Estudio genómico y transcriptómico de la resistencia a cadmio(II) de Serratia sp. 5b
| dc.contributor.advisor | de Brito Brandão, Pedro Filipe | spa |
| dc.contributor.author | Nonsocua Triviño, Kevin Stiven | spa |
| dc.contributor.orcid | Nonsocua Triviño, Kevin Stiven [000900005105447X] | spa |
| dc.contributor.researchgroup | Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germina | spa |
| dc.date.accessioned | 2025-10-31T15:25:29Z | |
| dc.date.available | 2025-10-31T15:25:29Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones, diagramas, fotografías | spa |
| dc.description.abstract | Serratia sp. 5b es una cepa previamente aislada de suelos agrícolas contaminados con cadmio (Cd(II)), a la que se le ha determinado experimentalmente una concentración mínima inhibitoria (CMI) de 4 mM y la capacidad para reducir la concentración del metal en solución. No obstante, no se conocía su identidad taxonómica a nivel de especie ni se había determinado cuáles genes están implicados en la resistencia a Cd(II). En este estudio se integraron de forma transversal aproximaciones filogenómicas, genómicas y transcriptómicas con el propósito de identificar taxonómicamente la cepa y dilucidar los mecanismos moleculares que sustentan su resistencia al Cd(II). El análisis filogenómico, basado en 1.052 genes ortólogos de copia única, indicó que la especie de Serratia sp. 5b corresponde a Serratia surfactantfaciens, al formar un clado monofilético con soporte bootstrap del 100 %, lo cual fue ratificado por un valor ANI del 99,18 %. A nivel genómico, el ensamblaje presentó 18 contigs, una longitud total de 4,99 Mbp y una completitud estimada en 99,88 %. Se identificaron diez genes putativos relacionados con resistencia a Cd(II), dsbA, dsbB, fieF, mntH, robA, ychH, ygiW, zinT, zitB y zntA, todos ubicados en el cromosoma y sin asociación a plásmidos ni elementos genéticos móviles. Asimismo, el análisis de variantes detectó mutaciones no sinónimas en fieF y zntA, siendo este último el único con alteraciones estructurales localizadas en regiones flexibles. Por otro lado, el análisis transcriptómico reveló una respuesta génica dependiente de la concentración de Cd(II), con 428, 1.852 y 638 genes diferencialmente expresados (DEGs) al comparar las condiciones control vs 0,15 mM Cd(II), control vs 0,50 mM Cd(II), y 0,15 mM Cd(II) vs 0,50 mM Cd(II), respectivamente. Se observó una sobreexpresión progresiva de genes asociados al transporte de cationes, defensa antioxidante y reparación del ADN, destacándose zntA, zinT, mntA, znuC, trxB y recA. El análisis funcional evidenció una activación gradual de rutas implicadas en metabolismo energético, transporte activo y organización de membranas, con procesos exclusivos bajo condiciones de alta exposición. La validación experimental mediante RT-qPCR de genes seleccionados reprodujo la tendencia observada en RNA-seq, indicando la confiabilidad de los resultados transcriptómicos. En conjunto, estos hallazgos demuestran que Serratia surfactantfaciens 5b presenta una respuesta transcripcional compleja y coordinada frente a Cd(II), basada en mecanismos de exclusión, secuestro intracelular y adaptación fisiológica. (Texto tomado de la fuente). | spa |
| dc.description.abstract | Serratia sp. 5b is a strain previously isolated from cadmium (Cd(II))-contaminated agricultural soils. Experimental studies determined a minimum inhibitory concentration (MIC) of 4 mM for this strain, along with its ability to reduce the concentration of the metal in solution. However, its species-level taxonomic identity was unknown, and the genes involved in its Cd(II) resistance had not been identified. In this study, we integrated phylogenomic, genomic, and transcriptomic approaches to identify the strain at the species level and elucidate the molecular mechanisms underlying its resistance to Cd(II). Phylogenomic analysis based on 1,052 single-copy orthologous genes indicated that Serratia sp. 5b belongs to the species Serratia surfactantfaciens, as it formed a monophyletic clade with 100% bootstrap support. This finding was further supported by an ANI value of 99.18%. At the genomic level, the assembly consisted of 18 contigs, with a total length of 4.99 Mbp and an estimated completeness of 99.88%. Ten putative genes associated with Cd(II) resistance were identified—dsbA, dsbB, fieF, mntH, robA, ychH, ygiW, zinT, zitB, and zntA—all of which were located on the chromosome and showed no association with plasmids or mobile genetic elements. Variant analysis revealed non-synonymous mutations in fieF and zntA, the latter being the only gene with structural alterations located in flexible protein regions. Transcriptomic analysis revealed a Cd(II) concentration-dependent gene expression response, with 428, 1,852, and 638 differentially expressed genes (DEGs) identified when comparing control vs. 0.15 mM Cd(II), control vs. 0.50 mM Cd(II), and 0.15 mM vs. 0.50 mM Cd(II), respectively. A progressive overexpression was observed in genes associated with cation transport, antioxidant defense, and DNA repair, particularly zntA, zinT, mntA, znuC, trxB, and recA. Functional enrichment analysis revealed a gradual activation of pathways involved in energy metabolism, active transport, and membrane organization, with exclusive processes emerging under high Cd(II) exposure. Experimental validation by RT-qPCR of selected genes reproduced the expression trends observed in the RNA-seq data, confirming the reliability of the transcriptomic results. Together, these findings demonstrate that Serratia surfactantfaciens 5b exhibits a complex and coordinated transcriptional response to Cd(II), based on mechanisms involving exclusion, intracellular sequestration, and physiological adaptation. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias – Microbiología | spa |
| dc.description.researcharea | Microbiología ambiental | spa |
| dc.format.extent | 115 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89091 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Instituto de Biotecnología IBUN | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
| dc.relation.indexed | Agrosavia | spa |
| dc.relation.indexed | Agrovoc | spa |
| dc.relation.references | Adhikary, S., Saha ,Jayanti, Dutta ,Prajesh, & and Pal, A. (2024). Bacterial Homeostasis and Tolerance to Potentially Toxic Metals and Metalloids through Diverse Transporters: Metal-Specific Insights. Geomicrobiology Journal, 41(5), 496–518. https://doi.org/10.1080/01490451.2024.2340517 | |
| dc.relation.references | Åkesson, A. (2011). Cadmium Exposure in the Environment: Renal Effects and the Benchmark Dose. En J. O. Nriagu (Ed.), Encyclopedia of Environmental Health (pp. 465–473). Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00379-2 | |
| dc.relation.references | Ali, H., & and Khan, E. (2019). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 25(6), 1353–1376. https://doi.org/10.1080/10807039.2018.1469398 | |
| dc.relation.references | Alotaibi, B. S., Khan, M., & Shamim, S. (2021). Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms, 9(8), 1628. https://doi.org/10.3390/microorganisms9081628 | |
| dc.relation.references | Alviz-Gazitua, P., Fuentes-Alburquenque, S., Rojas, L. A., Turner, R. J., Guiliani, N., & Seeger, M. (2019). The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel Metal Regulated Phosphodiesterase. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01499 | |
| dc.relation.references | Andrews, S. (s/f). Babraham Bioinformatics—FastQC A Quality Control tool for High Throughput Sequence Data. Recuperado el 26 de marzo de 2025, de https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ | |
| dc.relation.references | Anjou, C., Lotoux, A., Morvan, C., & Martin-Verstraete, I. (2024). From ubiquity to specificity: The diverse functions of bacterial thioredoxin systems. Environmental Microbiology, 26(6), e16668. https://doi.org/10.1111/1462-2920.16668 | |
| dc.relation.references | Aryal, M. (2021). A comprehensive study on the bacterial biosorption of heavy metals: Materials, performances, mechanisms, and mathematical modellings. Reviews in Chemical Engineering, 37(6), 715–754. https://doi.org/10.1515/revce-2019-0016 | |
| dc.relation.references | Ati-Hellal, M. E., Hellal, F., Ati-Hellal, M. E., & Hellal, F. (2021). Heavy Metals in the Environment and Health Impact. En Environmental Health. IntechOpen. https://doi.org/10.5772/intechopen.97204 | |
| dc.relation.references | Ba, Q., Zhou, J., Li, J., Cheng, S., Zhang, X., & Wang, H. (2022). Mutagenic Characteristics of Six Heavy Metals in Escherichia coli: The Commonality and Specificity. Environmental Science & Technology, 56(19), 13867–13877. https://doi.org/10.1021/acs.est.2c04785 | |
| dc.relation.references | Barman, S., Bhattacharya, S. S., & Chandra Mandal, N. (2020). Chapter 3—Serratia. En N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, & A. Sankaranarayanan (Eds.), Beneficial Microbes in Agro-Ecology (pp. 27–36). Academic Press. https://doi.org/10.1016/B978-0-12-823414-3.00003-4 | |
| dc.relation.references | Bauda, P., Garsot, P., & Block, J. C. (1987). Cadmium uptake by pseudomonas fluorescens cells. Toxicity Assessment, 2(1), 63–78. https://doi.org/10.1002/tox.2540020106 | |
| dc.relation.references | Bazzi, W., Abou Fayad, A. G., Nasser, A., Haraoui, L.-P., Dewachi, O., Abou-Sitta, G., Nguyen, V.-K., Abara, A., Karah, N., Landecker, H., Knapp, C., McEvoy, M. M., Zaman, M. H., Higgins, P. G., & Matar, G. M. (2020). Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00068 | |
| dc.relation.references | Begg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, C. Y., McEwan, A. G., Kobe, B., O’Mara, M. L., Paton, J. C., & McDevitt, C. A. (2015). Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae. Nature Communications, 6(1), 6418. https://doi.org/10.1038/ncomms7418 | |
| dc.relation.references | Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x | |
| dc.relation.references | Bong, D., Sohn, J., & Lee, S. J. V. (2024). Brief guide to RT-qPCR. Molecules and Cells, 47(12), 100141. https://doi.org/10.1016/j.mocell.2024.100141 | |
| dc.relation.references | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 | |
| dc.relation.references | Buchfink, B., Reuter, K., & Drost, H.-G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods, 18(4), 366–368. https://doi.org/10.1038/s41592-021-01101-x | |
| dc.relation.references | Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, 55(4), 611–622. https://doi.org/10.1373/clinchem.2008.112797 | |
| dc.relation.references | Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa, L., Møller Aarestrup, F., & Hasman, H. (2014). In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14 | |
| dc.relation.references | Carvalho, M. E. A., Gaziola, S. A., Carvalho, L. A., & Azevedo, R. A. (2021). Cadmium effects on plant reproductive organs: Physiological, productive, evolutionary and ecological aspects. Annals of Applied Biology, 178(2), 227–243. https://doi.org/10.1111/aab.12612 | |
| dc.relation.references | Capdevila, D. A., Wang, J., & Giedroc, D. P. (2016). Bacterial strategies to maintain zinc metallostasis at the host-pathogen interface. Journal of biological chemistry, 291(40), 20858-20868. https://doi.org/10.1074/jbc.R116.742023 | |
| dc.relation.references | Chatterjee, S., Barman, P., Barman, C., Majumdar, S., & Chakraborty, R. (2024). Multimodal cadmium resistance and its regulatory networking in Pseudomonas aeruginosa strain CD3. Scientific Reports, 14(1), 31689. https://doi.org/10.1038/s41598-024-80754-y | |
| dc.relation.references | Chatterjee, S., Kumari, S., Rath, S., Priyadarshanee, M., & Das, S. (2020). Diversity, structure and regulation of microbial metallothionein: Metal resistance and possible applications in sequestration of toxic metals. Metallomics, 12(11), 1637–1655. https://doi.org/10.1039/d0mt00140f | |
| dc.relation.references | Chellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Applied Water Science, 8(6), 154. https://doi.org/10.1007/s13201-018-0796-5 | |
| dc.relation.references | Chen, Y., Lun, A. T. L., & Smyth, G. K. (2016). From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research, 5, 1438. https://doi.org/10.12688/f1000research.8987.2 | |
| dc.relation.references | Chen, Y., Zhu, Q., Dong, X., Huang, W., Du, C., & Lu, D. (2019). How Serratia marcescens HB-4 absorbs cadmium and its implication on phytoremediation. Ecotoxicology and Environmental Safety, 185, 109723. https://doi.org/10.1016/j.ecoenv.2019.109723 | |
| dc.relation.references | Chien, C.-C., Huang, C.-H., & Lin, Y.-W. (2013). Characterization of a Heavy Metal Translocating P-Type ATPase Gene from an Environmental Heavy Metal Resistance Enterobacter sp. Isolate. Applied Biochemistry and Biotechnology, 169(6), 1837–1846. https://doi.org/10.1007/s12010-012-0047-4 | |
| dc.relation.references | Chrestensen, C. A., Starke, D. W., & Mieyal, J. J. (2000). Acute Cadmium Exposure Inactivates Thioltransferase (Glutaredoxin), Inhibits Intracellular Reduction of Protein-glutathionyl-mixed Disulfides, and Initiates Apoptosis *. Journal of Biological Chemistry, 275(34), 26556–26565. https://doi.org/10.1074/jbc.M004097200 | |
| dc.relation.references | Chun, S., Yibo, L., & Zni, L. (2017). Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacteria. Journal of Biotechnology, 245, 9–13. https://doi.org/10.1016/j.jbiotec.2017.01.011 | |
| dc.relation.references | Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118 ; iso-2; iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695 | |
| dc.relation.references | Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), 13. https://doi.org/10.1186/s13059-016-0881-8 | |
| dc.relation.references | Croteau, M.-N., Luoma, S. N., & Stewart, A. R. (2005). Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature. Limnology and Oceanography, 50(5), 1511–1519. https://doi.org/10.4319/lo.2005.50.5.1511 | |
| dc.relation.references | Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008 | |
| dc.relation.references | Darriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., & Flouri, T. (2020). ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Molecular Biology and Evolution, 37(1), 291–294. https://doi.org/10.1093/molbev/msz189 | |
| dc.relation.references | Das, S., & Dash, H. R. (Eds.). (2017). Handbook of Metal-Microbe Interactions and Bioremediation (1a ed.). CRC Press. https://doi.org/10.1201/9781315153353 | |
| dc.relation.references | Deng, X., Yi, X. E., & Liu, G. (2007). Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. Journal of Hazardous Materials, 139(2), 340–344. https://doi.org/10.1016/j.jhazmat.2006.06.043 | |
| dc.relation.references | Diez Marulanda, J. C. (2022). Estudio de la bioprecipitación de cadmio por bacterias ureolíticas aisladas de fincas cacaoteras de Santander, Colombia. Universidad Nacional de Colombia. | |
| dc.relation.references | Diez-Marulanda, J. C., & Brandão, P. F. B. (2023). Isolation of urease-producing bacteria from cocoa farms soils in Santander, Colombia, for cadmium remediation. 3 Biotech, 13(3), 98. https://doi.org/10.1007/s13205-023-03495-1 | |
| dc.relation.references | Diez-Marulanda, J. C., & Brandão, P. F. B. (2024). Potential use of two Serratia strains for cadmium remediation based on microbiologically induced carbonate precipitation and their cadmium resistance. Environmental Science and Pollution Research, 31(4), 5319–5330. https://doi.org/10.1007/s11356-023-31062-x | |
| dc.relation.references | Dillingham, M. S., & Kowalczykowski, S. C. (2008). RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks. Microbiology and Molecular Biology Reviews : MMBR, 72(4), 642–671. https://doi.org/10.1128/MMBR.00020-08 | |
| dc.relation.references | Du, B., Zhou, J., Lu, B., Zhang, C., Li, D., Zhou, J., Jiao, S., Zhao, K., & Zhang, H. (2020). Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China. Science of The Total Environment, 720, 137585. https://doi.org/10.1016/j.scitotenv.2020.137585 | |
| dc.relation.references | Ducret, V., Gonzalez, M. R., Leoni, S., Valentini, M., & Perron, K. (2020). The CzcCBA Efflux System Requires the CadA P-Type ATPase for Timely Expression Upon Zinc Excess in Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 911. https://doi.org/10.3389/fmicb.2020.00911 | |
| dc.relation.references | El-Esawi, M. A., Elkelish, A., Soliman, M., Elansary, H. O., Zaid, A., & Wani, S. H. (2020). Serratia marcescens BM1 Enhances Cadmium Stress Tolerance and Phytoremediation Potential of Soybean Through Modulation of Osmolytes, Leaf Gas Exchange, Antioxidant Machinery, and Stress-Responsive Genes Expression. Antioxidants, 9(1), 43. https://doi.org/10.3390/antiox9010043 | |
| dc.relation.references | El-Minisy, A. M., Bekheet, S. A., El-Assal, S. E.-D., Soliman, M., Amer, A. M., Hassan, M., El-Shabrawi, H. M., & El-Tarras, A. (2025). Serratia rubidaea SR19: A cadmium -tolerant bacteria enhancing phosphate solubilization, IAA production, and promoting cucumber seed germination. Biocatalysis and Agricultural Biotechnology, 65, 103546. https://doi.org/10.1016/j.bcab.2025.103546 | |
| dc.relation.references | Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1), 238. https://doi.org/10.1186/s13059-019-1832-y | |
| dc.relation.references | Fashola, M., Anagun, O., & Babalola, O. O. (2023). Heavy metal pollution: Toxic effects on bacterial cells. Preprints. https://doi.org/10.22541/au.168690270.01555938/v1 | |
| dc.relation.references | Fatima, G., Raza, A. M., Hadi, N., Nigam, N., & Mahdi, A. A. (2019). Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian Journal of Clinical Biochemistry, 34(4), 371–378. https://doi.org/10.1007/s12291-019-00839-8 | |
| dc.relation.references | Flouri T., Izquierdo-Carrasco F., Darriba D., Aberer AJ, Nguyen LT, Minh BQ, von Haeseler A., Stamatakis A. (2014) The Phylogenetic Likelihood Library. Systematic Biology, 64(2): 356-362. https://doi.org/10.1093/sysbio/syu084 | |
| dc.relation.references | Forouzan, E., Karkhane, A. A., & Yakhchali, B. (2020). Exploring metal resistance genes and mechanisms in copper enriched metal ore metagenome (p. 2020.07.02.184564). bioRxiv. https://doi.org/10.1101/2020.07.02.184564 | |
| dc.relation.references | Gabbianelli, R., Scotti, R., Ammendola, S., Petrarca, P., Nicolini, L., & Battistoni, A. (2011). Role of ZnuABC and ZinT in Escherichia coliO157:H7 zinc acquisition and interaction with epithelial cells. BMC Microbiology, 11(1), 36. https://doi.org/10.1186/1471-2180-11-36 | |
| dc.relation.references | Garrison, E., & Marth, G. (2012). Haplotype-based variant detection from short-read sequencing (No. arXiv:1207.3907). arXiv. https://doi.org/10.48550/arXiv.1207.3907 | |
| dc.relation.references | Ghosh, A., Sah, D., Chakraborty, M., & Rai, J. P. N. (2024). Mechanism and application of bacterial exopolysaccharides: An advanced approach for sustainable heavy metal abolition from soil. Carbohydrate Research, 544, 109247. https://doi.org/10.1016/j.carres.2024.109247 | |
| dc.relation.references | Alvarenga D. O. & Varani A. M. (2019). TnComp_finder: prokaryotic composite transposon finder. Available from https://github.com/danillo-alvarenga/tncomp_finder. | |
| dc.relation.references | Glušič, M., Stare, J., Grdadolnik, J., & Vianello, R. (2013). Binding of cadmium dication to glutathione facilitates cysteine SH deprotonation: A computational DFT study. Journal of Inorganic Biochemistry, 119, 90–94. https://doi.org/10.1016/j.jinorgbio.2012.11.004 | |
| dc.relation.references | Graham, A. I., Hunt, S., Stokes, S. L., Bramall, N., Bunch, J., Cox, A. G., McLeod, C. W., & Poole, R. K. (2009). Severe Zinc Depletion of Escherichia coli. The Journal of Biological Chemistry, 284(27), 18377–18389. https://doi.org/10.1074/jbc.M109.001503 | |
| dc.relation.references | Grass, G., Fan, B., Rosen, B. P., Franke, S., Nies, D. H., & Rensing, C. (2001). ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter in Escherichia coli. Journal of Bacteriology, 183(15), 4664–4667. https://doi.org/10.1128/JB.183.15.4664-4667.2001 | |
| dc.relation.references | Grass, G., Otto, M., Fricke, B., Haney, C. J., Rensing, C., Nies, D. H., & Munkelt, D. (2005). FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Archives of Microbiology, 183(1), 9–18. https://doi.org/10.1007/s00203-004-0739-4 | |
| dc.relation.references | Guglierame, P., Pasca, M. R., De Rossi, E., Buroni, S., Arrigo, P., Manina, G., & Riccardi, G. (2006). Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiology, 6(1), 66. https://doi.org/10.1186/1471-2180-6-66 | |
| dc.relation.references | Gupta, P., & Diwan, B. (2017). Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13, 58–71. https://doi.org/10.1016/j.btre.2016.12.006 | |
| dc.relation.references | Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086 | |
| dc.relation.references | Halema, A. A., El-Beltagi, H. S., Al-Dossary, O., Alsubaie, B., Henawy, A. R., Rezk, A. A., Almutairi, H. H., Mohamed, A. A., Elarabi, N. I., & Abdelhadi, A. A. (2024). Omics technology draws a comprehensive heavy metal resistance strategy in bacteria. World Journal of Microbiology and Biotechnology, 40(6), 193. https://doi.org/10.1007/s11274-024-04005-y | |
| dc.relation.references | Helbig, K., Grosse, C., & Nies, D. H. (2008). Cadmium Toxicity in Glutathione Mutants of Escherichia coli. Journal of Bacteriology, 190(15), 5439–5454. https://doi.org/10.1128/JB.00272-08 | |
| dc.relation.references | Heras, B., Shouldice, S. R., Totsika, M., Scanlon, M. J., Schembri, M. A., & Martin, J. L. (2009). DSB proteins and bacterial pathogenicity. Nature Reviews Microbiology, 7(3), 215–225. https://doi.org/10.1038/nrmicro2087 | |
| dc.relation.references | Hoffmann, T. D., Reeksting, B. J., & Gebhard, S. (2021). Bacteria-induced mineral precipitation: A mechanistic review. Microbiology, 167(4). https://doi.org/10.1099/mic.0.001049 | |
| dc.relation.references | Hossain, S. T., Mallick, I., & Mukherjee, S. K. (2012). Cadmium toxicity in Escherichia coli: Cell morphology, Z-ring formation and intracellular oxidative balance. Ecotoxicology and Environmental Safety, 86, 54–59. https://doi.org/10.1016/j.ecoenv.2012.09.017 | |
| dc.relation.references | Hrynkiewicz, K., Złoch, M., Kowalkowski, T., Baum, C., Niedojadło, K., & Buszewski, B. (2015). Strain-specific bioaccumulation and intracellular distribution of Cd2+ in bacteria isolated from the rhizosphere, ectomycorrhizae, and fruitbodies of ectomycorrhizal fungi. Environmental Science and Pollution Research, 22(4), 3055–3067. https://doi.org/10.1007/s11356-014-3489-0 | |
| dc.relation.references | Huang, M., Shen, S., Meng, Z., Si, G., Wu, X., Feng, T., Liu, C., Chen, J., & Duan, C. (2023). Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. Ecotoxicology and Environmental Safety, 266, 115527. https://doi.org/10.1016/j.ecoenv.2023.115527 | |
| dc.relation.references | Hughes, A. L., Friedman, R., Rivailler, P., & French, J. O. (2008). Synonymous and Nonsynonymous Polymorphisms versus Divergences in Bacterial Genomes. Molecular Biology and Evolution, 25(10), 2199–2209. https://doi.org/10.1093/molbev/msn166 | |
| dc.relation.references | Iguchi, A., Nagaya, Y., Pradel, E., Ooka, T., Ogura, Y., Katsura, K., Kurokawa, K., Oshima, K., Hattori, M., Parkhill, J., Sebaihia, M., Coulthurst, S. J., Gotoh, N., Thomson, N. R., Ewbank, J. J., & Hayashi, T. (2014). Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen. Genome Biology and Evolution, 6(8), 2096–2110. https://doi.org/10.1093/gbe/evu160 | |
| dc.relation.references | Intorne, A. C., de Oliveira, M. V. V., de M Pereira, L., & de Souza Filho, G. A. (2012). Essential role of the czc determinant for cadmium, cobalt and zinc resistance in Gluconacetobacter diazotrophicus PAl 5. International Microbiology: The Official Journal of the Spanish Society for Microbiology, 15(2), 69–78. https://doi.org/10.2436/20.1501.01.160 | |
| dc.relation.references | Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 9(1), 5114. https://doi.org/10.1038/s41467-018-07641-9 | |
| dc.relation.references | Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009 | |
| dc.relation.references | Jang, S. (2016). Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. Journal of Microbiology, 54(1), 1–8. https://doi.org/10.1007/s12275-016-5159-z | |
| dc.relation.references | Jaramillo, A. V. C., Cory, M. B., Li, A., Kohli, R. M., & Wuest, W. M. (2022). Exploration of Inhibitors of the Bacterial LexA Repressor-Protease. Bioorganic & medicinal chemistry letters, 65, 128702. https://doi.org/10.1016/j.bmcl.2022.128702 | |
| dc.relation.references | Jebril, N., Boden, R., & Braungardt, C. (2022). Cadmium resistant bacteria mediated cadmium removal: A systematic review on resistance, mechanism and bioremediation approaches. IOP Conference Series: Earth and Environmental Science, 1002(1), 012006. https://doi.org/10.1088/1755-1315/1002/1/012006 | |
| dc.relation.references | Jiao, J., Lv, X., Shen, C., & Morigen, M. (2024). Genome and transcriptomic analysis of the adaptation of Escherichia coli to environmental stresses. Computational and Structural Biotechnology Journal, 23, 2132–2140. https://doi.org/10.1016/j.csbj.2024.05.033 | |
| dc.relation.references | Joseph, P. (2009). Mechanisms of cadmium carcinogenesis. Toxicology and Applied Pharmacology, 238(3), 272–279. https://doi.org/10.1016/j.taap.2009.01.011 | |
| dc.relation.references | Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2 | |
| dc.relation.references | Kavanaugh, L. G., Dey, D., Shafer, W. M., & Conn, G. L. (2024). Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiology and Molecular Biology Reviews, 88(3), e00089-23. https://doi.org/10.1128/mmbr.00089-23 | |
| dc.relation.references | Kralik, P., & Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Frontiers in microbiology, 8, 108. https://doi.org/10.3389/fmicb.2017.00108 | |
| dc.relation.references | Kerdsomboon, K., Techo, T., Mhuantong, W., Limcharoensuk, T., Luangkamchorn, S. T., Laoburin, P., & Auesukaree, C. (2024). Genomic and transcriptomic analyses reveal insights into cadmium resistance mechanisms of Cupriavidus nantongensis strain E324. Science of The Total Environment, 952, 175915. https://doi.org/10.1016/j.scitotenv.2024.175915 | |
| dc.relation.references | Kershaw, C. J., Brown, N. L., & Hobman, J. L. (2007). Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochemical and Biophysical Research Communications, 364(1), 66–71. https://doi.org/10.1016/j.bbrc.2007.09.094 | |
| dc.relation.references | Khairnar, N. P., Joe, M.-H., Misra, H. S., Lim, S.-Y., & Kim, D.-H. (2013). FrnE, a Cadmium-Inducible Protein in Deinococcus radiodurans, Is Characterized as a Disulfide Isomerase Chaperone In Vitro and for Its Role in Oxidative Stress Tolerance In Vivo. Journal of Bacteriology, 195(12), 2880–2886. https://doi.org/10.1128/JB.01503-12 | |
| dc.relation.references | Khan, A. R., Park, G.-S., Asaf, S., Hong, S.-J., Jung, B. K., & Shin, J.-H. (2017). Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLOS ONE, 12(2), e0171534. https://doi.org/10.1371/journal.pone.0171534 | |
| dc.relation.references | Khan, A. R., Ullah, I., Khan, A. L., Park, G.-S., Waqas, M., Hong, S.-J., Jung, B. K., Kwak, Y., Lee, I.-J., & Shin, J.-H. (2015). Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation. Environmental Science and Pollution Research, 22(18), 14032–14042. https://doi.org/10.1007/s11356-015-4647-8 | |
| dc.relation.references | Khan, Z., Elahi, A., Bukhari, D. A., & Rehman, A. (2022). Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. Journal of Saudi Chemical Society, 26(6), 101569. https://doi.org/10.1016/j.jscs.2022.101569 | |
| dc.relation.references | Khan, Z., Nisar, M. A., Hussain, S. Z., Arshad, M. N., & Rehman, A. (2015). Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Applied Microbiology and Biotechnology, 99(24), 10745–10757. https://doi.org/10.1007/s00253-015-6901-x | |
| dc.relation.references | Kobras, C. M., Fenton, A. K., & Sheppard, S. K. (2021). Next-generation microbiology: From comparative genomics to gene function. Genome Biology, 22(1), 123. https://doi.org/10.1186/s13059-021-02344-9 | |
| dc.relation.references | Kolaj-Robin, O., Russell, D., Hayes, K. A., Pembroke, J. T., & Soulimane, T. (2015). Cation Diffusion Facilitator family: Structure and function. FEBS Letters, 589(12), 1283–1295. https://doi.org/10.1016/j.febslet.2015.04.007 | |
| dc.relation.references | Kozlov, A. M., Aberer, A. J., & Stamatakis, A. (2015). ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics, 31(15), 2577-2579. https://doi.org/10.1093/bioinformatics/btv184 | |
| dc.relation.references | Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388 | |
| dc.relation.references | Kück, P., & Longo, G. C. (2014). FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Frontiers in Zoology, 11(1), 81. https://doi.org/10.1186/s12983-014-0081-x | |
| dc.relation.references | Kumar, S., & Sharma, A. (2019). Cadmium toxicity: Effects on human reproduction and fertility. Reviews on Environmental Health, 34(4), 327–338. https://doi.org/10.1515/reveh-2019-0016 | |
| dc.relation.references | Kumari, D., Qian, X.-Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. En Advances in Applied Microbiology (Vol. 94, pp. 79–108). Elsevier. https://doi.org/10.1016/bs.aambs.2015.12.002 | |
| dc.relation.references | Kuraku, S., Zmasek, C. M., Nishimura, O., & Katoh, K. (2013). aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research, 41(W1), W22–W28. https://doi.org/10.1093/nar/gkt389 | |
| dc.relation.references | Kvam, V. M., Liu, P., & Si, Y. (2012). A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. American Journal of Botany, 99(2), 248–256. https://doi.org/10.3732/ajb.1100340 | |
| dc.relation.references | Lan, Y., Liu, M., Song, Y., Cao, Y., Li, F., Luo, D., & Qiao, D. (2023). Distribution, characterization, and evolution of heavy metal resistance genes and Tn7-like associated heavy metal resistance Gene Island of Burkholderia. Frontiers in Microbiology, 14, 1252127. https://doi.org/10.3389/fmicb.2023.1252127 | |
| dc.relation.references | Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 | |
| dc.relation.references | Lata, S., Sharma, S., & Kaur, S. (2023). OMICS Approaches in Mitigating Metal Toxicity in Comparison to Conventional Techniques Used in Cadmium Bioremediation. Water, Air, & Soil Pollution, 234(3), 148. https://doi.org/10.1007/s11270-023-06145-7 | |
| dc.relation.references | Ledda, C. (2018). Cadmium exposure and prostate cancer insights mechanisms and perspectives. Frontiers in Bioscience, 23(9), 1687–1700. https://doi.org/10.2741/4667 | |
| dc.relation.references | Lee, J., Hiibel, S. R., Reardon, K. F., & Wood, T. K. (2010). Identification of stress‐related proteins in Escherichia coli using the pollutant cis‐dichloroethylene. Journal of Applied Microbiology, 108(6), 2088–2102. https://doi.org/10.1111/j.1365-2672.2009.04611.x | |
| dc.relation.references | Lee, S. M., Grass, G., Haney, C. J., Fan, B., Rosen, B. P., Anton, A., Nies, D. H., & Rensing, C. (2002). Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiology Letters, 215(2), 273–278. https://doi.org/10.1111/j.1574-6968.2002.tb11402.x | |
| dc.relation.references | Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM (No. arXiv:1303.3997). arXiv. https://doi.org/10.48550/arXiv.1303.3997 | |
| dc.relation.references | Liang, B., Feng, Y., Ji, X., Li, C., Li, Q., Zeng, Z., & Wang, Y. (2025). Isolation and characterization of cadmium-resistant Bacillus cereus strains from Cd-contaminated mining areas for potential bioremediation applications. Frontiers in Microbiology, 16. https://doi.org/10.3389/fmicb.2025.1550830 | |
| dc.relation.references | Liao, P., Satten, G. A., & Hu, Y.-J. (2017). PhredEM: A Phred-Score-Informed Genotype-Calling Approach for Next-Generation Sequencing Studies. Genetic epidemiology, 41(5), 375–387. https://doi.org/10.1002/gepi.22048 | |
| dc.relation.references | Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. https://doi.org/10.1093/bioinformatics/btt656 | |
| dc.relation.references | Lima, A. I. G., Corticeiro, S. C., & De Almeida Paula Figueira, E. M. (2006). Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme and Microbial Technology, 39(4), 763–769. https://doi.org/10.1016/j.enzmictec.2005.12.009 | |
| dc.relation.references | Lima de Silva, A. A., de Carvalho, M. A. R., de Souza, S. A. L., Dias, P. M. T., da Silva Filho, R. G., de Meirelles Saramago, C. S., de Melo Bento, C. A., & Hofer, E. (2012). Heavy metal tolerance (Cr, Ag AND Hg) in bacteria isolated from sewage. Brazilian Journal of Microbiology, 43(4), 1620–1631. https://doi.org/10.1590/S1517-838220120004000047 | |
| dc.relation.references | Limcharoensuk, T., Sooksawat, N., Sumarnrote, A., Awutpet, T., Kruatrachue, M., Pokethitiyook, P., & Auesukaree, C. (2015). Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicology and Environmental Safety, 122, 322–330. https://doi.org/10.1016/j.ecoenv.2015.08.013 | |
| dc.relation.references | Lindsey, R. L., Gladney, L. M., Huang, A. D., Griswold, T., Katz, L. S., Dinsmore, B. A., Im, M. S., Kucerova, Z., Smith, P. A., Lane, C., & Carleton, H. A. (2023). Rapid identification of enteric bacteria from whole genome sequences using average nucleotide identity metrics. Frontiers in Microbiology, 14, 1225207. https://doi.org/10.3389/fmicb.2023.1225207 | |
| dc.relation.references | Liu, H., Zhang, Y., Wang, Y., Xie, X., & Shi, Q. (2021). The Connection between Czc and Cad Systems Involved in Cadmium Resistance in Pseudomonas putida. International Journal of Molecular Sciences, 22(18), 9697. https://doi.org/10.3390/ijms22189697 | |
| dc.relation.references | Lopes, A. T. S., Albuquerque, G. R., & Maciel, B. M. (2018). Multiplex real‐time polymerase chain reaction for simultaneous quantification of Salmonella spp., Escherichia coli, and Staphylococcus aureus in different food matrices: Advantages and disadvantages. BioMed research international, 2018(1), 6104015. https://doi.org/10.1155/2018/6104015 | |
| dc.relation.references | Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 | |
| dc.relation.references | Madeira, F., Madhusoodanan, N., Lee, J., Eusebi, A., Niewielska, A., Tivey, A. R. N., Lopez, R., & Butcher, S. (2024). The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Research, 52(W1), W521–W525. https://doi.org/10.1093/nar/gkae241 | |
| dc.relation.references | Makui, H., Roig, E., Cole, S. T., Helmann, J. D., Gros, P., & Cellier, M. F. M. (2000). Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Molecular Microbiology, 35(5), 1065–1078. https://doi.org/10.1046/j.1365-2958.2000.01774.x | |
| dc.relation.references | Manara, A., DalCorso, G., Baliardini, C., Farinati, S., Cecconi, D., & Furini, A. (2012). Pseudomonas putida Response to Cadmium: Changes in Membrane and Cytosolic Proteomes. Journal of Proteome Research, 11(8), 4169–4179. https://doi.org/10.1021/pr300281f | |
| dc.relation.references | Malone, J. H., & Oliver, B. (2011). Microarrays, deep sequencing and the true measure of the transcriptome. BMC biology, 9(1), 34. https://doi.org/10.1186/1741-7007-9-34 | |
| dc.relation.references | Mar, S. S., & Okazaki, M. (2012). Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchemical Journal, 104, 17–21. https://doi.org/10.1016/j.microc.2012.03.020 | |
| dc.relation.references | Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), Article 1. https://doi.org/10.14806/ej.17.1.200 | |
| dc.relation.references | Maslowska, K. H., Makiela‐Dzbenska, K., & Fijalkowska, I. J. (2019). The SOS system: A complex and tightly regulated response to DNA damage. Environmental and Molecular Mutagenesis, 60(4), 368–384. https://doi.org/10.1002/em.22267 | |
| dc.relation.references | Mathivanan, K., Chandirika, J. U., Vinothkanna, A., Yin, H., Liu, X., & Meng, D. (2021). Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment – A review. Ecotoxicology and Environmental Safety, 226, 112863. https://doi.org/10.1016/j.ecoenv.2021.112863 | |
| dc.relation.references | Mathivanan, K., & Rajaram, R. (2014). Isolation and characterisation of cadmium-resistant bacteria from an industrially polluted coastal ecosystem on the southeast coast of India. Chemistry and Ecology, 30(7), 622–635. https://doi.org/10.1080/02757540.2014.889125 | |
| dc.relation.references | Maynaud, G., Brunel, B., Yashiro, E., Mergeay, M., Cleyet-Marel, J.-C., & Le Quéré, A. (2014). CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a PIB-2-type ATPase involved in cadmium and zinc resistance. Research in Microbiology, 165(3), 175–189. https://doi.org/10.1016/j.resmic.2014.02.001 | |
| dc.relation.references | Mitrić, A., & Castellano, I. (2023). Targeting gamma-glutamyl transpeptidase: A pleiotropic enzyme involved in glutathione metabolism and in the control of redox homeostasis. Free Radical Biology and Medicine, 208, 672–683. https://doi.org/10.1016/j.freeradbiomed.2023.09.020 | |
| dc.relation.references | Montanini, B., Blaudez, D., Jeandroz, S., Sanders, D., & Chalot, M. (2007). Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: Improved signature and prediction of substrate specificity. BMC Genomics, 8(1), 107. https://doi.org/10.1186/1471-2164-8-107 | |
| dc.relation.references | Monsieurs, P., Moors, H., Van Houdt, R., Janssen, P.J., Janssen, A., Coninx, I., Mergeay, M. and Leys, N. (2011). Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals, 24(6), 1133-1151. https://doi.org/10.1007/s10534-011-9473-y | |
| dc.relation.references | Munkelt, D., Grass, G., & Nies, D. H. (2004). The Chromosomally Encoded Cation Diffusion Facilitator Proteins DmeF and FieF from Wautersia metallidurans CH34 Are Transporters of Broad Metal Specificity. Journal of Bacteriology, 186(23), 8036–8043. https://doi.org/10.1128/JB.186.23.8036-8043.2004 | |
| dc.relation.references | Néron, B., Littner, E., Haudiquet, M., Perrin, A., Cury, J., & Rocha, E. P. C. (2022). IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Microorganisms, 10(4), Article 4. https://doi.org/10.3390/microorganisms10040700 | |
| dc.relation.references | Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 313–339. https://doi.org/10.1016/S0168-6445(03)00048-2 | |
| dc.relation.references | Nnaji, N. D., Anyanwu, C. U., Miri, T., & Onyeaka, H. (2024a). Mechanisms of Heavy Metal Tolerance in Bacteria: A Review. Sustainability, 16(24), 11124. https://doi.org/10.3390/su162411124 | |
| dc.relation.references | Nnaji, N. D., Anyanwu, C. U., Miri, T., & Onyeaka, H. (2024b). Mechanisms of Heavy Metal Tolerance in Bacteria: A Review. Sustainability, 16(24), Article 24. https://doi.org/10.3390/su162411124 | |
| dc.relation.references | Noll, M., & Lutsenko, S. (2000). Expression of ZntA, a Zinc-Transporting P1-Type ATPase, is Specifically Regulated by Zinc and Cadmium. IUBMB Life, 49(4), 297–302. https://doi.org/10.1080/15216540050033168 | |
| dc.relation.references | Oger, C., Mahillon, J., & Petit, F. (2003). Distribution and diversity of a cadmium resistance (cadA) determinant and occurrence of IS257 insertion sequences in Staphylococcal bacteria isolated from a contaminated estuary (Seine, France). FEMS Microbiology Ecology, 43(2), 173–183. https://doi.org/10.1111/j.1574-6941.2003.tb01056.x | |
| dc.relation.references | Okkeri, J., & Haltia, T. (2006). The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1757(11), 1485–1495. https://doi.org/10.1016/j.bbabio.2006.06.008 | |
| dc.relation.references | Ouyang, P., Wang, Y., Peng, X., Shi, X., Chen, X., Li, Z., & Ma, Y. (2024). Harnessing plant-beneficial bacterial encapsulation: A sustainable strategy for facilitating cadmium bioaccumulation in Medicago sativa. Journal of Hazardous Materials, 476, 135232. https://doi.org/10.1016/j.jhazmat.2024.135232 | |
| dc.relation.references | Owczarzy, R., Tataurov, A. V., Wu, Y., Manthey, J. A., McQuisten, K. A., Almabrazi, H. G., Pedersen, K. F., Lin, Y., Garretson, J., McEntaggart, N. O., Sailor, C. A., Dawson, R. B., & Peek, A. S. (2008). IDT SciTools: A suite for analysis and design of nucleic acid oligomers. Nucleic Acids Research, 36(Web Server issue), W163–W169. https://doi.org/10.1093/nar/gkn198 | |
| dc.relation.references | Pagnanelli, F., Cruz Viggi, C., & Toro, L. (2010). Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: Biosorption versus bioprecipitation. Bioresource Technology, 101(9), 2981–2987. https://doi.org/10.1016/j.biortech.2009.12.009 | |
| dc.relation.references | Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., & Larsson, D. G. J. (2014). BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 42(D1), D737–D743. https://doi.org/10.1093/nar/gkt1252 | |
| dc.relation.references | Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043–1055. https://doi.org/10.1101/gr.186072.114 | |
| dc.relation.references | Peana, M., Pelucelli, A., Chasapis, C. T., Perlepes, S. P., Bekiari, V., Medici, S., & Zoroddu, M. A. (2022). Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules, 13(1), 36. https://doi.org/10.3390/biom13010036 | |
| dc.relation.references | Permina, E. A., Kazakov, A. E., Kalinina, O. V., & Gelfand, M. S. (2006). Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC microbiology, 6(1), 49. https://doi.org/10.1186/1471-2180-6-49 | |
| dc.relation.references | Petrarca, P., Ammendola, S., Pasquali, P., & Battistoni, A. (2010). The Zur-Regulated ZinT Protein Is an Auxiliary Component of the High-Affinity ZnuABC Zinc Transporter That Facilitates Metal Recruitment during Severe Zinc Shortage. Journal of Bacteriology, 192(6), 1553–1564. https://doi.org/10.1128/jb.01310-09 | |
| dc.relation.references | Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9), e45. | |
| dc.relation.references | Priyadarshanee, M., & Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104686. https://doi.org/10.1016/j.jece.2020.104686 | |
| dc.relation.references | Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics, 70(1), e102. https://doi.org/10.1002/cpbi.102 | |
| dc.relation.references | Qin, W., Zhao, J., Yu, X., Liu, X., Chu, X., Tian, J., & Wu, N. (2019). Improving Cadmium Resistance in Escherichia coli Through Continuous Genome Evolution. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00278 | |
| dc.relation.references | R Core Team. (2025). R: A Language and Environment for Statistical Computing (Versión 4.4.3) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/ | |
| dc.relation.references | Ramakrishnan, S., Muruganraj, T., Majumdar, R., & Sugumar, S. (2023). Study of Cadmium Metal Resistance in Stenotrophomonas maltophilia. Indian Journal of Microbiology, 63(1), 91–99. https://doi.org/10.1007/s12088-023-01066-9 | |
| dc.relation.references | Rambaut, A. (2025). Rambaut/figtree [Java]. https://github.com/rambaut/figtree (Obra original publicada en 2015) | |
| dc.relation.references | Raghavan, D., Patinharekkara, S. C., Elampilay, S. T., Payatatti, V. K. I., Charles, S., Veeraraghavan, S., ... & Anitha, S. J. (2023). New insights into bacterial Zn homeostasis and molecular architecture of the metal resistome in soil polluted with nano zinc oxide. Ecotoxicology and Environmental Safety, 263, 115222. https://doi.org/10.1016/j.ecoenv.2023.115222 | |
| dc.relation.references | Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D., & Betel, D. (2013). Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology, 14(9), 3158. https://doi.org/10.1186/gb-2013-14-9-r95 | |
| dc.relation.references | Rehan, M., Alhusays, A., Serag, A. M., Boubakri, H., Pujic, P., & Normand, P. (2022). The cadCA and cadB/DX operons are possibly induced in cadmium resistance mechanism by Frankia alni ACN14a. Electronic Journal of Biotechnology, 60, 86–96. https://doi.org/10.1016/j.ejbt.2022.09.006 | |
| dc.relation.references | Rensing, C., & Mitra, B. (2007). Zinc, Cadmium, and Lead Resistance and Homeostasis. En D. H. Nies & S. Silver (Eds.), Molecular Microbiology of Heavy Metals (Vol. 6, pp. 321–341). Springer Berlin Heidelberg. https://doi.org/10.1007/7171_2006_083 | |
| dc.relation.references | Rensing, C., Mitra, B., & Rosen, B. P. (1997). The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14326–14331. | |
| dc.relation.references | Riesco, R., & Trujillo, M. E. (2024). Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 74(3), 006300. https://doi.org/10.1099/ijsem.0.006300 | |
| dc.relation.references | Rocha, D. J. P. G., Castro, T. L. P., Aguiar, E. R. G. R., & Pacheco, L. G. C. (2020). Gene Expression Analysis in Bacteria by RT-qPCR. Methods in Molecular Biology (Clifton, N.J.), 2065, 119–137. https://doi.org/10.1007/978-1-4939-9833-3_10 | |
| dc.relation.references | Rocha, E. R., Tzianabos, A. O., & Smith, C. J. (2007). Thioredoxin Reductase Is Essential for Thiol/Disulfide Redox Control and Oxidative Stress Survival of the Anaerobe Bacteroides fragilis. Journal of Bacteriology, 189(22), 8015–8023. https://doi.org/10.1128/jb.00714-07 | |
| dc.relation.references | Saathoff, M., Kosol, S., Semmler, T., Tedin, K., Dimos, N., Kupke, J., Seidel, M., Ghazisaeedi, F., Jonske, M. C., Wolf, S. A., Kuropka, B., Czyszczoń, W., Ghilarov, D., Grätz, S., Heddle, J. G., Loll, B., Süssmuth, R. D., & Fulde, M. (2023). Gene amplifications cause high-level resistance against albicidin in gram-negative bacteria. PLOS Biology, 21(8), e3002186. https://doi.org/10.1371/journal.pbio.3002186 | |
| dc.relation.references | Satarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2010). Cadmium, Environmental Exposure, and Health Outcomes. Environmental Health Perspectives, 118(2), 182–190. https://doi.org/10.1289/ehp.0901234 | |
| dc.relation.references | Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020, baaa062. https://doi.org/10.1093/database/baaa062 | |
| dc.relation.references | Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 | |
| dc.relation.references | Seemann, T. (2025). Tseemann/abricate [Perl]. https://github.com/tseemann/abricate (Obra original publicada en 2014) | |
| dc.relation.references | Serment-Guerrero, J., Dominguez-Monroy, V., Davila-Becerril, J., Morales-Avila, E., & Fuentes-Lorenzo, J. L. (2020). Induction of the SOS response of Escherichia coli in repair-defective strains by several genotoxic agents. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 854–855, 503196. https://doi.org/10.1016/j.mrgentox.2020.503196 | |
| dc.relation.references | Shamim, S., Rehman, A., & Qazi, M. H. (2014). Cadmium-Resistance Mechanism in the Bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2. Archives of Environmental Contamination and Toxicology, 67(2), 149–157. https://doi.org/10.1007/s00244-014-0009-7 | |
| dc.relation.references | Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples)†. Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591 | |
| dc.relation.references | Sharma, M., Sharma, S., Paavan, Gupta, M., Goyal, S., Talukder, D., Akhtar, Mohd. S., Kumar, R., Umar, A., Alkhanjaf, A. A. M., & Baskoutas, S. (2023). Mechanisms of microbial resistance against cadmium – a review. Journal of Environmental Health Science and Engineering, 22(1), 13–30. https://doi.org/10.1007/s40201-023-00887-6 | |
| dc.relation.references | Shi, J.-J., Shi, Y., Feng, Y.-L., Li, Q., Chen, W.-Q., Zhang, W.-J., & Li, H.-Q. (2019). Anthropogenic cadmium cycles and emissions in Mainland China 1990–2015. Journal of Cleaner Production, 230, 1256–1265. https://doi.org/10.1016/j.jclepro.2019.05.166 | |
| dc.relation.references | Shi, Z., Zhang, Z., Yuan, M., Wang, S., Yang, M., Yao, Q., Ba, W., Zhao, J., & Xie, B. (2020). Characterization of a high cadmium accumulating soil bacterium, Cupriavidus sp. WS2. Chemosphere, 247, 125834. https://doi.org/10.1016/j.chemosphere.2020.125834 | |
| dc.relation.references | Smith, C. J., & Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS microbiology ecology, 67(1), 6-20. https://doi.org/10.1111/j.1574-6941.2008.00629.x | |
| dc.relation.references | Stafford, S. J., Humphreys, D. P., & Lund, P. A. (1999). Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+. FEMS Microbiology Letters, 174(1), 179–184. https://doi.org/10.1111/j.1574-6968.1999.tb13566.x | |
| dc.relation.references | Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 | |
| dc.relation.references | Stojnev, T., Harichová, J., Ferianc, P., & Nyström, T. (2007). Function of a Novel Cadmium-Induced YodA Protein in Escherichia coli. Current Microbiology, 55(2), 99–104. https://doi.org/10.1007/s00284-006-0516-5 | |
| dc.relation.references | Su, C., Xiang, Z., Liu, Y., Zhao, X., Sun, Y., Li, Z., Li, L., Chang, F., Chen, T., Wen, X., Zhou, Y., & Zhao, F. (2016). Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. Nov. YD25T that simultaneously produces prodigiosin and serrawettin W2. BMC Genomics, 17(1), 865. https://doi.org/10.1186/s12864-016-3171-7 | |
| dc.relation.references | Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102 | |
| dc.relation.references | Sun, H., Li, Y., Gao, S., Shi, G., Cao, L., Li, X., Li, T., Li, T., Wang, M., Li, E., Liu, J., Ni, H., Chen, Y., & Liu, Y. (2025). Identification of key chromium resistance genes in Cellulomonas using transcriptomics. Ecotoxicology and Environmental Safety, 291, 117843. https://doi.org/10.1016/j.ecoenv.2025.117843 | |
| dc.relation.references | Taboada, B., Estrada, K., Ciria, R., & Merino, E. (2018). Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics, 34(23), 4118–4120. https://doi.org/10.1093/bioinformatics/bty496 | |
| dc.relation.references | Tamayo-Figueroa, D. P., Castillo, E., & Brandão, P. F. B. (2019). Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World Journal of Microbiology and Biotechnology, 35(4), 58. https://doi.org/10.1007/s11274-019-2626-9 | |
| dc.relation.references | Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment. En A. Luch (Ed.), Molecular, Clinical and Environmental Toxicology (Vol. 101, pp. 133–164). Springer Basel. https://doi.org/10.1007/978-3-7643-8340-4_6 | |
| dc.relation.references | Thai, T. D., Lim, W., & Na, D. (2023). Synthetic bacteria for the detection and bioremediation of heavy metals. Frontiers in Bioengineering and Biotechnology, 11, 1178680. https://doi.org/10.3389/fbioe.2023.1178680 | |
| dc.relation.references | Thornton, B., & Basu, C. (2011). Real-time PCR (qPCR) primer design using free online software. Biochemistry and Molecular Biology Education, 39(2), 145–154. https://doi.org/10.1002/bmb.20461 | |
| dc.relation.references | Trajanovska, S., Britz, M. L., & Bhave, M. (1997). Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site. Biodegradation, 8(2), 113-124. https://doi.org/10.1023/A:1008212614677 | |
| dc.relation.references | Tseng, A. S., Roberts, M. C., Weissman, S. J., & Rabinowitz, P. M. (2023). Study of heavy metal resistance genes in Escherichia coli isolates from a marine ecosystem with a history of environmental pollution (arsenic, cadmium, copper, and mercury). PLOS ONE, 18(11), e0294565. https://doi.org/10.1371/journal.pone.0294565 | |
| dc.relation.references | Tukey, J. W. (1949). Comparing Individual Means in the Analysis of Variance. Biometrics, 5(2), 99–114. https://doi.org/10.2307/3001913 | |
| dc.relation.references | Van Dongen, S. (2008). Graph Clustering Via a Discrete Uncoupling Process. SIAM Journal on Matrix Analysis and Applications, 30(1), 121–141. https://doi.org/10.1137/040608635 | |
| dc.relation.references | Vigonsky, E., Fish, I., Livnat-Levanon, N., Ovcharenko, E., Ben-Tal, N., & Lewinson, O. (2015). Metal binding spectrum and model structure of the Bacillus anthracis virulence determinant MntA. Metallomics, 7(10), 1407–1419. https://doi.org/10.1039/c5mt00100e | |
| dc.relation.references | Wang, P., & Wang, F. (2023). A proposed metric set for evaluation of genome assembly quality. Trends in Genetics, 39(3), 175–186. https://doi.org/10.1016/j.tig.2022.10.005 | |
| dc.relation.references | Wen, S., Yin, F., Liu, C., Dang, Y., Sun, D., & Li, P. (2023). Integrated analysis of transcriptomic and protein-protein interaction data reveals cadmium stress response in Geobacter sulfurreducens. Environmental Research, 218, 115063. https://doi.org/10.1016/j.envres.2022.115063 | |
| dc.relation.references | Williams, D. J., Grimont, P. A. D., Cazares, A., Grimont, F., Ageron, E., Pettigrew, K. A., Cazares, D., Njamkepo, E., Weill, F.-X., Heinz, E., Holden, M. T. G., Thomson, N. R., & Coulthurst, S. J. (2022). The genus Serratia revisited by genomics. Nature Communications, 13(1), 5195. https://doi.org/10.1038/s41467-022-32929-2 | |
| dc.relation.references | Williams, D. J., Grimont, P. A. D., Cazares, A., Grimont, F., Ageron, E., Pettigrew, K. A., Cazares, D., Njamkepo, E., Weill, F.-X., Heinz, E., Holden, M. T. G., Thomson, N. R., & Coulthurst, S. J. (2022). The genus Serratia revisited by genomics. Nature Communications, 13(1), 5195. https://doi.org/10.1038/s41467-022-32929-2 | |
| dc.relation.references | Wu, B., Hou, S., Peng, D., Wang, Y., Wang, C., Xu, F., & Xu, H. (2018). Response of soil micro-ecology to different levels of cadmium in alkaline soil. Ecotoxicology and Environmental Safety, 166, 116–122. https://doi.org/10.1016/j.ecoenv.2018.09.076 | |
| dc.relation.references | Wu, P., Rane, N. R., Xing, C., Patil, S. M., Roh, H.-S., Jeon, B.-H., & Li, X. (2022). Integrative chemical and omics analyses reveal copper biosorption and tolerance mechanisms of Bacillus cereus strain T6. Journal of Hazardous Materials, 435, 129002. https://doi.org/10.1016/j.jhazmat.2022.129002 | |
| dc.relation.references | Wu, X., Yalowich, J. C., & Hasinoff, B. B. (2011). Cadmium is a catalytic inhibitor of DNA topoisomerase II. Journal of Inorganic Biochemistry, 105(6), 833–838. https://doi.org/10.1016/j.jinorgbio.2011.02.007 | |
| dc.relation.references | Xia, J., Luo, Y., Chen, M., Liu, Y., Wang, Z., Deng, S., Xu, J., Han, Y., Sun, J., Jiang, L., Song, H., & Cheng, C. (2023). Characterization of a DsbA family protein reveals its crucial role in oxidative stress tolerance of Listeria monocytogenes. Microbiology Spectrum, 11(6), e03060-23. https://doi.org/10.1128/spectrum.03060-23 | |
| dc.relation.references | Xie, Z., & Tang, H. (2017). ISEScan: Automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics, 33(21), 3340–3347. https://doi.org/10.1093/bioinformatics/btx433 | |
| dc.relation.references | Xu, F., & Wang, D. (2023). Bioremediation potential and primary mechanism of Sporosarcina pasteurii for cadmium (Cd) and lead (Pb) in contaminated tailings. Chemistry and Ecology, 39(5), 484–505. https://doi.org/10.1080/02757540.2023.2202659 | |
| dc.relation.references | Xu, Y., Shu, G., Liu, Z., Wang, Z., Lei, H., Zheng, Q., Kang, H. and Chen, L. (2024). Preliminary study on screening and genetic characterization of lactic acid bacteria strains with cadmium, lead, and chromium removal potentials. Fermentation, 10(1), 41. https://doi.org/10.3390/fermentation10010041 | |
| dc.relation.references | Yang, S.-H., Chen, S.-T., Liang, C., Shi, Y.-H., & Chen, Q.-S. (2022). Effects of Cadmium Exposure on Leydig Cells and Blood Vessels in Mouse Testis. International Journal of Environmental Research and Public Health, 19(4), 2416. https://doi.org/10.3390/ijerph19042416 | |
| dc.relation.references | Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(1), 134. https://doi.org/10.1186/1471-2105-13-134 | |
| dc.relation.references | Yu, G. (2024). Thirteen years of clusterProfiler. The Innovation, 5(6). https://doi.org/10.1016/j.xinn.2024.100722 | |
| dc.relation.references | Yun, J. J., Heisler, L. E., Hwang, I. I. L., Wilkins, O., Lau, S. K., Hyrcza, M., Jayabalasingham, B., Jin, J., McLaurin, J., Tsao, M.-S., & Der, S. D. (2006). Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nucleic Acids Research, 34(12), e85. https://doi.org/10.1093/nar/gkl400 | |
| dc.relation.references | Zhang, B., Pan, N., Fan, X., Lu, L., & Wang, X. (2021). Real-time effects of Cd( ii ) on the cellular membrane permeability. The Analyst, 146(19), 5973–5979. https://doi.org/10.1039/D1AN00827G | |
| dc.relation.references | Zhang, Y., Chen, S., Hao, X., Su, J.Q., Xue, X., Yan, Y., Zhu, Y.G. and Ye, J. (2016). Transcriptomic analysis reveals adaptive responses of an Enterobacteriaceae strain LSJC7 to arsenic exposure. Frontiers in microbiology, 7, 636. https://doi.org/10.3389/fmicb.2016.00636 | |
| dc.relation.references | Zhao, D., Wang, P., & Zhao, F.-J. (2023). Dietary cadmium exposure, risks to human health and mitigation strategies. Critical Reviews in Environmental Science and Technology, 53(8), 939–963. https://doi.org/10.1080/10643389.2022.2099192 | |
| dc.relation.references | Zheng, C., Zhai, Y., Qiu, J., Wang, M., Xu, Z., Chen, X., Zhou, X., & Jiao, X. (2024). ZntA maintains zinc and cadmium homeostasis and promotes oxidative stress resistance and virulence in Vibrio parahaemolyticus. Gut Microbes, 16(1), 2327377. https://doi.org/10.1080/19490976.2024.2327377 | |
| dc.relation.references | Zhu, J., Huang, Q., Peng, X., Zhou, X., Gao, S., Li, Y., Luo, X., Zhao, Y., Rensing, C., Su, J., & Cai, P. (2022). MRG chip: a high-throughput qPCR-based tool for assessment of the heavy metal (loid) resistome. Environmental Science & Technology, 56(15), 10656-10667. https://doi.org/10.1021/acs.est.2c00488 | |
| dc.relation.references | Zhu, G., Tan, W., Xie, L., Ma, C., Chen, X., Zhang, S., & Wei, Y. (2022). Mechanisms underlying the inhibitory effects of Cd2+ on prodigiosin synthesis in Serratia marcescens KMR-3. Journal of Inorganic Biochemistry, 236, 111978. https://doi.org/10.1016/j.jinorgbio.2022.111978 | |
| dc.relation.references | Zhu, G., Xie, L., Tan, W., Ma, C., & Wei, Y. (2022). Cd2+ tolerance and removal mechanisms of Serratia marcescens KMR-3. Journal of Biotechnology, 359, 65–74. https://doi.org/10.1016/j.jbiotec.2022.09.019 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject.agrovoc | Bacteria gram negativa | spa |
| dc.subject.agrovoc | Gram-negative bacteria | eng |
| dc.subject.agrovoc | Genoma bacteriano | spa |
| dc.subject.agrovoc | bacterial genomes | eng |
| dc.subject.agrovoc | Transcripción génica | spa |
| dc.subject.agrovoc | gene transcription | eng |
| dc.subject.ddc | 570 - Biología::579 - Historia natural microorganismos, hongos, algas | spa |
| dc.subject.proposal | Cadmio | spa |
| dc.subject.proposal | Genes | spa |
| dc.subject.proposal | DNA | spa |
| dc.subject.proposal | RNA | spa |
| dc.subject.proposal | Secuenciación | spa |
| dc.subject.proposal | Serratia | lat |
| dc.subject.proposal | Cadmium | eng |
| dc.subject.proposal | DNA | eng |
| dc.subject.proposal | RNA | eng |
| dc.subject.proposal | Sequencing | eng |
| dc.subject.proposal | Resistance | eng |
| dc.subject.proposal | Genes | eng |
| dc.subject.proposal | Resistencia | spa |
| dc.subject.proposal | Surfactantfaciens | lat |
| dc.title | Estudio genómico y transcriptómico de la resistencia a cadmio(II) de Serratia sp. 5b | spa |
| dc.title.translated | Genomic and transcriptomic study of cadmium(II) resistance in Serratia sp. 5b | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Estudio_genomico_y_transcriptomico_de_la_resistencia_a_cadmio(II)_de_Serratia_sp_5b.pdf
- Tamaño:
- 2.32 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

