez, J. A., & Patiño-Ladino, O. J. (2021). Essential oils of three hypericum species from colombia: Chemical composition, insecticidal and repellent activity against sitophilus zeamais motsch. (coleoptera: Curculionidae). Records of Natural Products, 15(2), 111–121. | spa |
dc.relation.references | Perreault, L., Skyler, J. S., & Rosenstock, J. (2021). Novel therapies with precision mechanisms for type 2 diabetes mellitus. In Nature Reviews Endocrinology (Vol. 17, Issue 6, pp. 364–377). Nature Research. | spa |
dc.relation.references | Pineda F., M., Gutierrez O., M., & Garcia, A. X. (2020). Las maticas de mi región. | spa |
dc.relation.references | Plazas G., E. A. (2017). Tamizaje fitoquímico y actividad antibacteriana in vitrode extractos y fracciones de tres especies colombianas del género Hypericum. Revista Cubana de Plantas Medicinales, 22(1). | spa |
dc.relation.references | Popoola, O. K., Marnewick, J. L., Rautenbach, F., Iwuoha, E. I., & Hussein, A. A. (2015). Acylphloroglucinol Derivatives from the South African Helichrysum niveum and Their Biological Activities. Molecules, 20(9), 17309–17324. | spa |
dc.relation.references | Powers, M. A., Bardsley, J. K., Cypress, M., Funnell, M. M., Harms, D., Hess-Fischl, A., Hooks, B., Isaacs, D., Mandel, E. D., Maryniuk, M. D., Norton, A., Rinker, J., Siminerio, L. M., & Uelmen, S. (2020). Diabetes Self-management Education and Support in Adults With Type 2 Diabetes: A Consensus Report of the American Diabetes Association, the Association of Diabetes Care & Education Specialists, the Academy of Nutrition and Dietetics, the American Academy of Family Physicians, the American Academy of PAs, the American Association of Nurse Practitioners, and the American Pharmacists Association. Diabetes Care, 43(7), 1636–1649. | spa |
dc.relation.references | Prada, A. C., Rojano, B., Alzate-Arbeláez, A. F., Gil, J. H., Rojas, M., & Marín-Loaiza, J. C. (2022). Antioxidant activity and phenolic acid constituents of two andean Hypericum L. species from Colombia. Plant Science Today, 9(4), 1036–1044. | spa |
dc.relation.references | Rahman, M. M., Shiu, W. K. P., Gibbons, S., & Malkinson, J. P. (2018). Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus. European Journal of Medicinal Chemistry, 155, 255–262. | spa |
dc.relation.references | Rajan, L., Palaniswamy, D., & Mohankumar, S. K. (2020). Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacological Research, 155, 104681. | spa |
dc.relation.references | Rao, S. A., Srinivas, P. V., Tiwari, A. K., Vanka, U. M. S., Rao, R. V. S., Dasari, K. R., & Rao, M. J. (2007). Isolation, characterization and chemobiological quantification of α-glucosidase enzyme inhibitory and free radical scavenging constituents from Derris scandens Benth. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 855(2 SPEC. ISS.), 166–172. | spa |
dc.relation.references | Rathod, P., & Yadav, R. P. (2021). Anti-diabesity potential of various multifunctional natural molecules. Journal of Herbal Medicine, 27, 100430. | spa |
dc.relation.references | Remali, J., Sahidin, I., & Aizat, W. M. (2022). Xanthone Biosynthetic Pathway in Plants: A Review. Frontiers in Plant Science, 13. | spa |
dc.relation.references | Ritchie, H., & Roser, M. (2019). Obesity. https://ourworldindata.org/obesity | spa |
dc.relation.references | Robertson, J. G. (2007). Enzymes as a special class of therapeutic target: clinical drugs and modes of action. Current Opinion in Structural Biology, 17(6), 674–679. | spa |
dc.relation.references | Robson, N. K. B. (2012). Studies in the genus Hypericum L. (Hypericaceae). 9, Addenda, corrigenda, keys, lists and general discussion. Magnolia Press. | spa |
dc.relation.references | Rocha, S., Rufino, A. T., Freitas, M., Silva, A. M. S., Carvalho, F., & Fernandes, E. (2023). Methodologies for Assessing Pancreatic Lipase Catalytic Activity: A Review. In Critical Reviews in Analytical Chemistry. Taylor and Francis Ltd. | spa |
dc.relation.references | Rodgers, R. J., Tschöp, M. H., & Wilding, J. P. H. (2012). Anti-obesity drugs: Past, present and future. In DMM Disease Models and Mechanisms (Vol. 5, Issue 5, pp. 621–626). | spa |
dc.relation.references | Rohde, K., Keller, M., la Cour Poulsen, L., Blüher, M., Kovacs, P., & Böttcher, Y. (2019). Genetics and epigenetics in obesity. In Metabolism: Clinical and Experimental (Vol. 92, pp. 37–50). W.B. Saunders. | spa |
dc.relation.references | Ryu, H. W., Cho, J. K., Curtis-Long, M. J., Yuk, H. J., Kim, Y. S., Jung, S., Kim, Y. S., Lee, B. W., & Park, K. H. (2011). α-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry, 72(17), 2148–2154. | spa |
dc.relation.references | Salhi, A., Amara, S., Mansuelle, P., Puppo, R., Lebrun, R., Gontero, B., Aloulou, A., & Carrière, F. (2020). Characterization of all the lipolytic activities in pancreatin and comparison with porcine and human pancreatic juices. Biochimie, 169, 106–120. | spa |
dc.relation.references | Sankar, V., & Maida Engels, S. E. (2018). Synthesis, biological evaluation, molecular docking and in silico ADME studies of phenacyl esters of N-Phthaloyl amino acids as pancreatic lipase inhibitors. Future Journal of Pharmaceutical Sciences, 4(2), 276–283. | spa |
dc.relation.references | Saviki, K., Dobric, S., Tadic, V., & Zdunic, G. (2007). Antiinflammatory Activity of Ethanol Extracts of Hypericum perforatum L., H. barbatum Jacq., H. hirsutum L., H. richeri Vill. and H. androsaemum L. in Rats. Phytother. Res, 21(4), 176–180. | spa |
dc.relation.references | Shi, G. J., Li, Y., Cao, Q. H., Wu, H. X., Tang, X. Y., Gao, X. H., Yu, J. Q., Chen, Z., & Yang, Y. (2019). In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy, 109, 1085–1099. | spa |
dc.relation.references | Shi, Y., & Burn, P. (2004). Lipid metabolic enzymes: Emerging drug targets for the treatment of obesity. In Nature Reviews Drug Discovery (Vol. 3, Issue 8, pp. 695–710). Nature Publishing Group. | spa |
dc.relation.references | Shiu, W. K. P., Malkinson, J. P., Rahman, M. M., Curry, J., Stapleton, P., Gunaratnam, M., Neidle, S., Mushtaq, S., Warner, M., Livermore, D. M., Evangelopoulos, D., Basavannacharya, C., Bhakta, S., Schindler, B. D., Seo, S. M., Coleman, D., Kaatz, G. W., & Gibbons, S. (2013). A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. International Journal of Antimicrobial Agents, 42(6), 513–518. | spa |
dc.relation.references | Shiu, W. K. P., Rahman, M. M., Curry, J., Stapleton, P., Zloh, M., Malkinson, J. P., & Gibbons, S. (2012). Antibacterial acylphloroglucinols from hypericum olympicum. Journal of Natural Products, 75(3), 336–343. | spa |
dc.relation.references | Silva, A. R., Taofiq, O., Ferreira, I. C. F. R., & Barros, L. (2021). Hypericum genus cosmeceutical application – A decade comprehensive review on its multifunctional biological properties. In Industrial Crops and Products (Vol. 159). Elsevier B.V. | spa |
dc.relation.references | Singh, G., Suresh, S., Bayineni, K., & Kadeppagari, R. K. (2015). Lipase inhibitors from plants and their medical applications. | spa |
dc.relation.references | Slanc, P., Doljak, B., Kreft, S., Lunder, M., Janes, D., & Ítrukelj, B. (2009). Screening of Selected Food and Medicinal Plant Extracts for Pancreatic Lipase Inhibition. Phytother. Res, 23, 874–877. www.interscience.wiley.com | spa |
dc.relation.references | Srinivasan, P., Vijayakumar, S., Kothandaraman, S., & Palani, M. (2018). Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. Journal of Pharmaceutical Analysis, 8(2), 109–118. | spa |
dc.relation.references | Sun, Y., Li, D., Jia, C., Xue, C., Bai, J., Li, Z., & Hua, H. (2016). Three new xanthones from the leaves of Garcinia lancilimba. Journal of Natural Medicines, 70(2), 173–178. | spa |
dc.relation.references | Suzuki, A., Mizumoto, A., Rerknimitr, R., Sarr, M. G., & Dimagno, E. P. (1999). Effect of Bacterial or Porcine Lipase With Low-or High-Fat Diets on Nutrient Absorption in Pancreatic-Insufficient Dogs. Gastroenterology, 116, 431–437. | spa |
dc.relation.references | Taha, M., Shah, S. A. A., Afifi, M., Imran, S., Sultan, S., Rahim, F., & Khan, K. M. (2018). Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorganic Chemistry, 77, 586–592. | spa |
dc.relation.references | Tanaka, N., & Kashiwada, Y. (2021). Characteristic metabolites of Hypericum plants: their chemical structures and biological activities. In Journal of Natural Medicines (Vol. 75, Issue 3, pp. 423–433). Springer Japan. | spa |
dc.relation.references | Tang, C., Qian, Z., Qian, Y., Huang, Y., Zhao, M., Ao, H., & Feng, H. (2017). A fluorometric and real-time assay for Α-glucosidase activity through supramolecular self-assembly and its application for inhibitor screening. Sensors and Actuators, B: Chemical, 245, 282–289. | spa |
dc.relation.references | Tao, L., Xu, S., Zhang, Z., Li, Y., Yang, J., Gu, W., Yi, P., Hao, X., & Yuan, C. (2023). Bioassay-guided isolation of α-Glucosidase inhibitory constituents from Hypericum sampsonii. Chinese Journal of Natural Medicines, 21(6), 443–453. | spa |
dc.relation.references | Tibbot, B. K., Henson, C. A., & Skadsen, R. W. (1998). Expression of enzymatically active, recombinant barley α-glucosidase in yeast and immunological detection of α-glucosidase from seed tissue. Plant Molecular Biology, 38, 379–391. | spa |
dc.relation.references | Tocci, N., Weil, T., Perenzoni, D., Moretto, M., Nürk, N., Madriñán, S., Ferrazza, R., Guella, G., & Mattivi, F. (2020). Potent antifungal properties of dimeric acylphloroglucinols from hypericum mexicanum and mechanism of action of a highly active 3′ prenyl uliginosin B. Metabolites, 10(11), 1–17. | spa |
dc.relation.references | Tokgöz, H. B., & Altan, F. (2020). Hypericum perforatum L.: a medicinal plant with potential as a curative agent against obesity-associated complications. Molecular Biology Reports, 47(11), 8679–8686. | spa |
dc.relation.references | Tomasik, P., & Horton, D. (2012). Enzymatic conversions of starch. Advances in Carbohydrate Chemistry and Biochemistry, 68, 59–436. | spa |
dc.relation.references | Tremblay, L. O., & Herscovics, A. (2004). N-Linked Glycan Processing Glucosidases and Mannosidases. Encyclopedia of Biological Chemistry, 3. | spa |
dc.relation.references | Tuzlacı, E., & Aymaz, P. E. ̧ar. (2001). Turkish folk medicinal plants, Part IV: Gonen (Balıkesir). Fitoterapia, 72, 323–343. | spa |
dc.relation.references | Upadhyay, J., Polyzos, S. A., Perakakis, N., Thakkar, B., Paschou, S. A., Katsiki, N., Underwood, P., Park, K. H., Seufert, J., Kang, E. S., Sternthal, E., Karagiannis, A., & Mantzoros, C. S. (2018). Pharmacotherapy of type 2 diabetes: An update. Metabolism: Clinical and Experimental, 78, 13–42. | spa |
dc.relation.references | Warren, R. A. (1991). Health implications of obesity. The American Journal of Clinical Nutrition, 53(6), 1595S-1603S. | spa |
dc.relation.references | Winkelmann, K., San, M., Kypriotakis, Z., Skaltsa, H., Bosilij, B., & Heilmann, J. (2003). Antibacterial and Cytotoxic Activity of Prenylated Bicyclic Acylphloroglucinol Derivatives from Hypericum amblycalyx. Verlag Der Zeitscrift Für Naturforschung, 58, 527–532. | spa |
dc.relation.references | Winkler, F. K., D’Arcy, A., & Hunziker, W. (1990). Structure of human pancreatic lipase. Letters of Nature, 343, 771–774. | spa |
dc.relation.references | World Health Organization. (2016). Perfiles de los países para la diabetes. https://cdn.who.int/media/docs/default-source/country-profiles/diabetes/col-es.pdf?sfvrsn=29e650b2_38&download=true | spa |
dc.relation.references | World Health Organization. (2023). Health service delivery framework for prevention and management of obesity. | spa |
dc.relation.references | World Health Organization. (2024, March). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight | spa |
dc.relation.references | World Healtth Organization. (2023). WHO acceleration plan yo stop obesity. In eClinicalMedicine (Vol. 57). Elsevier Ltd. | spa |
dc.relation.references | Wu, X., Alam, M. Z., Feng, L., Tsutsumi, L. S., Sun, D., & Hurdle, J. G. (2014). Prospects for flavonoid and related phytochemicals as nature-inspired treatments for Clostridium difficile infection. Journal of Applied Microbiology, 116(1), 23–31. | spa |
dc.relation.references | Xiao, Z. Y., Shiu, W. K. P., Zeng, Y. H., Mu, Q., & Gibbons, S. (2008). A naturally occurring inhibitory agent from Hypericum sampsonii with activity against multidrug-resistant Staphylococcus aureus. Pharmaceutical Biology, 46(4), 250–253. | spa |
dc.relation.references | Xu, W. J., Zhu, M. Di, Wang, X. B., Yang, M. H., Luo, J., & Kong, L. Y. (2015). Hypermongones A-J, rare methylated polycyclic polyprenylated acylphloroglucinols from the flowers of hypericum monogynum. Journal of Natural Products, 78(5), 1093–1100. | spa |
dc.relation.references | You, Z., Li, Y., Zhang, K., Zheng, X., Wong, V. K. W., & Liu, W. (2022). Inhibitory effect of plant essential oils on α-glucosidase. Food Science and Biotechnology, 31(12), 1593–1602. | spa |
dc.relation.references | Zhang, B. J., Fu, W. W., Wu, R., Yang, J. L., Yao, C. Y., Yan, B. X., Tan, H. S., Zheng, C. W., Song, Z. J., & Xu, H. X. (2019). Cytotoxic prenylated xanthones from the leaves of Garcinia bracteata. Planta Medica, 85(6), 444–452. | spa |
dc.relation.references | Zhang, J. J., Yang, X. W., Ma, J. Z., Liu, X., Yang, L. X., Yang, S. C., & Xu, G. (2014). Hypercohones D–G, New Polycyclic Polyprenylated Acylphloroglucinol Type Natural Products from Hypericum cohaerens. Natural Products and Bioprospecting, 4(2), 73–79. | spa |
dc.relation.references | Zhang, R., Ji, Y., Zhang, X., Kennelly, E. J., & Long, C. (2020). Ethnopharmacology of Hypericum species in China: A comprehensive review on ethnobotany, phytochemistry and pharmacology. Journal of Ethnopharmacology, 254. | spa |
dc.relation.references | Zhang, Y. xin, Ao, Z., He, Y. wen, Lu, J. Y., Chen, X. lin, Kong, L. yi, & Luo, J. guang. (2021). Hyperpatulones C-G, new spirocyclic polycyclic polyprenylated acylphloroglucinols from the leaves of Hypericum patulum. Fitoterapia, 155. | spa |
dc.relation.references | Zhao, J., Liu, W., & Wang, J.-C. (2015). Recent Advances Regarding Constituents and Bioactivities of Plants from theGenusHypericum. Chemistry & Biodiversity, 12, 309–349. | spa |
dc.relation.references | Zhou, J. F., Wang, W. J., Yin, Z. P., Zheng, G. D., Chen, J. G., Li, J. E., Chen, L. L., & Zhang, Q. F. (2021). Quercetin is a promising pancreatic lipase inhibitor in reducing fat absorption in vivo. Food Bioscience, 43. | spa |
dc.relation.references | Zhu, G., Fang, Q., Zhu, F., Huang, D., & Yang, C. (2021). Structure and Function of Pancreatic Lipase-Related Protein 2 and Its Relationship With Pathological States. In Frontiers in Genetics (Vol. 12). Frontiers Media S.A. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.ddc | 615.1901 | spa |
dc.subject.decs | Medicina Tradicional | spa |
dc.subject.decs | Medicine, Traditional | eng |
dc.subject.decs | Diabetes Mellitus | spa |
dc.subject.decs | Diabetes Mellitus | eng |
dc.subject.decs | Obesidad | spa |
dc.subject.decs | Obesity | eng |
dc.subject.decs | Mortalidad | spa |
dc.subject.decs | Mortality | eng |
dc.subject.decs | Enfermedad Crónica | spa |
dc.subject.decs | Chronic Disease | eng |
dc.subject.decs | Enfermedades Cardiovasculares | spa |
dc.subject.decs | Cardiovascular Diseases | eng |
dc.subject.decs | Enfermedades Renales | spa |
dc.subject.decs | Kidney Diseases | eng |
dc.subject.decs | Manejo de la Enfermedad | spa |
dc.subject.decs | Disease Management | eng |
dc.subject.decs | alfa-Glucosidasas | spa |
dc.subject.decs | alpha-Glucosidases | eng |
dc.subject.decs | Fitoquímicos | spa |
dc.subject.decs | Phytochemicals | eng |
dc.subject.proposal | α-glucosidasa | spa |
dc.subject.proposal | Lipasa pancreática | spa |
dc.subject.proposal | Derivados de acilfloroglucinol | spa |
dc.subject.proposal | Xantonas preniladas | spa |
dc.subject.proposal | Hypericum mexicanum | spa |
dc.subject.proposal | α-glucosidase | eng |
dc.subject.proposal | Pancreatic lipase | eng |
dc.subject.proposal | Acylphloroglucinol derivatives | eng |
dc.subject.proposal | Prenylated xanthones | eng |
dc.subject.proposal | Hypericum mexicanum | eng |
dc.title | Estudio del potencial inhibitorio de los constituyentes químicos presentes en Hypericum mexicanum (Hypericaceae) sobre las enzimas lipasa pancreática y α-glucosidasa | spa |
dc.title.translated | Study of the inhibitory potential of chemical constituents in hypericum mexicanum (Hypericaceae) on pancreatic lipase and α-Glucosidase enzymes | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1019097271.2025.pdf
- Tamaño:
- 4.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias farmacéuticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: