Evaluación de una relación instrumental-sensorial (especificación) de firmeza como herramienta en el proceso de diseño de un ponqué con adición de fibra insoluble de cascarilla de cacao

dc.contributor.advisorPalomeque Forero, Liliam Alexandraspa
dc.contributor.authorVillamizar Villamizar, Jorge Eduardospa
dc.date.accessioned2021-01-27T20:16:55Zspa
dc.date.available2021-01-27T20:16:55Zspa
dc.date.issued2020-08-18spa
dc.description.abstractSelection, training and monitoring sensory panelists is a time and resources high-spent activity, for that reason, sometimes is unsustainable or not very accessible. Considering this, it’s proposed to find a firmness specification based on the relation between the TPA instrumental data with consumer sensory perception and apply it in the design process of a cake with cocoa husk insoluble fiber with the purpose to predict the consumer acceptance of texture. The initial phase was determined the specification using commercial products, supposed those products had a rigorous design process and be high liked for cake consumers, then applied the specification to prototype formula of cake with fiber. I found the instrumental firmness should be statistically equal to an average of 8,14 and standard deviation of 1,58 to have more probability to be accept by consumers, related to texture. Applying the specification to the design cake, I found the firmness probably is not high accept by the consumers but it is close to the specification and with a little adjust of the formula, the texture of cake will be accept.spa
dc.description.abstractLa selección, entrenamiento y mantenimiento de un panel sensorial implican la inversión de tiempo y recursos que lo hacen, a veces, poco sostenible o accesible. Considerando esto, se propuso determinar una especificación de firmeza a partir de la relación de datos instrumentales de TPA (Texture Profile Analysis) con la percepción sensorial de consumidores, y aplicarla en el proceso de diseño de un ponqué con adición de fibra insoluble de cascarilla de cacao, con el fin de predecir la aceptación de la textura de una formulación por parte del consumidor. La etapa inicial del proceso fue establecer la especificación usando productos comerciales, bajo el supuesto de que son productos que han tenido un proceso riguroso de diseño y son gratamente aceptados por los consumidores de ponqués, y posteriormente se aplicó la especificación para evaluar una fórmula prototipo del ponqué con adición de fibra. Se encontró que la firmeza instrumental debe ser estadísticamente igual a un promedio de 8,14 y una desviación estándar de 1,58 para tener una mayor probabilidad de aceptación de la textura por parte de los consumidores. Y al aplicar la especificación a una fórmula prototipo del ponqué en fase de diseño se encontró que no se encuentra dentro de esta, pero tampoco se encuentra muy lejos de cumplirla por lo que probablemente con un pequeño ajuste sea un producto aceptado en términos de textura.spa
dc.description.additionalLínea de Investigación: Análisis sensorialspa
dc.description.degreelevelMaestríaspa
dc.format.extent73spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78948
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.references(2020). Obtenido de Stable Micro Systems: https://www.stablemicrosystems.com/TextureAnalysisApplications.html#foodspa
dc.relation.referencesAbdi, H., & Williams, L. (2010). Principal component analysis. WIREs computational statistics, 433-459.spa
dc.relation.referencesASTM. (2018). E1958-18 Standard Guide for Claim Substantiationspa
dc.relation.referencesBeh, E., & Lombardo, R. (2014). Correspondence analysis. Theory, practice and new strategies. Wileyspa
dc.relation.referencesBender, A., Speroni, C., Salvador, P., Loureiro, B., Lovatto, N., Goulart, F., . . . Penna, N. (2017). Grape Pomace Skins and the Effects of Its Inclusion in the Technological Properties of Muffins. Journal of culinary science and technology, 143-157spa
dc.relation.referencesBourne, M. (2002). Food Texture and Viscosity: Concept and Measurement . Academic Pressspa
dc.relation.referencesBrandt, M., Skinner, E., & Coleman, J. (1963). Texture Profile Method. Journal of Food Science, 404-409spa
dc.relation.referencesCadena, R., Caimi, D., Jaunarena, I., Lorenzo, I., Vidal, L., Ares, G., . . . Gimenez, A. (2014). Comparison of rapid sensory characterization methodologies for the development of functional yogurts. Food Research International, 446-455spa
dc.relation.referencesChambers, E., & Baker, M. (1996). Sensory Testing Methods. ASTMspa
dc.relation.referencesChauvin, M., Ross, C., Pitts, M., Kupferman, E., & Swanson, B. (2010). Relationship between instrumental and sensory determination of apple and pear texture. Journal of Food Quality, 181-198spa
dc.relation.referencesChen, J. (2007). Surface Texture of Foods: Perception and Characterization. Food Science and Nutrition, 583-598spa
dc.relation.referencesChen, L., & Opara, U. (2013). Texture measurement approaches in fresh and processed foods A review. Food Research International, 823-835spa
dc.relation.referencesDa Silva, M., Paranhos, E., Da Silva, B., Requiao, E., Da Cruz, C., Cavalcante, L., . . . Lopes, W. (2019). Screening of Mangifera indica L. functional content using PCA and neural networks (ANN). Food Chemistry, 115-123spa
dc.relation.referencesDi Monaco, R., Cavella, S., & Masi, P. (2008). Predicting sensory cohesiveness, hardness and springiness of solid foods from instrumental measurements. Journal of Texture Studies, 129-149spa
dc.relation.referencesDuizer, L. J., James, B., Corrigan, V., Feng, J., Hedderley, D. & Harker, F. (2011). Use of a panel knowledgeable in material science to study sensory perception of texture. Journal of Texture Studies, 309-318.spa
dc.relation.referencesEarle, M., Earle, R., & Anderson, A. (2001). Food product development. CRC Press.spa
dc.relation.referencesFriedman, H., Whitney, J., & Szczesniak, A. (1963). The Texturometer: a new instrument for objective texture measurement. Journal of Food Science, 390-396spa
dc.relation.referencesGilbert, L., Savary, G., Grisel, M., & Picard, C. (2013). Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemometrics and Intelligent Laboratory Systems, 21-31spa
dc.relation.referencesGranato, D., Santos, J., Eschner, G., Ferreira, B., & Maggio, R. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 83-90spa
dc.relation.referencesGreenacre, M. (2008). La práctica del análisis de correspondencia. Fundación BBVAspa
dc.relation.referencesHernandez, E. (2005). Evaluación sensorial. Bogotá: Universidad Nacional Abierta y A Distanciaspa
dc.relation.referencesHootman, R. (1992). Manual on descriptive analysis testing for sensory evauation. ASTMspa
dc.relation.referencesHusson, F., Le Dien, S., & Pagès, J. (2001). Which value can be granted to sensory profiles given by consumers? Methodology and results. Food Quality and Preference, 291-296spa
dc.relation.referencesIcontec. (1998). NTC 4489 Perfil de Textura. Colombia: Icontecspa
dc.relation.referencesKilcast, D. (2013). Instrumental assessment of food sensory quality. Woodhead Publishingspa
dc.relation.referencesKim, E., Corrigan, V., Wilson, A., Waters, I., Hedderley, D., & Morgenstern, M. (2012). Fundamental fracture properties associated with sensory hardness of brittle solid foods. Journal of Texture Studies, 49-62spa
dc.relation.referencesLawless, H., & Heymann, H. (2010). Sensory Evaluation of Food: Principles and practices. USA: Springerspa
dc.relation.referencesLiu, Y., Cao, M., & Liu, G. (2019). Texture analyzers for food quality evaluation. En X. Wang, & J. Zhong, Evaluation technologies for food quality. Woodhead Publishingspa
dc.relation.referencesLiu, T., Lu, D., & Yu, X. (2019). Development of a compound intensity measure using partial least-squares regression and its statistical evaluation based on probabilistic seismic demand analysis. Soil Dynamics and Earthquake Engineeringspa
dc.relation.referencesMacFie, H. (2007). Consumer-led Food Product Development. Woodheadspa
dc.relation.referencesMartens, H., & Martens, M. (2001). Multivariate analysis of quality. Wiley and Sonsspa
dc.relation.referencesMartens, H., & Martens, M. (2007). The use of partial least squares methods in new food product development. En H. MacFie, Consumer-led Food Product Development (págs. 492-523). Woodheadspa
dc.relation.referencesMatos, P., Di Luccio, M., Wüst, A., Zavariz, M., & De Francisco, A. (2016). Relationship between instrumental and sensory texture profile of bread loaves made with whole-wheat flour fat replacer. Journal of Texture Studies, 14-23spa
dc.relation.referencesMeilgaard, M., Civille, G., & Carr, T. (2007). Sensory evaluation techniques. CRC Pressspa
dc.relation.referencesMenjivar, J. F. (1989). Dough rheology and baked product texture. Boston: Springerspa
dc.relation.referencesMoskowitz, H. (1996). Experts vs consumers: A comparison. Journal of Sensory Studies, 19-37spa
dc.relation.referencesMoussaoui, K., & Varela, P. (2010). Exploring consumer product profiling techniques and their linkage to a quantitative descriptive analysis. Food Quality and Preference, 1088-1099spa
dc.relation.referencesNishinari, K. (2020). Textural Characteristics of World Foods. Wileyspa
dc.relation.referencesO’Sullivan, M. (2011). Food and Beverage Shelf-Life and Stability. Cambridge: Woodhead Publishing Limitedspa
dc.relation.referencesO'Sullivan, M. (2016). A handbook for sensory and consumer-driven new product development. Woodhead Publisherspa
dc.relation.referencesRodrigue, N., Guillet, M., Fortin, J., & Martin, J.-F. (2011). Comparing information obtained from ranking and descriptive tests of four sweet corn products. Food Quality and Preference, 47-54spa
dc.relation.referencesSancho, J., Bota, E., & De Castro, J. (2002). Introducción al análisis sensorial de los alimentos . Alfomegaspa
dc.relation.referencesSchaefer, E. (1979). ASTM Manual on consumer sensory evaluation. ASTMspa
dc.relation.referencesSheskin, D. (2004). Handbook of Parametric and Nonparametric statistical procedures . CRC Pressspa
dc.relation.referencesStokes, J., Boehm, M., & Baier, S. (2013). Oral processing, texture and mouthfeel: From rheology to tribology and beyond. Current Opinion in Colloid & Interface Science, 349-359spa
dc.relation.referencesStone, H., Bleibaum, R., & Thomas, H. (2012). Sensory Evaluation Practices. Academic Pressspa
dc.relation.referencesStraus, J., & Skogestad, S. (2019). A new termination criterion for sampling for surrogate model generation using partial least squares regression. Computers & Chemical Engineering, 75-85spa
dc.relation.referencesStruck, S., Gundel, L., Zahn, S., & Rohm, H. (2016). Fiber enriched reduced sugar muffins made from iso-viscous batters. LWT - Food Science and Technology, 32-38spa
dc.relation.referencesSzczesniak, A. (1969). The Whys and Whats of objective texture measurements. Canadian Institute Food Technology , 150-156spa
dc.relation.referencesTexture Technologies. (02 de 2019). Obtenido de http://texturetechnologies.com/resources/texture-profile-analysisspa
dc.relation.referencesThe Universal Grip Company. (21 de Septiembre de 2019). Obtenido de https://www.universalgripco.com/fracturabilityspa
dc.relation.referencesTomic, O., Berget, I., & Naes, T. (2015). A comparison of generalized procrustes analysis and multiple factor analysis for projective mapping data. Food Quality and Preference, 34-46spa
dc.relation.referencesTorricella, R., Zamora, E., & Pulido, H. (2007). Evaluación sensorial aplicada a la investigación, desarrollo, y control de la calidad en la industria alimentaria. Editorial Universitariaspa
dc.relation.referencesUniversity of California - Davis. (2009). Class notes "Applied Sensory Science and Consumer Testing" Lesson 1spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalCorrelationeng
dc.subject.proposalCorrelaciónspa
dc.subject.proposalSensoryeng
dc.subject.proposalSensorialspa
dc.subject.proposalInstrumentaleng
dc.subject.proposalInstrumentalspa
dc.subject.proposalTexturaspa
dc.subject.proposalTextureeng
dc.subject.proposalCakeeng
dc.subject.proposalPonquéspa
dc.titleEvaluación de una relación instrumental-sensorial (especificación) de firmeza como herramienta en el proceso de diseño de un ponqué con adición de fibra insoluble de cascarilla de cacaospa
dc.title.alternativeEvaluation of an instrumental-sensory relation of firmness in the design process of a cakespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado repositorio UN.pdf
Tamaño:
1.11 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: