Estudio genómico y transcriptómico de la resistencia a cadmio(II) de Serratia sp. 5b

dc.contributor.advisorde Brito Brandão, Pedro Filipespa
dc.contributor.authorNonsocua Triviño, Kevin Stivenspa
dc.contributor.orcidNonsocua Triviño, Kevin Stiven [000900005105447X]spa
dc.contributor.researchgroupGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germinaspa
dc.date.accessioned2025-10-31T15:25:29Z
dc.date.available2025-10-31T15:25:29Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractSerratia sp. 5b es una cepa previamente aislada de suelos agrícolas contaminados con cadmio (Cd(II)), a la que se le ha determinado experimentalmente una concentración mínima inhibitoria (CMI) de 4 mM y la capacidad para reducir la concentración del metal en solución. No obstante, no se conocía su identidad taxonómica a nivel de especie ni se había determinado cuáles genes están implicados en la resistencia a Cd(II). En este estudio se integraron de forma transversal aproximaciones filogenómicas, genómicas y transcriptómicas con el propósito de identificar taxonómicamente la cepa y dilucidar los mecanismos moleculares que sustentan su resistencia al Cd(II). El análisis filogenómico, basado en 1.052 genes ortólogos de copia única, indicó que la especie de Serratia sp. 5b corresponde a Serratia surfactantfaciens, al formar un clado monofilético con soporte bootstrap del 100 %, lo cual fue ratificado por un valor ANI del 99,18 %. A nivel genómico, el ensamblaje presentó 18 contigs, una longitud total de 4,99 Mbp y una completitud estimada en 99,88 %. Se identificaron diez genes putativos relacionados con resistencia a Cd(II), dsbA, dsbB, fieF, mntH, robA, ychH, ygiW, zinT, zitB y zntA, todos ubicados en el cromosoma y sin asociación a plásmidos ni elementos genéticos móviles. Asimismo, el análisis de variantes detectó mutaciones no sinónimas en fieF y zntA, siendo este último el único con alteraciones estructurales localizadas en regiones flexibles. Por otro lado, el análisis transcriptómico reveló una respuesta génica dependiente de la concentración de Cd(II), con 428, 1.852 y 638 genes diferencialmente expresados (DEGs) al comparar las condiciones control vs 0,15 mM Cd(II), control vs 0,50 mM Cd(II), y 0,15 mM Cd(II) vs 0,50 mM Cd(II), respectivamente. Se observó una sobreexpresión progresiva de genes asociados al transporte de cationes, defensa antioxidante y reparación del ADN, destacándose zntA, zinT, mntA, znuC, trxB y recA. El análisis funcional evidenció una activación gradual de rutas implicadas en metabolismo energético, transporte activo y organización de membranas, con procesos exclusivos bajo condiciones de alta exposición. La validación experimental mediante RT-qPCR de genes seleccionados reprodujo la tendencia observada en RNA-seq, indicando la confiabilidad de los resultados transcriptómicos. En conjunto, estos hallazgos demuestran que Serratia surfactantfaciens 5b presenta una respuesta transcripcional compleja y coordinada frente a Cd(II), basada en mecanismos de exclusión, secuestro intracelular y adaptación fisiológica. (Texto tomado de la fuente).spa
dc.description.abstractSerratia sp. 5b is a strain previously isolated from cadmium (Cd(II))-contaminated agricultural soils. Experimental studies determined a minimum inhibitory concentration (MIC) of 4 mM for this strain, along with its ability to reduce the concentration of the metal in solution. However, its species-level taxonomic identity was unknown, and the genes involved in its Cd(II) resistance had not been identified. In this study, we integrated phylogenomic, genomic, and transcriptomic approaches to identify the strain at the species level and elucidate the molecular mechanisms underlying its resistance to Cd(II). Phylogenomic analysis based on 1,052 single-copy orthologous genes indicated that Serratia sp. 5b belongs to the species Serratia surfactantfaciens, as it formed a monophyletic clade with 100% bootstrap support. This finding was further supported by an ANI value of 99.18%. At the genomic level, the assembly consisted of 18 contigs, with a total length of 4.99 Mbp and an estimated completeness of 99.88%. Ten putative genes associated with Cd(II) resistance were identified—dsbA, dsbB, fieF, mntH, robA, ychH, ygiW, zinT, zitB, and zntA—all of which were located on the chromosome and showed no association with plasmids or mobile genetic elements. Variant analysis revealed non-synonymous mutations in fieF and zntA, the latter being the only gene with structural alterations located in flexible protein regions. Transcriptomic analysis revealed a Cd(II) concentration-dependent gene expression response, with 428, 1,852, and 638 differentially expressed genes (DEGs) identified when comparing control vs. 0.15 mM Cd(II), control vs. 0.50 mM Cd(II), and 0.15 mM vs. 0.50 mM Cd(II), respectively. A progressive overexpression was observed in genes associated with cation transport, antioxidant defense, and DNA repair, particularly zntA, zinT, mntA, znuC, trxB, and recA. Functional enrichment analysis revealed a gradual activation of pathways involved in energy metabolism, active transport, and membrane organization, with exclusive processes emerging under high Cd(II) exposure. Experimental validation by RT-qPCR of selected genes reproduced the expression trends observed in the RNA-seq data, confirming the reliability of the transcriptomic results. Together, these findings demonstrate that Serratia surfactantfaciens 5b exhibits a complex and coordinated transcriptional response to Cd(II), based on mechanisms involving exclusion, intracellular sequestration, and physiological adaptation.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias – Microbiologíaspa
dc.description.researchareaMicrobiología ambientalspa
dc.format.extent115 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89091
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnología IBUNspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAdhikary, S., Saha ,Jayanti, Dutta ,Prajesh, & and Pal, A. (2024). Bacterial Homeostasis and Tolerance to Potentially Toxic Metals and Metalloids through Diverse Transporters: Metal-Specific Insights. Geomicrobiology Journal, 41(5), 496–518. https://doi.org/10.1080/01490451.2024.2340517
dc.relation.referencesÅkesson, A. (2011). Cadmium Exposure in the Environment: Renal Effects and the Benchmark Dose. En J. O. Nriagu (Ed.), Encyclopedia of Environmental Health (pp. 465–473). Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00379-2
dc.relation.referencesAli, H., & and Khan, E. (2019). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 25(6), 1353–1376. https://doi.org/10.1080/10807039.2018.1469398
dc.relation.referencesAlotaibi, B. S., Khan, M., & Shamim, S. (2021). Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms, 9(8), 1628. https://doi.org/10.3390/microorganisms9081628
dc.relation.referencesAlviz-Gazitua, P., Fuentes-Alburquenque, S., Rojas, L. A., Turner, R. J., Guiliani, N., & Seeger, M. (2019). The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel Metal Regulated Phosphodiesterase. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01499
dc.relation.referencesAndrews, S. (s/f). Babraham Bioinformatics—FastQC A Quality Control tool for High Throughput Sequence Data. Recuperado el 26 de marzo de 2025, de https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
dc.relation.referencesAnjou, C., Lotoux, A., Morvan, C., & Martin-Verstraete, I. (2024). From ubiquity to specificity: The diverse functions of bacterial thioredoxin systems. Environmental Microbiology, 26(6), e16668. https://doi.org/10.1111/1462-2920.16668
dc.relation.referencesAryal, M. (2021). A comprehensive study on the bacterial biosorption of heavy metals: Materials, performances, mechanisms, and mathematical modellings. Reviews in Chemical Engineering, 37(6), 715–754. https://doi.org/10.1515/revce-2019-0016
dc.relation.referencesAti-Hellal, M. E., Hellal, F., Ati-Hellal, M. E., & Hellal, F. (2021). Heavy Metals in the Environment and Health Impact. En Environmental Health. IntechOpen. https://doi.org/10.5772/intechopen.97204
dc.relation.referencesBa, Q., Zhou, J., Li, J., Cheng, S., Zhang, X., & Wang, H. (2022). Mutagenic Characteristics of Six Heavy Metals in Escherichia coli: The Commonality and Specificity. Environmental Science & Technology, 56(19), 13867–13877. https://doi.org/10.1021/acs.est.2c04785
dc.relation.referencesBarman, S., Bhattacharya, S. S., & Chandra Mandal, N. (2020). Chapter 3—Serratia. En N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, & A. Sankaranarayanan (Eds.), Beneficial Microbes in Agro-Ecology (pp. 27–36). Academic Press. https://doi.org/10.1016/B978-0-12-823414-3.00003-4
dc.relation.referencesBauda, P., Garsot, P., & Block, J. C. (1987). Cadmium uptake by pseudomonas fluorescens cells. Toxicity Assessment, 2(1), 63–78. https://doi.org/10.1002/tox.2540020106
dc.relation.referencesBazzi, W., Abou Fayad, A. G., Nasser, A., Haraoui, L.-P., Dewachi, O., Abou-Sitta, G., Nguyen, V.-K., Abara, A., Karah, N., Landecker, H., Knapp, C., McEvoy, M. M., Zaman, M. H., Higgins, P. G., & Matar, G. M. (2020). Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00068
dc.relation.referencesBegg, S. L., Eijkelkamp, B. A., Luo, Z., Couñago, R. M., Morey, J. R., Maher, M. J., Ong, C. Y., McEwan, A. G., Kobe, B., O’Mara, M. L., Paton, J. C., & McDevitt, C. A. (2015). Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae. Nature Communications, 6(1), 6418. https://doi.org/10.1038/ncomms7418
dc.relation.referencesBenjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
dc.relation.referencesBong, D., Sohn, J., & Lee, S. J. V. (2024). Brief guide to RT-qPCR. Molecules and Cells, 47(12), 100141. https://doi.org/10.1016/j.mocell.2024.100141
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
dc.relation.referencesBuchfink, B., Reuter, K., & Drost, H.-G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods, 18(4), 366–368. https://doi.org/10.1038/s41592-021-01101-x
dc.relation.referencesBustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, 55(4), 611–622. https://doi.org/10.1373/clinchem.2008.112797
dc.relation.referencesCarattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa, L., Møller Aarestrup, F., & Hasman, H. (2014). In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14
dc.relation.referencesCarvalho, M. E. A., Gaziola, S. A., Carvalho, L. A., & Azevedo, R. A. (2021). Cadmium effects on plant reproductive organs: Physiological, productive, evolutionary and ecological aspects. Annals of Applied Biology, 178(2), 227–243. https://doi.org/10.1111/aab.12612
dc.relation.referencesCapdevila, D. A., Wang, J., & Giedroc, D. P. (2016). Bacterial strategies to maintain zinc metallostasis at the host-pathogen interface. Journal of biological chemistry, 291(40), 20858-20868. https://doi.org/10.1074/jbc.R116.742023
dc.relation.referencesChatterjee, S., Barman, P., Barman, C., Majumdar, S., & Chakraborty, R. (2024). Multimodal cadmium resistance and its regulatory networking in Pseudomonas aeruginosa strain CD3. Scientific Reports, 14(1), 31689. https://doi.org/10.1038/s41598-024-80754-y
dc.relation.referencesChatterjee, S., Kumari, S., Rath, S., Priyadarshanee, M., & Das, S. (2020). Diversity, structure and regulation of microbial metallothionein: Metal resistance and possible applications in sequestration of toxic metals. Metallomics, 12(11), 1637–1655. https://doi.org/10.1039/d0mt00140f
dc.relation.referencesChellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Applied Water Science, 8(6), 154. https://doi.org/10.1007/s13201-018-0796-5
dc.relation.referencesChen, Y., Lun, A. T. L., & Smyth, G. K. (2016). From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research, 5, 1438. https://doi.org/10.12688/f1000research.8987.2
dc.relation.referencesChen, Y., Zhu, Q., Dong, X., Huang, W., Du, C., & Lu, D. (2019). How Serratia marcescens HB-4 absorbs cadmium and its implication on phytoremediation. Ecotoxicology and Environmental Safety, 185, 109723. https://doi.org/10.1016/j.ecoenv.2019.109723
dc.relation.referencesChien, C.-C., Huang, C.-H., & Lin, Y.-W. (2013). Characterization of a Heavy Metal Translocating P-Type ATPase Gene from an Environmental Heavy Metal Resistance Enterobacter sp. Isolate. Applied Biochemistry and Biotechnology, 169(6), 1837–1846. https://doi.org/10.1007/s12010-012-0047-4
dc.relation.referencesChrestensen, C. A., Starke, D. W., & Mieyal, J. J. (2000). Acute Cadmium Exposure Inactivates Thioltransferase (Glutaredoxin), Inhibits Intracellular Reduction of Protein-glutathionyl-mixed Disulfides, and Initiates Apoptosis *. Journal of Biological Chemistry, 275(34), 26556–26565. https://doi.org/10.1074/jbc.M004097200
dc.relation.referencesChun, S., Yibo, L., & Zni, L. (2017). Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacteria. Journal of Biotechnology, 245, 9–13. https://doi.org/10.1016/j.jbiotec.2017.01.011
dc.relation.referencesCingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118 ; iso-2; iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695
dc.relation.referencesConesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), 13. https://doi.org/10.1186/s13059-016-0881-8
dc.relation.referencesCroteau, M.-N., Luoma, S. N., & Stewart, A. R. (2005). Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature. Limnology and Oceanography, 50(5), 1511–1519. https://doi.org/10.4319/lo.2005.50.5.1511
dc.relation.referencesDanecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008
dc.relation.referencesDarriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., & Flouri, T. (2020). ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Molecular Biology and Evolution, 37(1), 291–294. https://doi.org/10.1093/molbev/msz189
dc.relation.referencesDas, S., & Dash, H. R. (Eds.). (2017). Handbook of Metal-Microbe Interactions and Bioremediation (1a ed.). CRC Press. https://doi.org/10.1201/9781315153353
dc.relation.referencesDeng, X., Yi, X. E., & Liu, G. (2007). Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. Journal of Hazardous Materials, 139(2), 340–344. https://doi.org/10.1016/j.jhazmat.2006.06.043
dc.relation.referencesDiez Marulanda, J. C. (2022). Estudio de la bioprecipitación de cadmio por bacterias ureolíticas aisladas de fincas cacaoteras de Santander, Colombia. Universidad Nacional de Colombia.
dc.relation.referencesDiez-Marulanda, J. C., & Brandão, P. F. B. (2023). Isolation of urease-producing bacteria from cocoa farms soils in Santander, Colombia, for cadmium remediation. 3 Biotech, 13(3), 98. https://doi.org/10.1007/s13205-023-03495-1
dc.relation.referencesDiez-Marulanda, J. C., & Brandão, P. F. B. (2024). Potential use of two Serratia strains for cadmium remediation based on microbiologically induced carbonate precipitation and their cadmium resistance. Environmental Science and Pollution Research, 31(4), 5319–5330. https://doi.org/10.1007/s11356-023-31062-x
dc.relation.referencesDillingham, M. S., & Kowalczykowski, S. C. (2008). RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks. Microbiology and Molecular Biology Reviews : MMBR, 72(4), 642–671. https://doi.org/10.1128/MMBR.00020-08
dc.relation.referencesDu, B., Zhou, J., Lu, B., Zhang, C., Li, D., Zhou, J., Jiao, S., Zhao, K., & Zhang, H. (2020). Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China. Science of The Total Environment, 720, 137585. https://doi.org/10.1016/j.scitotenv.2020.137585
dc.relation.referencesDucret, V., Gonzalez, M. R., Leoni, S., Valentini, M., & Perron, K. (2020). The CzcCBA Efflux System Requires the CadA P-Type ATPase for Timely Expression Upon Zinc Excess in Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 911. https://doi.org/10.3389/fmicb.2020.00911
dc.relation.referencesEl-Esawi, M. A., Elkelish, A., Soliman, M., Elansary, H. O., Zaid, A., & Wani, S. H. (2020). Serratia marcescens BM1 Enhances Cadmium Stress Tolerance and Phytoremediation Potential of Soybean Through Modulation of Osmolytes, Leaf Gas Exchange, Antioxidant Machinery, and Stress-Responsive Genes Expression. Antioxidants, 9(1), 43. https://doi.org/10.3390/antiox9010043
dc.relation.referencesEl-Minisy, A. M., Bekheet, S. A., El-Assal, S. E.-D., Soliman, M., Amer, A. M., Hassan, M., El-Shabrawi, H. M., & El-Tarras, A. (2025). Serratia rubidaea SR19: A cadmium -tolerant bacteria enhancing phosphate solubilization, IAA production, and promoting cucumber seed germination. Biocatalysis and Agricultural Biotechnology, 65, 103546. https://doi.org/10.1016/j.bcab.2025.103546
dc.relation.referencesEmms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1), 238. https://doi.org/10.1186/s13059-019-1832-y
dc.relation.referencesFashola, M., Anagun, O., & Babalola, O. O. (2023). Heavy metal pollution: Toxic effects on bacterial cells. Preprints. https://doi.org/10.22541/au.168690270.01555938/v1
dc.relation.referencesFatima, G., Raza, A. M., Hadi, N., Nigam, N., & Mahdi, A. A. (2019). Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian Journal of Clinical Biochemistry, 34(4), 371–378. https://doi.org/10.1007/s12291-019-00839-8
dc.relation.referencesFlouri T., Izquierdo-Carrasco F., Darriba D., Aberer AJ, Nguyen LT, Minh BQ, von Haeseler A., Stamatakis A. (2014) The Phylogenetic Likelihood Library. Systematic Biology, 64(2): 356-362. https://doi.org/10.1093/sysbio/syu084
dc.relation.referencesForouzan, E., Karkhane, A. A., & Yakhchali, B. (2020). Exploring metal resistance genes and mechanisms in copper enriched metal ore metagenome (p. 2020.07.02.184564). bioRxiv. https://doi.org/10.1101/2020.07.02.184564
dc.relation.referencesGabbianelli, R., Scotti, R., Ammendola, S., Petrarca, P., Nicolini, L., & Battistoni, A. (2011). Role of ZnuABC and ZinT in Escherichia coliO157:H7 zinc acquisition and interaction with epithelial cells. BMC Microbiology, 11(1), 36. https://doi.org/10.1186/1471-2180-11-36
dc.relation.referencesGarrison, E., & Marth, G. (2012). Haplotype-based variant detection from short-read sequencing (No. arXiv:1207.3907). arXiv. https://doi.org/10.48550/arXiv.1207.3907
dc.relation.referencesGhosh, A., Sah, D., Chakraborty, M., & Rai, J. P. N. (2024). Mechanism and application of bacterial exopolysaccharides: An advanced approach for sustainable heavy metal abolition from soil. Carbohydrate Research, 544, 109247. https://doi.org/10.1016/j.carres.2024.109247
dc.relation.referencesAlvarenga D. O. & Varani A. M. (2019). TnComp_finder: prokaryotic composite transposon finder. Available from https://github.com/danillo-alvarenga/tncomp_finder.
dc.relation.referencesGlušič, M., Stare, J., Grdadolnik, J., & Vianello, R. (2013). Binding of cadmium dication to glutathione facilitates cysteine SH deprotonation: A computational DFT study. Journal of Inorganic Biochemistry, 119, 90–94. https://doi.org/10.1016/j.jinorgbio.2012.11.004
dc.relation.referencesGraham, A. I., Hunt, S., Stokes, S. L., Bramall, N., Bunch, J., Cox, A. G., McLeod, C. W., & Poole, R. K. (2009). Severe Zinc Depletion of Escherichia coli. The Journal of Biological Chemistry, 284(27), 18377–18389. https://doi.org/10.1074/jbc.M109.001503
dc.relation.referencesGrass, G., Fan, B., Rosen, B. P., Franke, S., Nies, D. H., & Rensing, C. (2001). ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter in Escherichia coli. Journal of Bacteriology, 183(15), 4664–4667. https://doi.org/10.1128/JB.183.15.4664-4667.2001
dc.relation.referencesGrass, G., Otto, M., Fricke, B., Haney, C. J., Rensing, C., Nies, D. H., & Munkelt, D. (2005). FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Archives of Microbiology, 183(1), 9–18. https://doi.org/10.1007/s00203-004-0739-4
dc.relation.referencesGuglierame, P., Pasca, M. R., De Rossi, E., Buroni, S., Arrigo, P., Manina, G., & Riccardi, G. (2006). Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiology, 6(1), 66. https://doi.org/10.1186/1471-2180-6-66
dc.relation.referencesGupta, P., & Diwan, B. (2017). Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13, 58–71. https://doi.org/10.1016/j.btre.2016.12.006
dc.relation.referencesGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
dc.relation.referencesHalema, A. A., El-Beltagi, H. S., Al-Dossary, O., Alsubaie, B., Henawy, A. R., Rezk, A. A., Almutairi, H. H., Mohamed, A. A., Elarabi, N. I., & Abdelhadi, A. A. (2024). Omics technology draws a comprehensive heavy metal resistance strategy in bacteria. World Journal of Microbiology and Biotechnology, 40(6), 193. https://doi.org/10.1007/s11274-024-04005-y
dc.relation.referencesHelbig, K., Grosse, C., & Nies, D. H. (2008). Cadmium Toxicity in Glutathione Mutants of Escherichia coli. Journal of Bacteriology, 190(15), 5439–5454. https://doi.org/10.1128/JB.00272-08
dc.relation.referencesHeras, B., Shouldice, S. R., Totsika, M., Scanlon, M. J., Schembri, M. A., & Martin, J. L. (2009). DSB proteins and bacterial pathogenicity. Nature Reviews Microbiology, 7(3), 215–225. https://doi.org/10.1038/nrmicro2087
dc.relation.referencesHoffmann, T. D., Reeksting, B. J., & Gebhard, S. (2021). Bacteria-induced mineral precipitation: A mechanistic review. Microbiology, 167(4). https://doi.org/10.1099/mic.0.001049
dc.relation.referencesHossain, S. T., Mallick, I., & Mukherjee, S. K. (2012). Cadmium toxicity in Escherichia coli: Cell morphology, Z-ring formation and intracellular oxidative balance. Ecotoxicology and Environmental Safety, 86, 54–59. https://doi.org/10.1016/j.ecoenv.2012.09.017
dc.relation.referencesHrynkiewicz, K., Złoch, M., Kowalkowski, T., Baum, C., Niedojadło, K., & Buszewski, B. (2015). Strain-specific bioaccumulation and intracellular distribution of Cd2+ in bacteria isolated from the rhizosphere, ectomycorrhizae, and fruitbodies of ectomycorrhizal fungi. Environmental Science and Pollution Research, 22(4), 3055–3067. https://doi.org/10.1007/s11356-014-3489-0
dc.relation.referencesHuang, M., Shen, S., Meng, Z., Si, G., Wu, X., Feng, T., Liu, C., Chen, J., & Duan, C. (2023). Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. Ecotoxicology and Environmental Safety, 266, 115527. https://doi.org/10.1016/j.ecoenv.2023.115527
dc.relation.referencesHughes, A. L., Friedman, R., Rivailler, P., & French, J. O. (2008). Synonymous and Nonsynonymous Polymorphisms versus Divergences in Bacterial Genomes. Molecular Biology and Evolution, 25(10), 2199–2209. https://doi.org/10.1093/molbev/msn166
dc.relation.referencesIguchi, A., Nagaya, Y., Pradel, E., Ooka, T., Ogura, Y., Katsura, K., Kurokawa, K., Oshima, K., Hattori, M., Parkhill, J., Sebaihia, M., Coulthurst, S. J., Gotoh, N., Thomson, N. R., Ewbank, J. J., & Hayashi, T. (2014). Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen. Genome Biology and Evolution, 6(8), 2096–2110. https://doi.org/10.1093/gbe/evu160
dc.relation.referencesIntorne, A. C., de Oliveira, M. V. V., de M Pereira, L., & de Souza Filho, G. A. (2012). Essential role of the czc determinant for cadmium, cobalt and zinc resistance in Gluconacetobacter diazotrophicus PAl 5. International Microbiology: The Official Journal of the Spanish Society for Microbiology, 15(2), 69–78. https://doi.org/10.2436/20.1501.01.160
dc.relation.referencesJain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 9(1), 5114. https://doi.org/10.1038/s41467-018-07641-9
dc.relation.referencesJaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009
dc.relation.referencesJang, S. (2016). Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. Journal of Microbiology, 54(1), 1–8. https://doi.org/10.1007/s12275-016-5159-z
dc.relation.referencesJaramillo, A. V. C., Cory, M. B., Li, A., Kohli, R. M., & Wuest, W. M. (2022). Exploration of Inhibitors of the Bacterial LexA Repressor-Protease. Bioorganic & medicinal chemistry letters, 65, 128702. https://doi.org/10.1016/j.bmcl.2022.128702
dc.relation.referencesJebril, N., Boden, R., & Braungardt, C. (2022). Cadmium resistant bacteria mediated cadmium removal: A systematic review on resistance, mechanism and bioremediation approaches. IOP Conference Series: Earth and Environmental Science, 1002(1), 012006. https://doi.org/10.1088/1755-1315/1002/1/012006
dc.relation.referencesJiao, J., Lv, X., Shen, C., & Morigen, M. (2024). Genome and transcriptomic analysis of the adaptation of Escherichia coli to environmental stresses. Computational and Structural Biotechnology Journal, 23, 2132–2140. https://doi.org/10.1016/j.csbj.2024.05.033
dc.relation.referencesJoseph, P. (2009). Mechanisms of cadmium carcinogenesis. Toxicology and Applied Pharmacology, 238(3), 272–279. https://doi.org/10.1016/j.taap.2009.01.011
dc.relation.referencesJumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
dc.relation.referencesKavanaugh, L. G., Dey, D., Shafer, W. M., & Conn, G. L. (2024). Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiology and Molecular Biology Reviews, 88(3), e00089-23. https://doi.org/10.1128/mmbr.00089-23
dc.relation.referencesKralik, P., & Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Frontiers in microbiology, 8, 108. https://doi.org/10.3389/fmicb.2017.00108
dc.relation.referencesKerdsomboon, K., Techo, T., Mhuantong, W., Limcharoensuk, T., Luangkamchorn, S. T., Laoburin, P., & Auesukaree, C. (2024). Genomic and transcriptomic analyses reveal insights into cadmium resistance mechanisms of Cupriavidus nantongensis strain E324. Science of The Total Environment, 952, 175915. https://doi.org/10.1016/j.scitotenv.2024.175915
dc.relation.referencesKershaw, C. J., Brown, N. L., & Hobman, J. L. (2007). Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochemical and Biophysical Research Communications, 364(1), 66–71. https://doi.org/10.1016/j.bbrc.2007.09.094
dc.relation.referencesKhairnar, N. P., Joe, M.-H., Misra, H. S., Lim, S.-Y., & Kim, D.-H. (2013). FrnE, a Cadmium-Inducible Protein in Deinococcus radiodurans, Is Characterized as a Disulfide Isomerase Chaperone In Vitro and for Its Role in Oxidative Stress Tolerance In Vivo. Journal of Bacteriology, 195(12), 2880–2886. https://doi.org/10.1128/JB.01503-12
dc.relation.referencesKhan, A. R., Park, G.-S., Asaf, S., Hong, S.-J., Jung, B. K., & Shin, J.-H. (2017). Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLOS ONE, 12(2), e0171534. https://doi.org/10.1371/journal.pone.0171534
dc.relation.referencesKhan, A. R., Ullah, I., Khan, A. L., Park, G.-S., Waqas, M., Hong, S.-J., Jung, B. K., Kwak, Y., Lee, I.-J., & Shin, J.-H. (2015). Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation. Environmental Science and Pollution Research, 22(18), 14032–14042. https://doi.org/10.1007/s11356-015-4647-8
dc.relation.referencesKhan, Z., Elahi, A., Bukhari, D. A., & Rehman, A. (2022). Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. Journal of Saudi Chemical Society, 26(6), 101569. https://doi.org/10.1016/j.jscs.2022.101569
dc.relation.referencesKhan, Z., Nisar, M. A., Hussain, S. Z., Arshad, M. N., & Rehman, A. (2015). Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Applied Microbiology and Biotechnology, 99(24), 10745–10757. https://doi.org/10.1007/s00253-015-6901-x
dc.relation.referencesKobras, C. M., Fenton, A. K., & Sheppard, S. K. (2021). Next-generation microbiology: From comparative genomics to gene function. Genome Biology, 22(1), 123. https://doi.org/10.1186/s13059-021-02344-9
dc.relation.referencesKolaj-Robin, O., Russell, D., Hayes, K. A., Pembroke, J. T., & Soulimane, T. (2015). Cation Diffusion Facilitator family: Structure and function. FEBS Letters, 589(12), 1283–1295. https://doi.org/10.1016/j.febslet.2015.04.007
dc.relation.referencesKozlov, A. M., Aberer, A. J., & Stamatakis, A. (2015). ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics, 31(15), 2577-2579. https://doi.org/10.1093/bioinformatics/btv184
dc.relation.referencesKubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388
dc.relation.referencesKück, P., & Longo, G. C. (2014). FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Frontiers in Zoology, 11(1), 81. https://doi.org/10.1186/s12983-014-0081-x
dc.relation.referencesKumar, S., & Sharma, A. (2019). Cadmium toxicity: Effects on human reproduction and fertility. Reviews on Environmental Health, 34(4), 327–338. https://doi.org/10.1515/reveh-2019-0016
dc.relation.referencesKumari, D., Qian, X.-Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. En Advances in Applied Microbiology (Vol. 94, pp. 79–108). Elsevier. https://doi.org/10.1016/bs.aambs.2015.12.002
dc.relation.referencesKuraku, S., Zmasek, C. M., Nishimura, O., & Katoh, K. (2013). aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research, 41(W1), W22–W28. https://doi.org/10.1093/nar/gkt389
dc.relation.referencesKvam, V. M., Liu, P., & Si, Y. (2012). A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. American Journal of Botany, 99(2), 248–256. https://doi.org/10.3732/ajb.1100340
dc.relation.referencesLan, Y., Liu, M., Song, Y., Cao, Y., Li, F., Luo, D., & Qiao, D. (2023). Distribution, characterization, and evolution of heavy metal resistance genes and Tn7-like associated heavy metal resistance Gene Island of Burkholderia. Frontiers in Microbiology, 14, 1252127. https://doi.org/10.3389/fmicb.2023.1252127
dc.relation.referencesLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
dc.relation.referencesLata, S., Sharma, S., & Kaur, S. (2023). OMICS Approaches in Mitigating Metal Toxicity in Comparison to Conventional Techniques Used in Cadmium Bioremediation. Water, Air, & Soil Pollution, 234(3), 148. https://doi.org/10.1007/s11270-023-06145-7
dc.relation.referencesLedda, C. (2018). Cadmium exposure and prostate cancer insights mechanisms and perspectives. Frontiers in Bioscience, 23(9), 1687–1700. https://doi.org/10.2741/4667
dc.relation.referencesLee, J., Hiibel, S. R., Reardon, K. F., & Wood, T. K. (2010). Identification of stress‐related proteins in Escherichia coli using the pollutant cis‐dichloroethylene. Journal of Applied Microbiology, 108(6), 2088–2102. https://doi.org/10.1111/j.1365-2672.2009.04611.x
dc.relation.referencesLee, S. M., Grass, G., Haney, C. J., Fan, B., Rosen, B. P., Anton, A., Nies, D. H., & Rensing, C. (2002). Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiology Letters, 215(2), 273–278. https://doi.org/10.1111/j.1574-6968.2002.tb11402.x
dc.relation.referencesLi, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM (No. arXiv:1303.3997). arXiv. https://doi.org/10.48550/arXiv.1303.3997
dc.relation.referencesLiang, B., Feng, Y., Ji, X., Li, C., Li, Q., Zeng, Z., & Wang, Y. (2025). Isolation and characterization of cadmium-resistant Bacillus cereus strains from Cd-contaminated mining areas for potential bioremediation applications. Frontiers in Microbiology, 16. https://doi.org/10.3389/fmicb.2025.1550830
dc.relation.referencesLiao, P., Satten, G. A., & Hu, Y.-J. (2017). PhredEM: A Phred-Score-Informed Genotype-Calling Approach for Next-Generation Sequencing Studies. Genetic epidemiology, 41(5), 375–387. https://doi.org/10.1002/gepi.22048
dc.relation.referencesLiao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. https://doi.org/10.1093/bioinformatics/btt656
dc.relation.referencesLima, A. I. G., Corticeiro, S. C., & De Almeida Paula Figueira, E. M. (2006). Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme and Microbial Technology, 39(4), 763–769. https://doi.org/10.1016/j.enzmictec.2005.12.009
dc.relation.referencesLima de Silva, A. A., de Carvalho, M. A. R., de Souza, S. A. L., Dias, P. M. T., da Silva Filho, R. G., de Meirelles Saramago, C. S., de Melo Bento, C. A., & Hofer, E. (2012). Heavy metal tolerance (Cr, Ag AND Hg) in bacteria isolated from sewage. Brazilian Journal of Microbiology, 43(4), 1620–1631. https://doi.org/10.1590/S1517-838220120004000047
dc.relation.referencesLimcharoensuk, T., Sooksawat, N., Sumarnrote, A., Awutpet, T., Kruatrachue, M., Pokethitiyook, P., & Auesukaree, C. (2015). Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicology and Environmental Safety, 122, 322–330. https://doi.org/10.1016/j.ecoenv.2015.08.013
dc.relation.referencesLindsey, R. L., Gladney, L. M., Huang, A. D., Griswold, T., Katz, L. S., Dinsmore, B. A., Im, M. S., Kucerova, Z., Smith, P. A., Lane, C., & Carleton, H. A. (2023). Rapid identification of enteric bacteria from whole genome sequences using average nucleotide identity metrics. Frontiers in Microbiology, 14, 1225207. https://doi.org/10.3389/fmicb.2023.1225207
dc.relation.referencesLiu, H., Zhang, Y., Wang, Y., Xie, X., & Shi, Q. (2021). The Connection between Czc and Cad Systems Involved in Cadmium Resistance in Pseudomonas putida. International Journal of Molecular Sciences, 22(18), 9697. https://doi.org/10.3390/ijms22189697
dc.relation.referencesLopes, A. T. S., Albuquerque, G. R., & Maciel, B. M. (2018). Multiplex real‐time polymerase chain reaction for simultaneous quantification of Salmonella spp., Escherichia coli, and Staphylococcus aureus in different food matrices: Advantages and disadvantages. BioMed research international, 2018(1), 6104015. https://doi.org/10.1155/2018/6104015
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
dc.relation.referencesMadeira, F., Madhusoodanan, N., Lee, J., Eusebi, A., Niewielska, A., Tivey, A. R. N., Lopez, R., & Butcher, S. (2024). The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Research, 52(W1), W521–W525. https://doi.org/10.1093/nar/gkae241
dc.relation.referencesMakui, H., Roig, E., Cole, S. T., Helmann, J. D., Gros, P., & Cellier, M. F. M. (2000). Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Molecular Microbiology, 35(5), 1065–1078. https://doi.org/10.1046/j.1365-2958.2000.01774.x
dc.relation.referencesManara, A., DalCorso, G., Baliardini, C., Farinati, S., Cecconi, D., & Furini, A. (2012). Pseudomonas putida Response to Cadmium: Changes in Membrane and Cytosolic Proteomes. Journal of Proteome Research, 11(8), 4169–4179. https://doi.org/10.1021/pr300281f
dc.relation.referencesMalone, J. H., & Oliver, B. (2011). Microarrays, deep sequencing and the true measure of the transcriptome. BMC biology, 9(1), 34. https://doi.org/10.1186/1741-7007-9-34
dc.relation.referencesMar, S. S., & Okazaki, M. (2012). Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchemical Journal, 104, 17–21. https://doi.org/10.1016/j.microc.2012.03.020
dc.relation.referencesMartin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), Article 1. https://doi.org/10.14806/ej.17.1.200
dc.relation.referencesMaslowska, K. H., Makiela‐Dzbenska, K., & Fijalkowska, I. J. (2019). The SOS system: A complex and tightly regulated response to DNA damage. Environmental and Molecular Mutagenesis, 60(4), 368–384. https://doi.org/10.1002/em.22267
dc.relation.referencesMathivanan, K., Chandirika, J. U., Vinothkanna, A., Yin, H., Liu, X., & Meng, D. (2021). Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment – A review. Ecotoxicology and Environmental Safety, 226, 112863. https://doi.org/10.1016/j.ecoenv.2021.112863
dc.relation.referencesMathivanan, K., & Rajaram, R. (2014). Isolation and characterisation of cadmium-resistant bacteria from an industrially polluted coastal ecosystem on the southeast coast of India. Chemistry and Ecology, 30(7), 622–635. https://doi.org/10.1080/02757540.2014.889125
dc.relation.referencesMaynaud, G., Brunel, B., Yashiro, E., Mergeay, M., Cleyet-Marel, J.-C., & Le Quéré, A. (2014). CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a PIB-2-type ATPase involved in cadmium and zinc resistance. Research in Microbiology, 165(3), 175–189. https://doi.org/10.1016/j.resmic.2014.02.001
dc.relation.referencesMitrić, A., & Castellano, I. (2023). Targeting gamma-glutamyl transpeptidase: A pleiotropic enzyme involved in glutathione metabolism and in the control of redox homeostasis. Free Radical Biology and Medicine, 208, 672–683. https://doi.org/10.1016/j.freeradbiomed.2023.09.020
dc.relation.referencesMontanini, B., Blaudez, D., Jeandroz, S., Sanders, D., & Chalot, M. (2007). Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: Improved signature and prediction of substrate specificity. BMC Genomics, 8(1), 107. https://doi.org/10.1186/1471-2164-8-107
dc.relation.referencesMonsieurs, P., Moors, H., Van Houdt, R., Janssen, P.J., Janssen, A., Coninx, I., Mergeay, M. and Leys, N. (2011). Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals, 24(6), 1133-1151. https://doi.org/10.1007/s10534-011-9473-y
dc.relation.referencesMunkelt, D., Grass, G., & Nies, D. H. (2004). The Chromosomally Encoded Cation Diffusion Facilitator Proteins DmeF and FieF from Wautersia metallidurans CH34 Are Transporters of Broad Metal Specificity. Journal of Bacteriology, 186(23), 8036–8043. https://doi.org/10.1128/JB.186.23.8036-8043.2004
dc.relation.referencesNéron, B., Littner, E., Haudiquet, M., Perrin, A., Cury, J., & Rocha, E. P. C. (2022). IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Microorganisms, 10(4), Article 4. https://doi.org/10.3390/microorganisms10040700
dc.relation.referencesNies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 313–339. https://doi.org/10.1016/S0168-6445(03)00048-2
dc.relation.referencesNnaji, N. D., Anyanwu, C. U., Miri, T., & Onyeaka, H. (2024a). Mechanisms of Heavy Metal Tolerance in Bacteria: A Review. Sustainability, 16(24), 11124. https://doi.org/10.3390/su162411124
dc.relation.referencesNnaji, N. D., Anyanwu, C. U., Miri, T., & Onyeaka, H. (2024b). Mechanisms of Heavy Metal Tolerance in Bacteria: A Review. Sustainability, 16(24), Article 24. https://doi.org/10.3390/su162411124
dc.relation.referencesNoll, M., & Lutsenko, S. (2000). Expression of ZntA, a Zinc-Transporting P1-Type ATPase, is Specifically Regulated by Zinc and Cadmium. IUBMB Life, 49(4), 297–302. https://doi.org/10.1080/15216540050033168
dc.relation.referencesOger, C., Mahillon, J., & Petit, F. (2003). Distribution and diversity of a cadmium resistance (cadA) determinant and occurrence of IS257 insertion sequences in Staphylococcal bacteria isolated from a contaminated estuary (Seine, France). FEMS Microbiology Ecology, 43(2), 173–183. https://doi.org/10.1111/j.1574-6941.2003.tb01056.x
dc.relation.referencesOkkeri, J., & Haltia, T. (2006). The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1757(11), 1485–1495. https://doi.org/10.1016/j.bbabio.2006.06.008
dc.relation.referencesOuyang, P., Wang, Y., Peng, X., Shi, X., Chen, X., Li, Z., & Ma, Y. (2024). Harnessing plant-beneficial bacterial encapsulation: A sustainable strategy for facilitating cadmium bioaccumulation in Medicago sativa. Journal of Hazardous Materials, 476, 135232. https://doi.org/10.1016/j.jhazmat.2024.135232
dc.relation.referencesOwczarzy, R., Tataurov, A. V., Wu, Y., Manthey, J. A., McQuisten, K. A., Almabrazi, H. G., Pedersen, K. F., Lin, Y., Garretson, J., McEntaggart, N. O., Sailor, C. A., Dawson, R. B., & Peek, A. S. (2008). IDT SciTools: A suite for analysis and design of nucleic acid oligomers. Nucleic Acids Research, 36(Web Server issue), W163–W169. https://doi.org/10.1093/nar/gkn198
dc.relation.referencesPagnanelli, F., Cruz Viggi, C., & Toro, L. (2010). Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: Biosorption versus bioprecipitation. Bioresource Technology, 101(9), 2981–2987. https://doi.org/10.1016/j.biortech.2009.12.009
dc.relation.referencesPal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., & Larsson, D. G. J. (2014). BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 42(D1), D737–D743. https://doi.org/10.1093/nar/gkt1252
dc.relation.referencesParks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043–1055. https://doi.org/10.1101/gr.186072.114
dc.relation.referencesPeana, M., Pelucelli, A., Chasapis, C. T., Perlepes, S. P., Bekiari, V., Medici, S., & Zoroddu, M. A. (2022). Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules, 13(1), 36. https://doi.org/10.3390/biom13010036
dc.relation.referencesPermina, E. A., Kazakov, A. E., Kalinina, O. V., & Gelfand, M. S. (2006). Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC microbiology, 6(1), 49. https://doi.org/10.1186/1471-2180-6-49
dc.relation.referencesPetrarca, P., Ammendola, S., Pasquali, P., & Battistoni, A. (2010). The Zur-Regulated ZinT Protein Is an Auxiliary Component of the High-Affinity ZnuABC Zinc Transporter That Facilitates Metal Recruitment during Severe Zinc Shortage. Journal of Bacteriology, 192(6), 1553–1564. https://doi.org/10.1128/jb.01310-09
dc.relation.referencesPfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9), e45.
dc.relation.referencesPriyadarshanee, M., & Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104686. https://doi.org/10.1016/j.jece.2020.104686
dc.relation.referencesPrjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics, 70(1), e102. https://doi.org/10.1002/cpbi.102
dc.relation.referencesQin, W., Zhao, J., Yu, X., Liu, X., Chu, X., Tian, J., & Wu, N. (2019). Improving Cadmium Resistance in Escherichia coli Through Continuous Genome Evolution. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00278
dc.relation.referencesR Core Team. (2025). R: A Language and Environment for Statistical Computing (Versión 4.4.3) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/
dc.relation.referencesRamakrishnan, S., Muruganraj, T., Majumdar, R., & Sugumar, S. (2023). Study of Cadmium Metal Resistance in Stenotrophomonas maltophilia. Indian Journal of Microbiology, 63(1), 91–99. https://doi.org/10.1007/s12088-023-01066-9
dc.relation.referencesRambaut, A. (2025). Rambaut/figtree [Java]. https://github.com/rambaut/figtree (Obra original publicada en 2015)
dc.relation.referencesRaghavan, D., Patinharekkara, S. C., Elampilay, S. T., Payatatti, V. K. I., Charles, S., Veeraraghavan, S., ... & Anitha, S. J. (2023). New insights into bacterial Zn homeostasis and molecular architecture of the metal resistome in soil polluted with nano zinc oxide. Ecotoxicology and Environmental Safety, 263, 115222. https://doi.org/10.1016/j.ecoenv.2023.115222
dc.relation.referencesRapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D., & Betel, D. (2013). Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology, 14(9), 3158. https://doi.org/10.1186/gb-2013-14-9-r95
dc.relation.referencesRehan, M., Alhusays, A., Serag, A. M., Boubakri, H., Pujic, P., & Normand, P. (2022). The cadCA and cadB/DX operons are possibly induced in cadmium resistance mechanism by Frankia alni ACN14a. Electronic Journal of Biotechnology, 60, 86–96. https://doi.org/10.1016/j.ejbt.2022.09.006
dc.relation.referencesRensing, C., & Mitra, B. (2007). Zinc, Cadmium, and Lead Resistance and Homeostasis. En D. H. Nies & S. Silver (Eds.), Molecular Microbiology of Heavy Metals (Vol. 6, pp. 321–341). Springer Berlin Heidelberg. https://doi.org/10.1007/7171_2006_083
dc.relation.referencesRensing, C., Mitra, B., & Rosen, B. P. (1997). The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14326–14331.
dc.relation.referencesRiesco, R., & Trujillo, M. E. (2024). Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 74(3), 006300. https://doi.org/10.1099/ijsem.0.006300
dc.relation.referencesRocha, D. J. P. G., Castro, T. L. P., Aguiar, E. R. G. R., & Pacheco, L. G. C. (2020). Gene Expression Analysis in Bacteria by RT-qPCR. Methods in Molecular Biology (Clifton, N.J.), 2065, 119–137. https://doi.org/10.1007/978-1-4939-9833-3_10
dc.relation.referencesRocha, E. R., Tzianabos, A. O., & Smith, C. J. (2007). Thioredoxin Reductase Is Essential for Thiol/Disulfide Redox Control and Oxidative Stress Survival of the Anaerobe Bacteroides fragilis. Journal of Bacteriology, 189(22), 8015–8023. https://doi.org/10.1128/jb.00714-07
dc.relation.referencesSaathoff, M., Kosol, S., Semmler, T., Tedin, K., Dimos, N., Kupke, J., Seidel, M., Ghazisaeedi, F., Jonske, M. C., Wolf, S. A., Kuropka, B., Czyszczoń, W., Ghilarov, D., Grätz, S., Heddle, J. G., Loll, B., Süssmuth, R. D., & Fulde, M. (2023). Gene amplifications cause high-level resistance against albicidin in gram-negative bacteria. PLOS Biology, 21(8), e3002186. https://doi.org/10.1371/journal.pbio.3002186
dc.relation.referencesSatarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2010). Cadmium, Environmental Exposure, and Health Outcomes. Environmental Health Perspectives, 118(2), 182–190. https://doi.org/10.1289/ehp.0901234
dc.relation.referencesSchoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020, baaa062. https://doi.org/10.1093/database/baaa062
dc.relation.referencesSeemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153
dc.relation.referencesSeemann, T. (2025). Tseemann/abricate [Perl]. https://github.com/tseemann/abricate (Obra original publicada en 2014)
dc.relation.referencesSerment-Guerrero, J., Dominguez-Monroy, V., Davila-Becerril, J., Morales-Avila, E., & Fuentes-Lorenzo, J. L. (2020). Induction of the SOS response of Escherichia coli in repair-defective strains by several genotoxic agents. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 854–855, 503196. https://doi.org/10.1016/j.mrgentox.2020.503196
dc.relation.referencesShamim, S., Rehman, A., & Qazi, M. H. (2014). Cadmium-Resistance Mechanism in the Bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2. Archives of Environmental Contamination and Toxicology, 67(2), 149–157. https://doi.org/10.1007/s00244-014-0009-7
dc.relation.referencesShapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples)†. Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
dc.relation.referencesSharma, M., Sharma, S., Paavan, Gupta, M., Goyal, S., Talukder, D., Akhtar, Mohd. S., Kumar, R., Umar, A., Alkhanjaf, A. A. M., & Baskoutas, S. (2023). Mechanisms of microbial resistance against cadmium – a review. Journal of Environmental Health Science and Engineering, 22(1), 13–30. https://doi.org/10.1007/s40201-023-00887-6
dc.relation.referencesShi, J.-J., Shi, Y., Feng, Y.-L., Li, Q., Chen, W.-Q., Zhang, W.-J., & Li, H.-Q. (2019). Anthropogenic cadmium cycles and emissions in Mainland China 1990–2015. Journal of Cleaner Production, 230, 1256–1265. https://doi.org/10.1016/j.jclepro.2019.05.166
dc.relation.referencesShi, Z., Zhang, Z., Yuan, M., Wang, S., Yang, M., Yao, Q., Ba, W., Zhao, J., & Xie, B. (2020). Characterization of a high cadmium accumulating soil bacterium, Cupriavidus sp. WS2. Chemosphere, 247, 125834. https://doi.org/10.1016/j.chemosphere.2020.125834
dc.relation.referencesSmith, C. J., & Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS microbiology ecology, 67(1), 6-20. https://doi.org/10.1111/j.1574-6941.2008.00629.x
dc.relation.referencesStafford, S. J., Humphreys, D. P., & Lund, P. A. (1999). Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+. FEMS Microbiology Letters, 174(1), 179–184. https://doi.org/10.1111/j.1574-6968.1999.tb13566.x
dc.relation.referencesStamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
dc.relation.referencesStojnev, T., Harichová, J., Ferianc, P., & Nyström, T. (2007). Function of a Novel Cadmium-Induced YodA Protein in Escherichia coli. Current Microbiology, 55(2), 99–104. https://doi.org/10.1007/s00284-006-0516-5
dc.relation.referencesSu, C., Xiang, Z., Liu, Y., Zhao, X., Sun, Y., Li, Z., Li, L., Chang, F., Chen, T., Wen, X., Zhou, Y., & Zhao, F. (2016). Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. Nov. YD25T that simultaneously produces prodigiosin and serrawettin W2. BMC Genomics, 17(1), 865. https://doi.org/10.1186/s12864-016-3171-7
dc.relation.referencesSubramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102
dc.relation.referencesSun, H., Li, Y., Gao, S., Shi, G., Cao, L., Li, X., Li, T., Li, T., Wang, M., Li, E., Liu, J., Ni, H., Chen, Y., & Liu, Y. (2025). Identification of key chromium resistance genes in Cellulomonas using transcriptomics. Ecotoxicology and Environmental Safety, 291, 117843. https://doi.org/10.1016/j.ecoenv.2025.117843
dc.relation.referencesTaboada, B., Estrada, K., Ciria, R., & Merino, E. (2018). Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics, 34(23), 4118–4120. https://doi.org/10.1093/bioinformatics/bty496
dc.relation.referencesTamayo-Figueroa, D. P., Castillo, E., & Brandão, P. F. B. (2019). Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World Journal of Microbiology and Biotechnology, 35(4), 58. https://doi.org/10.1007/s11274-019-2626-9
dc.relation.referencesTchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment. En A. Luch (Ed.), Molecular, Clinical and Environmental Toxicology (Vol. 101, pp. 133–164). Springer Basel. https://doi.org/10.1007/978-3-7643-8340-4_6
dc.relation.referencesThai, T. D., Lim, W., & Na, D. (2023). Synthetic bacteria for the detection and bioremediation of heavy metals. Frontiers in Bioengineering and Biotechnology, 11, 1178680. https://doi.org/10.3389/fbioe.2023.1178680
dc.relation.referencesThornton, B., & Basu, C. (2011). Real-time PCR (qPCR) primer design using free online software. Biochemistry and Molecular Biology Education, 39(2), 145–154. https://doi.org/10.1002/bmb.20461
dc.relation.referencesTrajanovska, S., Britz, M. L., & Bhave, M. (1997). Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site. Biodegradation, 8(2), 113-124. https://doi.org/10.1023/A:1008212614677
dc.relation.referencesTseng, A. S., Roberts, M. C., Weissman, S. J., & Rabinowitz, P. M. (2023). Study of heavy metal resistance genes in Escherichia coli isolates from a marine ecosystem with a history of environmental pollution (arsenic, cadmium, copper, and mercury). PLOS ONE, 18(11), e0294565. https://doi.org/10.1371/journal.pone.0294565
dc.relation.referencesTukey, J. W. (1949). Comparing Individual Means in the Analysis of Variance. Biometrics, 5(2), 99–114. https://doi.org/10.2307/3001913
dc.relation.referencesVan Dongen, S. (2008). Graph Clustering Via a Discrete Uncoupling Process. SIAM Journal on Matrix Analysis and Applications, 30(1), 121–141. https://doi.org/10.1137/040608635
dc.relation.referencesVigonsky, E., Fish, I., Livnat-Levanon, N., Ovcharenko, E., Ben-Tal, N., & Lewinson, O. (2015). Metal binding spectrum and model structure of the Bacillus anthracis virulence determinant MntA. Metallomics, 7(10), 1407–1419. https://doi.org/10.1039/c5mt00100e
dc.relation.referencesWang, P., & Wang, F. (2023). A proposed metric set for evaluation of genome assembly quality. Trends in Genetics, 39(3), 175–186. https://doi.org/10.1016/j.tig.2022.10.005
dc.relation.referencesWen, S., Yin, F., Liu, C., Dang, Y., Sun, D., & Li, P. (2023). Integrated analysis of transcriptomic and protein-protein interaction data reveals cadmium stress response in Geobacter sulfurreducens. Environmental Research, 218, 115063. https://doi.org/10.1016/j.envres.2022.115063
dc.relation.referencesWilliams, D. J., Grimont, P. A. D., Cazares, A., Grimont, F., Ageron, E., Pettigrew, K. A., Cazares, D., Njamkepo, E., Weill, F.-X., Heinz, E., Holden, M. T. G., Thomson, N. R., & Coulthurst, S. J. (2022). The genus Serratia revisited by genomics. Nature Communications, 13(1), 5195. https://doi.org/10.1038/s41467-022-32929-2
dc.relation.referencesWilliams, D. J., Grimont, P. A. D., Cazares, A., Grimont, F., Ageron, E., Pettigrew, K. A., Cazares, D., Njamkepo, E., Weill, F.-X., Heinz, E., Holden, M. T. G., Thomson, N. R., & Coulthurst, S. J. (2022). The genus Serratia revisited by genomics. Nature Communications, 13(1), 5195. https://doi.org/10.1038/s41467-022-32929-2
dc.relation.referencesWu, B., Hou, S., Peng, D., Wang, Y., Wang, C., Xu, F., & Xu, H. (2018). Response of soil micro-ecology to different levels of cadmium in alkaline soil. Ecotoxicology and Environmental Safety, 166, 116–122. https://doi.org/10.1016/j.ecoenv.2018.09.076
dc.relation.referencesWu, P., Rane, N. R., Xing, C., Patil, S. M., Roh, H.-S., Jeon, B.-H., & Li, X. (2022). Integrative chemical and omics analyses reveal copper biosorption and tolerance mechanisms of Bacillus cereus strain T6. Journal of Hazardous Materials, 435, 129002. https://doi.org/10.1016/j.jhazmat.2022.129002
dc.relation.referencesWu, X., Yalowich, J. C., & Hasinoff, B. B. (2011). Cadmium is a catalytic inhibitor of DNA topoisomerase II. Journal of Inorganic Biochemistry, 105(6), 833–838. https://doi.org/10.1016/j.jinorgbio.2011.02.007
dc.relation.referencesXia, J., Luo, Y., Chen, M., Liu, Y., Wang, Z., Deng, S., Xu, J., Han, Y., Sun, J., Jiang, L., Song, H., & Cheng, C. (2023). Characterization of a DsbA family protein reveals its crucial role in oxidative stress tolerance of Listeria monocytogenes. Microbiology Spectrum, 11(6), e03060-23. https://doi.org/10.1128/spectrum.03060-23
dc.relation.referencesXie, Z., & Tang, H. (2017). ISEScan: Automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics, 33(21), 3340–3347. https://doi.org/10.1093/bioinformatics/btx433
dc.relation.referencesXu, F., & Wang, D. (2023). Bioremediation potential and primary mechanism of Sporosarcina pasteurii for cadmium (Cd) and lead (Pb) in contaminated tailings. Chemistry and Ecology, 39(5), 484–505. https://doi.org/10.1080/02757540.2023.2202659
dc.relation.referencesXu, Y., Shu, G., Liu, Z., Wang, Z., Lei, H., Zheng, Q., Kang, H. and Chen, L. (2024). Preliminary study on screening and genetic characterization of lactic acid bacteria strains with cadmium, lead, and chromium removal potentials. Fermentation, 10(1), 41. https://doi.org/10.3390/fermentation10010041
dc.relation.referencesYang, S.-H., Chen, S.-T., Liang, C., Shi, Y.-H., & Chen, Q.-S. (2022). Effects of Cadmium Exposure on Leydig Cells and Blood Vessels in Mouse Testis. International Journal of Environmental Research and Public Health, 19(4), 2416. https://doi.org/10.3390/ijerph19042416
dc.relation.referencesYe, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(1), 134. https://doi.org/10.1186/1471-2105-13-134
dc.relation.referencesYu, G. (2024). Thirteen years of clusterProfiler. The Innovation, 5(6). https://doi.org/10.1016/j.xinn.2024.100722
dc.relation.referencesYun, J. J., Heisler, L. E., Hwang, I. I. L., Wilkins, O., Lau, S. K., Hyrcza, M., Jayabalasingham, B., Jin, J., McLaurin, J., Tsao, M.-S., & Der, S. D. (2006). Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nucleic Acids Research, 34(12), e85. https://doi.org/10.1093/nar/gkl400
dc.relation.referencesZhang, B., Pan, N., Fan, X., Lu, L., & Wang, X. (2021). Real-time effects of Cd( ii ) on the cellular membrane permeability. The Analyst, 146(19), 5973–5979. https://doi.org/10.1039/D1AN00827G
dc.relation.referencesZhang, Y., Chen, S., Hao, X., Su, J.Q., Xue, X., Yan, Y., Zhu, Y.G. and Ye, J. (2016). Transcriptomic analysis reveals adaptive responses of an Enterobacteriaceae strain LSJC7 to arsenic exposure. Frontiers in microbiology, 7, 636. https://doi.org/10.3389/fmicb.2016.00636
dc.relation.referencesZhao, D., Wang, P., & Zhao, F.-J. (2023). Dietary cadmium exposure, risks to human health and mitigation strategies. Critical Reviews in Environmental Science and Technology, 53(8), 939–963. https://doi.org/10.1080/10643389.2022.2099192
dc.relation.referencesZheng, C., Zhai, Y., Qiu, J., Wang, M., Xu, Z., Chen, X., Zhou, X., & Jiao, X. (2024). ZntA maintains zinc and cadmium homeostasis and promotes oxidative stress resistance and virulence in Vibrio parahaemolyticus. Gut Microbes, 16(1), 2327377. https://doi.org/10.1080/19490976.2024.2327377
dc.relation.referencesZhu, J., Huang, Q., Peng, X., Zhou, X., Gao, S., Li, Y., Luo, X., Zhao, Y., Rensing, C., Su, J., & Cai, P. (2022). MRG chip: a high-throughput qPCR-based tool for assessment of the heavy metal (loid) resistome. Environmental Science & Technology, 56(15), 10656-10667. https://doi.org/10.1021/acs.est.2c00488
dc.relation.referencesZhu, G., Tan, W., Xie, L., Ma, C., Chen, X., Zhang, S., & Wei, Y. (2022). Mechanisms underlying the inhibitory effects of Cd2+ on prodigiosin synthesis in Serratia marcescens KMR-3. Journal of Inorganic Biochemistry, 236, 111978. https://doi.org/10.1016/j.jinorgbio.2022.111978
dc.relation.referencesZhu, G., Xie, L., Tan, W., Ma, C., & Wei, Y. (2022). Cd2+ tolerance and removal mechanisms of Serratia marcescens KMR-3. Journal of Biotechnology, 359, 65–74. https://doi.org/10.1016/j.jbiotec.2022.09.019
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.agrovocBacteria gram negativaspa
dc.subject.agrovocGram-negative bacteriaeng
dc.subject.agrovocGenoma bacterianospa
dc.subject.agrovocbacterial genomeseng
dc.subject.agrovocTranscripción génicaspa
dc.subject.agrovocgene transcriptioneng
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algasspa
dc.subject.proposalCadmiospa
dc.subject.proposalGenesspa
dc.subject.proposalDNAspa
dc.subject.proposalRNAspa
dc.subject.proposalSecuenciaciónspa
dc.subject.proposalSerratialat
dc.subject.proposalCadmiumeng
dc.subject.proposalDNAeng
dc.subject.proposalRNAeng
dc.subject.proposalSequencingeng
dc.subject.proposalResistanceeng
dc.subject.proposalGeneseng
dc.subject.proposalResistenciaspa
dc.subject.proposalSurfactantfacienslat
dc.titleEstudio genómico y transcriptómico de la resistencia a cadmio(II) de Serratia sp. 5bspa
dc.title.translatedGenomic and transcriptomic study of cadmium(II) resistance in Serratia sp. 5beng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Estudio_genomico_y_transcriptomico_de_la_resistencia_a_cadmio(II)_de_Serratia_sp_5b.pdf
Tamaño:
2.32 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: