Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch

dc.contributor.advisorCortés Correa, Farid Bernardo
dc.contributor.authorGuzmán Calle, Juan David
dc.contributor.researchgroupFenómenos de Superficie Michael Polanyispa
dc.date.accessioned2022-07-29T14:31:36Z
dc.date.available2022-07-29T14:31:36Z
dc.date.issued2020
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractThe energy landscape and the technical alternatives to supply the growing energy demand have made the oil and gas industry focus on heavy and extra-heavy oils. However, the production, transportation, and refining processes for this kind of hydrocarbon bring significant technological challenges. In this scenario, the enhanced solvent de-asphalting (e-SDA) process was proposed as highly innovative nanotechnology for improving the deasphalted oil (DAO) quality and catalytic conversion of the pitch. There was proven that the presence of nanoparticles generates DAO samples with lower asphaltene and sulfur content, higher °API and distillable fraction, and expected viscosity values than those obtained with the traditional solvent deasphalting process (SDA). The catalytic decomposition of the pitch or residue there was also potentiated by the presence of nanoparticles optimized with this purpose, reducing the temperature at which this process occurs and producing more gases helpful in generating energy or for being used in enhanced oil recovery methods.eng
dc.description.abstractEl panorama energético mundial y diferentes alternativas técnicas existentes para abastecer la creciente demanda de energía han hecho que en la industria del petróleo y el gas se dirija la atención a los crudos pesados y extrapesados. Sin embargo, los procesos de producción, transporte y refinación de este tipo de hidrocarburo presentan importantes desafíos tecnológicos. En este escenario, el proceso de desasfaltado con solventes mejorado con nanotecnología (e-SDA) se propuso como una alternativa altamente innovadora para mejorar la calidad del crudo desasfaltado (DAO) y los procesos de conversión catalítica del pitch. Se comprobó que la presencia de nanopartículas genera DAO con menor contenido de asfaltenos y azufre, mayor ºAPI y fracción destilable, y valores de viscosidad esperados más bajos que los obtenidos con el proceso tradicional de desasfaltado por solventes (SDA). La descomposición catalítica del pitch, o residuo, también fue potenciada por la presencia de nanopartículas optimizadas con este fin, reduciendo la temperatura a la que ocurre este proceso y produciendo una mayor cantidad de gases útiles para generar energía o para ser utilizados en métodos de recuperación mejorada de petróleo. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Petróleosspa
dc.description.researchareaMejoramiento en sitio de petróleo pesado y extrapesadospa
dc.format.extent100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81759
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleosspa
dc.relation.referencesL. Capuano, "International energy outlook 2018 (IEO2018)," US Energy Information Administration (EIA): Washington, DC, USA, vol. 2018, p. 21, 2018.spa
dc.relation.referencesI. O. W. Outlook, "World Energy Outlook Series," Paris, France: International Energy Agency, 2018.spa
dc.relation.referencesA. Demirbas, A. Bafail, and A.-S. Nizami, "Heavy oil upgrading: Unlocking the future fuel supply," Petroleum Science and Technology, vol. 34, pp. 303-308, 2016.spa
dc.relation.referencesZ. LIU, H. WANG, G. Blackbourn, F. MA, Z. HE, Z. WEN, et al., "Heavy oils and oil sands: global distribution and resource assessment," Acta Geologica Sinica‐English Edition, vol. 93, pp. 199-212, 2019.spa
dc.relation.referencesUPME. (2012, 2016/02/22). Escenarios de Oferta y Demanda de Hidrocarburos en Colombia. Available: http://www.upme.gov.co/Docs/Publicaciones/2012/Escenarios_Oferta_Demanda_Hidrocarburos.pdfspa
dc.relation.referencesCampetrol. (2015, 2016/02/21). Crudos pesados: el reto para Colombia. Available: http://campetrol.org/crudos-pesados-el-reto-para-colombia/spa
dc.relation.referencesJ. G. Speight, Heavy and extra-heavy oil upgrading technologies: Gulf Professional Publishing, 2013.spa
dc.relation.referencesJ. G. Speight, The chemistry and technology of petroleum, Fourth ed.: CRC press, 2006.spa
dc.relation.referencesA.-Y. Huc, Heavy crude oils: from geology to upgrading: an overview: Editions Technip, 2010.spa
dc.relation.referencesA. Hinkle and M. Batzle, "Heavy oils: A worldwide overview," The Leading Edge, vol. 25, pp. 742-749, 2006.spa
dc.relation.referencesR. Martínez-Palou, M. de Lourdes Mosqueira, B. Zapata-Rendón, E. Mar-Juárez, C. Bernal-Huicochea, J. de la Cruz Clavel-López, et al., "Transportation of heavy and extra-heavy crude oil by pipeline: A review," Journal of Petroleum Science and Engineering, vol. 75, pp. 274-282, 2011.spa
dc.relation.referencesM. Ghanavati, M.-J. Shojaei, and A. Ramazani, "Effects of asphaltene content and temperature on viscosity of Iranian heavy crude oil: experimental and modeling study," Energy & Fuels, vol. 27, pp. 7217-7232, 2013.spa
dc.relation.referencesK. Leontaritis, J. Amaefule, and R. Charles, "A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition," SPE Production & Facilities, vol. 9, pp. 157-164, 1994.spa
dc.relation.referencesE. Y. Sheu and O. C. Mullins, Fundamentals and applications: Springer, 1995.spa
dc.relation.referencesJ. Woods, J. Kung, D. Kingston, L. Kotlyar, B. Sparks, and T. McCracken, "Canadian crudes: A comparative study of SARA fractions from a modified HPLC separation technique," Oil & Gas Science and Technology-Revue de l'IFP, vol. 63, pp. 151-163, 2008.spa
dc.relation.referencesK. Akbarzadeh, H. Alboudwarej, W. Y. Svrcek, and H. W. Yarranton, "A generalized regular solution model for asphaltene precipitation from n-alkane diluted heavy oils and bitumens," Fluid Phase Equilibria, vol. 232, pp. 159-170, 2005.spa
dc.relation.referencesP. Luo and Y. Gu, "Effects of asphaltene content on the heavy oil viscosity at different temperatures," Fuel, vol. 86, pp. 1069-1078, 2007.spa
dc.relation.referencesI. Hénaut, L. Barré, J. Argillier, F. Brucy, and R. Bouchard, "Rheological and structural properties of heavy crude oils in relation with their asphaltenes content," in SPE International Symposium on Oilfield Chemistry, 2001.spa
dc.relation.referencesA. H. Kamran Akbarzadeh, Abdel Kharrat, Dan Zhang, Stephan Allenson, Jefferson Creek, Shah Kabir, A. Jamaluddin, Alan G. Marshall, Ryan Rodgers, Oliver C. Mullins, Trond Solbakken, "Asphaltenes—Problematic but Rich in Potential," Oil Field Review, pp. 22-43, 2007.spa
dc.relation.referencesR. R. Chianelli, M. Siadati, A. Mehta, J. Pople, L. C. Ortega, and L. Y. Chiang, "Self-assembly of asphaltene aggregates: synchrotron, simulation and chemical modeling techniques applied to problems in the structure and reactivity of asphaltenes," in Asphaltenes, Heavy Oils, and Petroleomics, ed: Springer, 2007, pp. 375-400.spa
dc.relation.referencesE. A. Taborda, V. Alvarado, C. A. Franco, and F. B. Cortés, "Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles," Fuel, vol. 189, pp. 322-333, 2017.spa
dc.relation.referencesE. A. Taborda, C. A. Franco, S. H. Lopera, V. Alvarado, and F. B. Cortes, "Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions," Fuel, vol. 184, pp. 222-232, 2016.spa
dc.relation.referencesW. Chuan, L. Guang-Lun, C.-j. YAO, K.-j. SUN, P.-y. Gai, and Y.-b. CAO, "Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst," Journal of Fuel Chemistry and Technology, vol. 38, pp. 684-690, 2010.spa
dc.relation.referencesS. Chavan, H. Kini, and R. Ghosal, "Process for sulfur reduction from high viscosity petroleum oils," International Journal of Environmental Science and Development, vol. 3, p. 228, 2012.spa
dc.relation.referencesR. Moore, C. Laureshen, S. Mehta, M. Ursenbach, J. Belgrave, J. Weissman, et al., "A downhole catalytic upgrading process for heavy oil using in situ combustion," Journal of Canadian Petroleum Technology, vol. 38, 1999.spa
dc.relation.referencesI. Gates, N. Chakrabarty, R. Moore, S. Mehta, E. Zalewski, and P. Pereira, "In situ upgrading of Llancanelo heavy oil using in situ combustion and a downhole catalyst bed," Journal of Canadian Petroleum Technology, vol. 47, 2008.spa
dc.relation.referencesW. R. Shu, "In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant," ed: Google Patents, 1983.spa
dc.relation.referencesR. Hashemi, N. N. Nassar, and P. P. Almao, "Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges," Applied Energy, vol. 133, pp. 374-387, 2014.spa
dc.relation.referencesK. Guo, H. Li, and Z. Yu, "Metallic Nanoparticles for Enhanced Heavy Oil Recovery: Promises and Challenges," Energy Procedia, vol. 75, pp. 2068-2073, 2015.spa
dc.relation.referencesC. A. Franco, T. Montoya, N. N. Nassar, P. Pereira-Almao, and F. B. Cortés, "Adsorption and Subsequent Oxidation of Colombian Asphaltenes onto Nickel and/or Palladium Oxide Supported on Fumed Silica Nanoparticles," Energy & Fuels, vol. 27, pp. 7336-7347, 2013.spa
dc.relation.referencesC. Franco, L. Cardona, S. Lopera, J. Mejía, and F. Cortés, "Heavy oil upgrading and enhanced recovery in a continuous steam injection process assisted by nanoparticulated catalysts," in SPE improved oil recovery conference, 2016.spa
dc.relation.referencesG. Wichert, N. Okazawa, R. Moore, and J. Belgrave, "In-situ upgrading of heavy oils by low-temperature oxidation in the presence of caustic additives," in SPE International Heavy Oil Symposium, 1995.spa
dc.relation.referencesL. Wei, J.-H. Zhu, and J.-H. Qi, "Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis," Journal of Fuel Chemistry and Technology, vol. 35, pp. 176-180, 2007.spa
dc.relation.referencesP. Clark and J. Hyne, "Steam-oil chemical reactions: mechanisms for the aquathermolysis of heavy oils," Aostra J Res, vol. 1, pp. 15-20, 1984.spa
dc.relation.referencesA. Ambalae, N. Mahinpey, and N. Freitag, "Thermogravimetric studies on pyrolysis and combustion behavior of a heavy oil and its asphaltenes," Energy & fuels, vol. 20, pp. 560-565, 2006.spa
dc.relation.referencesH. N. Woebcke, S. Narayanan, and A. R. Johnson, "Integrated heavy oil pyrolysis process," ed: Google Patents, 1986.spa
dc.relation.referencesA. Davletbaev, L. Kovaleva, and T. Babadagli, "Heavy oil production by electromagnetic heating in hydraulically fractured wells," Energy & Fuels, vol. 28, pp. 5737-5744, 2014.spa
dc.relation.referencesO. A. Alomair and A. S. Almusallam, "Heavy crude oil viscosity reduction and the impact of asphaltene precipitation," Energy & Fuels, vol. 27, pp. 7267-7276, 2013.spa
dc.relation.referencesJ. L. García Zapata and A. de Klerk, "Viscosity changes during mild oxidation of oilsands-derived bitumen: Solvent effects and selectivity," Energy & Fuels, vol. 28, pp. 6242-6248, 2014.spa
dc.relation.referencesD. Nguyen and V. Balsamo, "Emulsification of heavy oil in aqueous solutions of poly (vinyl alcohol): A method for reducing apparent viscosity of production fluids," Energy & Fuels, vol. 27, pp. 1736-1747, 2013.spa
dc.relation.referencesI. Md. Saaid, S. Q. A. Mahat, B. Lal, M. I. A. Mutalib, and K. M. Sabil, "Experimental Investigation on the Effectiveness of 1-Butyl-3-methylimidazolium Perchlorate Ionic Liquid as a Reducing Agent for Heavy Oil Upgrading," Industrial & Engineering Chemistry Research, vol. 53, pp. 8279-8284, 2014.spa
dc.relation.referencesK. Sharma, V. Saxena, A. Kumar, H. Ghildiyal, A. Anuradha, N. Sharma, et al., "Pipeline Transportation of Heavy/Viscous Crude Oil as Water Continuous Emulsion in," SPE India Oil and Gas Conference and Exhibition, 1998.spa
dc.relation.referencesH. L. Alfonso and Y. D. Drubey, "Propiedades reológicas de emulsiones de petróleo pesado en agua."spa
dc.relation.referencesJ. Colyar, "Has the time for partial upgrading of heavy oil and bitumen arrived?," Petroleum technology quarterly, vol. 14, 2009.spa
dc.relation.referencesM. Motaghi, P. Saxena, and R. Ravi, "Partial upgrading of heavy oil reserves," Petroleum technology quarterly, vol. 15, 2010.spa
dc.relation.referencesR. Luhning, A. Anand, T. Blackmore, and D. Lawson, "Pipeline Transportation of Emerging Partially Upgraded Bitumen," Canadian International Petroleum Conference, 2002.spa
dc.relation.referencesR. Oliemans, G. Ooms, H. Wu, and A. Duijvestijn, "Core-annular oil/water flow: the turbulent-lubricating-film model and measurements in a 5 cm pipe loop," International journal of multiphase flow, vol. 13, pp. 23-31, 1987.spa
dc.relation.referencesP. Poesio and D. Strazza, "Experiments on Start-Up of an Oil-Water Core Annular Flow Through a Horizontal or Nearly Horizontal Pipe," 13th International Conference on Multiphase Production Technology, 2007.spa
dc.relation.referencesS. Ghosh, T. Mandal, G. Das, and P. Das, "Review of oil water core annular flow," Renewable and Sustainable Energy Reviews, vol. 13, pp. 1957-1965, 2009.spa
dc.relation.referencesE. Bobok, D. Magyari, and G. Udvardi, "Heavy oil transport through lubricated pipeline," European Petroleum Conference, 1996.spa
dc.relation.referencesR. Tao and X. Xu, "Reducing the viscosity of crude oil by pulsed electric or magnetic field," Energy & fuels, vol. 20, pp. 2046-2051, 2006.spa
dc.relation.referencesJ. J. Taber, F. D. Martin, and R. Seright, "EOR screening criteria revisited," in Symposium on improved oil recovery, 1996, pp. 387-415.spa
dc.relation.referencesJ. Taber, F. Martin, and R. Seright, "EOR screening criteria revisited—part 2: applications and impact of oil prices," SPE Reservoir Engineering, vol. 12, pp. 199-206, 1997.spa
dc.relation.referencesJ. J. Taber, F. Martin, and R. Seright, "EOR screening criteria revisited-Part 1: Introduction to screening criteria and enhanced recovery field projects," SPE Reservoir Engineering, vol. 12, pp. 189-198, 1997.spa
dc.relation.referencesT. Nasr, G. Beaulieu, H. Golbeck, and G. Heck, "Novel Expanding Solvent-SAGD Process" ES-SAGD"," Journal of Canadian Petroleum Technology, vol. 42, 2003.spa
dc.relation.referencesR. Butler, "SAGD comes of age!," Journal of Canadian Petroleum Technology, vol. 37, 1998.spa
dc.relation.referencesK. Kisman and K. Yeung, "Numerical study of the SAGD process in the Burnt Lake oil sands lease," in SPE international heavy oil symposium, 1995.spa
dc.relation.referencesS. Larter, J. Adams, I. Gates, B. Bennett, and H. Huang, "The origin, prediction and impact of oil viscosity heterogeneity on the production characteristics of tar sand and heavy oil reservoirs," Journal of Canadian Petroleum Technology, vol. 47, 2008.spa
dc.relation.referencesS. Thomas, "Enhanced oil recovery-an overview," Oil & Gas Science and Technology-Revue de l'IFP, vol. 63, pp. 9-19, 2008.spa
dc.relation.referencesT. Babadagli, "Evaluation of EOR methods for heavy-oil recovery in naturally fractured reservoirs," Journal of Petroleum Science and Engineering, vol. 37, pp. 25-37, 2003.spa
dc.relation.referencesM. S. Picha, "Enhanced oil recovery by hot CO2 flooding," in SPE Middle East Oil and Gas Show and Conference, 2007.spa
dc.relation.referencesM. Islam, B. Erno, and D. Davis, "Hot gas and waterflood equivalence of in situ combustion," Journal of Canadian Petroleum Technology, vol. 31, 1992.spa
dc.relation.referencesP. L. McGuire, R. Okuno, T. L. Gould, and L. W. Lake, "Ethane-Based EOR: An Innovative and Profitable EOR Opportunity for a Low Price Environment," in SPE Improved Oil Recovery Conference, 2016.spa
dc.relation.referencesS. Ghedan, "Global laboratory experience of CO2-EOR flooding," in SPE/EAGE Reservoir Characterization & Simulation Conference, 2009.spa
dc.relation.referencesF. Gozalpour, S. Ren, and B. Tohidi, "CO2 EOR and storage in oil reservoir," Oil & gas science and technology, vol. 60, pp. 537-546, 2005.spa
dc.relation.referencesG. Oskui, P. Reza, M. A. Jumaa, E. G. Folad, A. Rashed, and S. Patil, "Systematic Approach for Prevention and Remediation of Asphaltene Problems During CO2/Hydrocarbon Injection Project," in The Twenty-first International Offshore and Polar Engineering Conference, 2011.spa
dc.relation.referencesS. Gharfeh, A. Yen, S. Asomaning, and D. Blumer, "Asphaltene flocculation onset determinations for heavy crude oil and its implications," Petroleum science and technology, vol. 22, pp. 1055-1072, 2004.spa
dc.relation.referencesR. S. Al-Maamari and J. S. Buckley, "Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production," SPE Reservoir Evaluation & Engineering, vol. 6, pp. 210-214, 2003.spa
dc.relation.referencesJ. M. Lee, S. Shin, S. Ahn, J. H. Chun, K. B. Lee, S. Mun, et al., "Separation of solvent and deasphalted oil for solvent deasphalting process," Fuel Processing Technology, vol. 119, pp. 204-210, 2014.spa
dc.relation.referencesJ. D. Guzmán, C. A. Franco, and F. B. Cortés, "An enhanced-solvent deasphalting process: effect of inclusion of SiO2 nanoparticles in the quality of deasphalted oil," Journal of Nanomaterials, vol. 2017, 2017.spa
dc.relation.referencesG. Brons and J. M. Yu, "Solvent deasphalting effects on whole cold lake bitumen," Energy & fuels, vol. 9, pp. 641-647, 1995.spa
dc.relation.referencesE. Buenrostro‐Gonzalez, C. Lira‐Galeana, A. Gil‐Villegas, and J. Wu, "Asphaltene precipitation in crude oils: Theory and experiments," AIChE Journal, vol. 50, pp. 2552-2570, 2004.spa
dc.relation.referencesD. Hartmann, H. E. Lopes, C. Teixeira, M. C. K. de Oliveira, G. Gonzalez, E. F. Lucas, et al., "Alkanes Induced Asphaltene Precipitation Studies at High Pressure and Temperature in the Presence of Argon," Energy & Fuels, 2016.spa
dc.relation.referencesS. L. Kokal, J. Najman, S. G. Sayegh, and A. E. George, "Measurement and correlation of asphaltene precipitation from heavy oils by gas injection," Journal of Canadian Petroleum Technology, vol. 31, 1992.spa
dc.relation.referencesS. H. Ng, "Nonconventional residuum upgrading by solvent deasphalting and fluid catalytic cracking," Energy & fuels, vol. 11, pp. 1127-1136, 1997.spa
dc.relation.referencesL. M. Arciniegas and T. Babadagli, "Quantitative and visual characterization of asphaltenic components of heavy-oil after solvent interaction at different temperatures and pressures," Fluid Phase Equilibria, vol. 366, pp. 74-87, 2014.spa
dc.relation.referencesP. Luo, X. Wang, and Y. Gu, "Characterization of asphaltenes precipitated with three light alkanes under different experimental conditions," Fluid Phase Equilibria, vol. 291, pp. 103-110, 2010.spa
dc.relation.referencesS. Ng, "DEASPHALTING OF NON-CONVENTIONAL RESIDUES."spa
dc.relation.referencesF. Samedova, A. Kasumova, S. Y. Rashidova, and V. Alieva, "A new method for isolation of asphaltenes from petroleum and its heavy residues," Petroleum Chemistry, vol. 47, pp. 399-401, 2007.spa
dc.relation.referencesL. Lodi, V. C. Concha, R. Souza, L. Medina, R. Filho, and M. W. Maciel, "An Experimental Study of a Pilot Plant Deasphalting Process in Subcritical and Supercritical Conditions," Petroleum Science and Technology, vol. 32, pp. 2659-2665, 2014.spa
dc.relation.referencesL. Lodi, V. O. Cárdenas Concha, L. C. Medina, R. Maciel Filho, and M. R. Wolf Maciel, "An Experimental Study of a Pilot Plant Deasphalting Process in CO2 Supercritical," Petroleum Science and Technology, vol. 33, pp. 481-486, 2015.spa
dc.relation.referencesZ. Liu, G. Yang, Y. Lu, B. Han, and H. Yan, "Phase equilibria of the CO 2–Jiangsu crude oil system and precipitation of heavy components induced by supercritical CO 2," The Journal of supercritical fluids, vol. 16, pp. 27-31, 1999.spa
dc.relation.referencesH. Edward J. and M. Michael J., "When solvent deasphalting is the most appropriate technology for upgrading residue," presented at the IDTC Conference, London, England, 2006.spa
dc.relation.referencesF. Cao, D. Jiang, W. Li, P. a. Du, G. Yang, and W. Ying, "Process analysis of the extract unit of vacuum residue through mixed C4 solvent for deasphalting," Chemical Engineering and Processing: Process Intensification, vol. 49, pp. 91-96, 2010.spa
dc.relation.referencesA. Hirschberg, L. DeJong, B. Schipper, and J. Meijer, "Influence of temperature and pressure on asphaltene flocculation," Society of Petroleum Engineers Journal, vol. 24, pp. 283-293, 1984.spa
dc.relation.referencesF. Chung, P. Sarathi, and R. Jones, "Modeling of asphaltene and wax precipitation," National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA)1991.spa
dc.relation.referencesH. Rassamdana, B. Dabir, M. Nematy, M. Farhani, and M. Sahimi, "Asphalt flocculation and deposition: I. The onset of precipitation," AIChE Journal, vol. 42, pp. 10-22, 1996.spa
dc.relation.referencesD. L. Mitchell and J. G. Speight, "The solubility of asphaltenes in hydrocarbon solvents," Fuel, vol. 52, pp. 149-152, 1973.spa
dc.relation.referencesJ. Long, B.-X. Shen, H. Ling, J.-G. Zhao, and J.-C. Lu, "Improving the Solvent Deasphalting Process by the Co-treating of Residue and Coal," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 35, pp. 1956-1963, 2013.spa
dc.relation.referencesJ. Long, B. Shen, H. Ling, J. Zhao, and J. Lu, "Novel solvent deasphalting process by vacuum residue blending with coal tar," Industrial & Engineering Chemistry Research, vol. 50, pp. 11259-11269, 2011.spa
dc.relation.referencesM. Ikematsu, I. Honzyo, and K. Sakai, "Process for the solvent deasphalting of asphaltene-containing hydrocarbons," ed: Google Patents, 1985.spa
dc.relation.referencesO. R. Koseoglu, "Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent," ed: Google Patents, 2009.spa
dc.relation.referencesO. R. Koseoglu, "Process for upgrading hydrocarbon feedstocks using solid adsorbent and membrane separation of treated product stream," ed: Google Patents, 2012.spa
dc.relation.referencesOPEC, 2015 World Oil Outlook. Vienna, Austria: OPEC Secretariat, 2015.spa
dc.relation.referencesH. Alboudwarej, J. J. Felix, S. Taylor, R. Badry, C. Bremner, B. Brough, et al., "La importancia del petróleo pesado," Oilfield review, vol. 18, pp. 38-59, 2006.spa
dc.relation.referencesIEA, World energy outlook 2012. Paris, France: International Energy Agency, 2012.spa
dc.relation.referencesJ. G. Speight, The desulfurization of heavy oils and residua: CRC Press, 1999.spa
dc.relation.referencesS. Acevedo, A. Castro, J. G. Negrin, A. Fernández, G. Escobar, V. Piscitelli, et al., "Relations between asphaltene structures and their physical and chemical properties: The rosary-type structure," Energy & fuels, vol. 21, pp. 2165-2175, 2007.spa
dc.relation.referencesH. Groenzin and O. C. Mullins, "Asphaltene molecular size and structure," The Journal of Physical Chemistry A, vol. 103, pp. 11237-11245, 1999.spa
dc.relation.referencesO. C. Mullins, "The asphaltenes," Annual Review of Analytical Chemistry, vol. 4, pp. 393-418, 2011.spa
dc.relation.referencesO. C. Mullins, H. Sabbah, J. l. Eyssautier, A. E. Pomerantz, L. Barré, A. B. Andrews, et al., "Advances in asphaltene science and the Yen–Mullins model," Energy & Fuels, vol. 26, pp. 3986-4003, 2012.spa
dc.relation.referencesW. H. Richard, "Process of distilling petroleum oil," ed: Google Patents, 1928.spa
dc.relation.referencesR. R. Rosenbaum, "Process for separating hydrocarbons," ed: Google Patents, 1918.spa
dc.relation.referencesC. S. Hsu and P. Robinson, Practical advances in petroleum processing vol. 1: Springer Science & Business Media, 2007.spa
dc.relation.referencesG. Gester Jr, "Solvent Extraction in the Petroleum Industry," ed: ACS Publications, 1951.spa
dc.relation.referencesG. H. Weber, "Modern Petroleum Processes," in 3rd World Petroleum Congress, 1951.spa
dc.relation.referencesE. W. Funk, "Behavior of tar sand bitumen with paraffinic solvents and its application to separations for Athabasca tar sands," The Canadian Journal of Chemical Engineering, vol. 57, pp. 333-341, 1979.spa
dc.relation.referencesL. S. Moreno and T. Babadagli, "Quantitative and visual characterization of asphaltenic components of heavy-oil and bitumen samples after solvent interaction at different temperatures and pressures," in SPE International Symposium on Oilfield Chemistry, 2013.spa
dc.relation.referencesP. Luo and Y. Gu, "Characterization of a heavy oil–propane system in the presence or absence of asphaltene precipitation," Fluid Phase Equilibria, vol. 277, pp. 1-8, 2009.spa
dc.relation.referencesN. N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, and P. Pereira-Almao, "Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes," Fuel, vol. 95, pp. 257–262, 2012.spa
dc.relation.referencesN. N. Nassar, A. Hassan, and P. Pereira-Almao, "Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 384, pp. 145-149, 2011.spa
dc.relation.referencesN. N. Nassar, A. Hassan, and P. Pereira-Almao, "Metal Oxide Nanoparticles for Asphaltene Adsorption and Oxidation," Energy & Fuels, vol. 25, pp. 1017-1023, 2011.spa
dc.relation.referencesN. N. Nassar, "Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies," Energy & Fuels, vol. 24, pp. 4116-4122, 2010.spa
dc.relation.referencesF. B. Cortés, J. M. Mejía, M. A. Ruiz, P. Benjumea, and D. B. Riffel, "Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel," Energy & Fuels, vol. 26, pp. 1725-1730, 2012.spa
dc.relation.referencesC. A. Franco, N. N. Nassar, M. A. Ruiz, P. Pereira-Almao, and F. B. Cortés, "Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media," Energy & Fuels, vol. 27, pp. 2899-2907, 2013.spa
dc.relation.referencesN. N. Nassar, A. Hassan, and G. Vitale, "Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO 2, ZrO 2, and CeO 2 nanoparticles," Applied Catalysis A: General, vol. 484, pp. 161-171, 2014.spa
dc.relation.referencesC. A. Franco, M. M. Lozano, S. Acevedo, N. N. Nassar, and F. B. Cortés, "Effects of Resin I on Asphaltene Adsorption onto Nanoparticles: A Novel Method for Obtaining Asphaltenes/Resin Isotherms," Energy & Fuels, vol. 30, pp. 264-272, 2015.spa
dc.relation.referencesASTM, "D7220-12 Standard Test Method for Sulfur in Automotive, Heating, and Jet Fuels by Monochromatic Energy Dispersive X-ray Fluorescence Spectrometry," ed, 2012.spa
dc.relation.referencesASTM, "D1298-12b Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method," ed, 2012.spa
dc.relation.referencesASTM, "D7169-11 Standard Test Method for Boiling Point Distribution of Samples with Residues Such as Crude Oils and Atmospheric and Vacuum Residues by High Temperature Gas Chromatography," ed, 2011.spa
dc.relation.referencesH. A. Barnes, J. F. Hutton, and K. Walters, An introduction to rheology vol. 3: Elsevier, 1989.spa
dc.relation.referencesM. A. Rao, "Flow and functional models for rheological properties of fluid foods," in Rheology of Fluid, Semisolid, and Solid Foods, ed: Springer, 2014, pp. 27-61.spa
dc.relation.referencesD. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers: John Wiley & Sons, 2010.spa
dc.relation.referencesJ. Murgich, J. Rodríguez, and Y. Aray, "Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins," Energy & Fuels, vol. 10, pp. 68-76, 1996.spa
dc.relation.referencesS. I. Andersen and J. G. Speight, "Petroleum resins: separation, character, and role in petroleum," Petroleum science and technology, vol. 19, pp. 1-34, 2001.spa
dc.relation.referencesJ. Speight, "Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum," Oil & gas science and technology, vol. 59, pp. 467-477, 2004.spa
dc.relation.referencesJ. J. Adams, "Asphaltene adsorption, a literature review," Energy & Fuels, vol. 28, pp. 2831-2856, 2014.spa
dc.relation.referencesN. N. Nassar, T. Tatiana Montoya, C. A. Franco, F. B. Cortés, and P. R. Pereira-Almao, "A New Model for Describing the Adsorption of Asphaltenes on Porous Media at a High Pressure and Temperature under Flow Conditions," Energy & Fuels, 2015.spa
dc.relation.referencesS. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of Particle Size and Surface Acidity of Silica Gel Nanoparticles in Inhibition of Formation Damage by Asphaltene in Oil Reservoirs," Industrial & Engineering Chemistry Research, 2016.spa
dc.relation.referencesC. A. Franco, N. N. Nassar, T. Montoya, M. A. Ruíz, and F. B. Cortés, "Influence of asphaltene aggregation on the adsorption and catalytic behavior of nanoparticles," Energy & Fuels, vol. 29, pp. 1610-1621, 2015.spa
dc.relation.referencesR. Zabala, C. Franco, and F. Cortés, "Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test," in SPE Improved Oil Recovery Conference, 2016.spa
dc.relation.referencesS.-Y. Yang, G. Hirasaki, S. Basu, and R. Vaidya, "Statistical analysis on parameters that affect wetting for the crude oil/brine/mica system," Journal of Petroleum Science and Engineering, vol. 33, pp. 203-215, 2002.spa
dc.relation.referencesT. Montoya, D. Coral, C. A. Franco, N. N. Nassar, and F. B. Cortés, "A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”," Energy & Fuels, vol. 28, pp. 4963-4975, 2014.spa
dc.relation.referencesN. N. Nassar, T. Montoya, C. A. Franco, F. B. Cortés, and P. Pereira-Almao, "A new model for describing the adsorption of asphaltenes on porous media at a high pressure and temperature under flow conditions," Energy & Fuels, vol. 29, pp. 4210-4221, 2015.spa
dc.relation.referencesN. N. Nassar, S. Betancur, S. c. Acevedo, C. A. Franco, and F. B. Cortés, "Development of a Population Balance Model to Describe the Influence of Shear and Nanoparticles on the Aggregation and Fragmentation of Asphaltene Aggregates," Industrial & Engineering Chemistry Research, vol. 54, pp. 8201-8211, 2015.spa
dc.relation.referencesT. Montoya, B. L. Argel, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles," Petroleum Science, pp. 1-11, 2016.spa
dc.relation.referencesJ. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the Adsorption Method Used for Obtaining the Nanoparticle Dosage for Asphaltene-Related Treatments," Energy & Fuels, vol. 30, pp. 2052-2059, 2016.spa
dc.relation.referencesC. A. Franco, T. Montoya, N. N. Nassar, and F. B. Cortés, "Nioand pdo supported on fumed silica nanoparticles for adsorption and catalytic steam gasification of colombian c7asphaltenes," Handbook on Oil Production Research; Nova Science Publishers: Hauppauge, NY, USA, pp. 101-145, 2014.spa
dc.relation.referencesC. Franco and C. Franco, "Synthesis and application of supported metallic and multi-metallic oxides nanoparticles for in-situ upgrading and inhibition of formation damage," Universidad Nacional de Colombia-Sede Medellín: Medellín, Antioquia, Colombia, 2015.spa
dc.relation.referencesN. N. Nassar, C. A. Franco, T. Montoya, F. B. Cortés, and A. Hassan, "Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of n-C7 asphaltenes," Fuel, vol. 156, pp. 110-120, 2015.spa
dc.relation.referencesT. Montoya, B. L. Argel, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles," Petroleum Science, vol. 13, pp. 561-571, 2016.spa
dc.relation.referencesC. A. Franco-Ariza, J. D. Guzmán-Calle, and F. B. Cortés-Correa, "Adsorption and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity," Dyna, vol. 83, pp. 171-179, 2016.spa
dc.relation.referencesJ. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments," Energy & Fuels, vol. 30, pp. 2052-2059, 2016.spa
dc.relation.referencesS. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs," Industrial & Engineering Chemistry Research, vol. 55, pp. 6122-6132, 2016.spa
dc.relation.referencesF. B. Cortés, T. Montoya, S. Acevedo, N. N. Nassar, and C. A. Franco, "Adsorption-desorption of nc 7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration," CT&F-Ciencia, Tecnología y Futuro, vol. 6, pp. 89-106, 2016.spa
dc.relation.referencesM. Madhi, A. Bemani, A. Daryasafar, and M. R. Khosravi Nikou, "Experimental and modeling studies of the effects of different nanoparticles on asphaltene adsorption," Petroleum Science and Technology, vol. 35, pp. 242-248, 2017.spa
dc.relation.referencesV. Vargas, J. Castillo, R. Ocampo-Torres, C.-P. Lienemann, and B. Bouyssiere, "Surface modification of SiO2 nanoparticles to increase asphaltene adsorption," Petroleum Science and Technology, vol. 36, pp. 618-624, 2018.spa
dc.relation.referencesC. Franco, E. Patiño, P. Benjumea, M. A. Ruiz, and F. B. Cortés, "Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina," Fuel, vol. 105, pp. 408-414, 2013.spa
dc.relation.referencesN. N. Nassar, A. Hassan, and P. Pereira-Almao, "Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation," Journal of colloid and interface science, vol. 360, pp. 233-238, 2011.spa
dc.relation.referencesN. N. Nassar, A. Hassan, and P. Pereira-Almao, "Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles," Energy & Fuels, vol. 25, pp. 3961-3965, 2011.spa
dc.relation.referencesN. N. Nassar, A. Hassan, and G. Vitale, "Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles," Applied Catalysis A: General, vol. 484, pp. 161-171, 2014.spa
dc.relation.referencesO. E. Medina, J. Gallego, D. Arias-Madrid, F. B. Cortés, and C. A. Franco, "Optimization of the load of transition metal oxides (Fe2O3, Co3O4, NiO and/or PdO) onto CeO2 nanoparticles in catalytic steam decomposition of n-C7 asphaltenes at low temperatures," Nanomaterials, vol. 9, p. 401, 2019.spa
dc.relation.referencesO. E. Medina, J. Gallego, L. G. Restrepo, F. B. Cortés, and C. A. Franco, "Influence of the Ce4+/Ce3+ Redox-couple on the cyclic regeneration for adsorptive and catalytic performance of NiO-PdO/CeO2±δ nanoparticles for n-C7 asphaltene steam gasification," Nanomaterials, vol. 9, p. 734, 2019.spa
dc.relation.referencesT. Montoya, D. Coral, C. A. Franco, N. N. Nassar, and F. B. Cortés, "A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”," Energy & Fuels, vol. 28, pp. 4963-4975, 2014.spa
dc.relation.referencesW. Pang, J.-K. Lee, S.-H. Yoon, I. Mochida, T. Ida, and M. Ushio, "Compositional analysis of deasphalted oils from Arabian crude and their hydrocracked products," Fuel Processing Technology, vol. 91, pp. 1517-1524, 2010.spa
dc.relation.referencesN. N. Nassar, A. Hassan, and P. Pereira-Almao, "Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes," Energy & Fuels, vol. 25, pp. 1566-1570, 2011.spa
dc.relation.referencesM. M. Lozano, C. A. Franco, S. A. Acevedo, N. N. Nassar, and F. B. Cortés, "Effects of resin I on the catalytic oxidation of n-C 7 asphaltenes in the presence of silica-based nanoparticles," RSC advances, vol. 6, pp. 74630-74642, 2016.spa
dc.relation.referencesB. J. Berne and R. Pecora, Dynamic light scattering: with applications to chemistry, biology, and physics: Courier Corporation, 2000.spa
dc.relation.referencesJ. Stetefeld, S. A. McKenna, and T. R. Patel, "Dynamic light scattering: a practical guide and applications in biomedical sciences," Biophysical reviews, vol. 8, pp. 409-427, 2016.spa
dc.relation.referencesJ. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. Sing, Adsorption by powders and porous solids: principles, methodology and applications: Academic press, 2013.spa
dc.relation.referencesS. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, pp. 309-319, 1938.spa
dc.relation.referencesE. IP 469, "Determination of saturated, aromatic and polar compounds in petroleum products by thin layer chromatography and flame ionization detection," ed: Energy Institute London, 2001.spa
dc.relation.referencesO. Talu and F. Meunier, "Adsorption of associating molecules in micropores and application to water on carbon," AIChE journal, vol. 42, pp. 809-819, 1996.spa
dc.relation.referencesN. N. Nassar, S. Betancur, S. c. Acevedo, C. A. Franco, and F. B. Cortés, "Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates," Industrial & Engineering Chemistry Research, vol. 54, pp. 8201-8211, 2015.spa
dc.relation.referencesD. C. Montgomery, Design and analysis of experiments: John wiley & sons, 2017.spa
dc.relation.referencesT. Ozawa, "A new method of analyzing thermogravimetric data," Bulletin of the chemical society of Japan, vol. 38, pp. 1881-1886, 1965.spa
dc.relation.referencesJ. H. Flynn and L. A. Wall, "A quick, direct method for the determination of activation energy from thermogravimetric data," Journal of Polymer Science Part B: Polymer Letters, vol. 4, pp. 323-328, 1966.spa
dc.relation.referencesC. Doyle, "Synthesis and evaluation of thermally stable polymers. II," Polymer evaluation. Appl Polym Sci, vol. 5, pp. 285-292, 1961.spa
dc.relation.referencesN. N. Nassar, A. Hassan, G. Luna, and P. Pereira-Almao, "Comparative study on thermal cracking of Athabasca bitumen," Journal of thermal analysis and calorimetry, vol. 114, pp. 465-472, 2013.spa
dc.relation.referencesJ. A. Koots and J. G. Speight, "Relation of petroleum resins to asphaltenes," Fuel, vol. 54, pp. 179-184, 1975.spa
dc.relation.referencesS. Akmaz, O. Iscan, M. Gurkaynak, and M. Yasar, "The structural characterization of saturate, aromatic, resin, and asphaltene fractions of Batiraman crude oil," Petroleum Science and Technology, vol. 29, pp. 160-171, 2011.spa
dc.relation.referencesM. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, et al., "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)," Pure and Applied Chemistry, vol. 87, pp. 1051-1069, 2015.spa
dc.relation.referencesD. Stratiev, I. Shishkova, T. Tsaneva, M. Mitkova, and D. Yordanov, "Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions," Fuel, vol. 170, pp. 115-129, 2016.spa
dc.relation.referencesM. Shojaei, M. Ghanavati, and A. R. SA, "Effects of Asphaltene content and Temperature on Viscosity of Iranian Heavy Crude Oil: Experimental Study," 2014.spa
dc.relation.referencesO. E. Medina, C. Olmos, S. H. Lopera, F. B. Cortés, and C. A. Franco, "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, vol. 12, p. 4671, 2019.spa
dc.relation.referencesE. Byambajav and Y. Ohtsuka, "Hydrocracking of asphaltene with metal catalysts supported on SBA-15," Applied Catalysis A: General, vol. 252, pp. 193-204, 2003.spa
dc.relation.referencesH. Purón, J. L. Pinilla, J. Montoya de la Fuente, and M. Millán, "Effect of metal loading in NiMo/Al2O3 catalysts on Maya vacuum residue hydrocracking," Energy & Fuels, vol. 31, pp. 4843-4850, 2017.spa
dc.relation.referencesG. Cui, J. Wang, H. Fan, X. Sun, Y. Jiang, S. Wang, et al., "Towards understanding the microstructures and hydrocracking performance of sulfided Ni–W catalysts: Effect of metal loading," Fuel processing technology, vol. 92, pp. 2320-2327, 2011.spa
dc.relation.referencesS. Suganuma and N. Katada, "Innovation of catalytic technology for upgrading of crude oil in petroleum refinery," Fuel Processing Technology, vol. 208, p. 106518, 2020.spa
dc.relation.referencesJ. Ancheyta-Juarez, S. Maity, G. Betancourt-Rivera, G. Centeno-Nolasco, P. Rayo-Mayoral, and M. T. Gómez-Pérez, "Comparison of different Ni-Mo/alumina catalysts on hydrodemetallization of Maya crude oil," Applied Catalysis A: General, vol. 216, pp. 195-208, 2001.spa
dc.relation.referencesS. T. Oyama, "Novel catalysts for advanced hydroprocessing: transition metal phosphides," Journal of catalysis, vol. 216, pp. 343-352, 2003.spa
dc.relation.referencesE. Furimsky, "Selection of catalysts and reactors for hydroprocessing," Applied Catalysis A: General, vol. 171, pp. 177-206, 1998.spa
dc.relation.referencesP. E. Boahene, K. K. Soni, A. K. Dalai, and J. Adjaye, "Hydroprocessing of heavy gas oils using FeW/SBA-15 catalysts: Experimentals, optimization of metals loading, and kinetics study," Catalysis today, vol. 207, pp. 101-111, 2013.spa
dc.relation.referencesA. Ardiyanti, S. Khromova, R. Venderbosch, V. Yakovlev, and H. Heeres, "Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support," Applied Catalysis B: Environmental, vol. 117, pp. 105-117, 2012.spa
dc.relation.referencesH. Scheffe, "The simplex‐centroid design for experiments with mixtures," Journal of the Royal Statistical Society: Series B (Methodological), vol. 25, pp. 235-251, 1963.spa
dc.relation.referencesL. Cardona, D. Arias-Madrid, F. B. Cortés, S. H. Lopera, and C. A. Franco, "Heavy oil upgrading and enhanced recovery in a steam injection process assisted by NiO-and PdO-Functionalized SiO2 nanoparticulated catalysts," Catalysts, vol. 8, p. 132, 2018.spa
dc.relation.referencesR. Chen, Z. Zhang, C. Feng, K. Hu, M. Li, Y. Li, et al., "Application of simplex-centroid mixture design in developing and optimizing ceramic adsorbent for As (V) removal from water solution," Microporous and Mesoporous Materials, vol. 131, pp. 115-121, 2010.spa
dc.relation.referencesJ. Sopousek, J. Vrestal, J. Pinkas, P. Broz, J. Bursik, A. Styskalik, et al., "Cu–Ni nanoalloy phase diagram–Prediction and experiment," Calphad, vol. 45, pp. 33-39, 2014.spa
dc.relation.referencesJ. Sopoušek, A. Kryštofová, M. Premović, O. Zobač, S. Polsterová, P. Brož, et al., "Au-Ni nanoparticles: Phase diagram prediction, synthesis, characterization, and thermal stability," Calphad, vol. 58, pp. 25-33, 2017.spa
dc.relation.referencesN. Dumala, B. Mangalampalli, S. Chinde, S. I. Kumari, M. Mahoob, M. F. Rahman, et al., "Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure," Mutagenesis, vol. 32, pp. 417-427, 2017.spa
dc.relation.referencesM. Ates, V. Demir, Z. Arslan, M. Camas, and F. Celik, "Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to Artemia salina in seawater," Water, Air, & Soil Pollution, vol. 227, p. 70, 2016.spa
dc.relation.referencesA. Rostek, K. Loza, M. Heggen, and M. Epple, "X-ray powder diffraction to analyse bimetallic core–shell nanoparticles (gold and palladium; 7–8 nm)," RSC advances, vol. 9, pp. 26628-26636, 2019.spa
dc.relation.referencesM. S. Mazloom, A. Hemmati-Sarapardeh, M. M. Husein, H. S. Behbahani, and S. Zendehboudi, "Application of nanoparticles for asphaltenes adsorption and oxidation: A critical review of challenges and recent progress," Fuel, vol. 279, p. 117763, 2020.spa
dc.relation.referencesN. N. Nassar, A. Hassan, G. Luna, and P. Pereira-Almao, "Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces," Catalysis today, vol. 207, pp. 127-132, 2013.spa
dc.relation.referencesN. N. Marei, N. N. Nassar, G. Vitale, A. Hassan, and M. J. P. Zurita, "Effects of the size of NiO nanoparticles on the catalytic oxidation of Quinolin-65 as an asphaltene model compound," Fuel, vol. 207, pp. 423-437, 2017.spa
dc.relation.referencesJ. Zhang, Y. Wang, R. Ma, and D. Wu, "Investigation of alumina-supported Ni and Ni-Pd catalysts by partial oxidation and steam reforming of n-octane," Korean Journal of Chemical Engineering, vol. 20, pp. 288-292, 2003.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembIndustria del petróleo
dc.subject.lembRecursos energéticos
dc.subject.proposalHeavy oileng
dc.subject.proposalSolvent deasphaltingeng
dc.subject.proposalNanoparticleseng
dc.subject.proposalenhanced-Solvent deasphaltingeng
dc.subject.proposalAsphalteneseng
dc.subject.proposalCatalytic oxidationeng
dc.subject.proposalSimplex-centroid mixture designeng
dc.subject.proposalCrudo pesadospa
dc.subject.proposalNanopartículasspa
dc.subject.proposalAsfaltenosspa
dc.subject.proposalOxidación catalíticaspa
dc.subject.proposalDiseño de mezclas simple con centroidespa
dc.titleNanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitcheng
dc.title.translatedDesarrollo de un proceso de desasfaltado con solventes mejorado con nanopartículas (e-SDA) y descomposición catalítica del Pitchspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1128275231 - 2022.pdf
Tamaño:
2.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Petróleos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: