Producción y caracterización de recubrimientos de Cu y algunas de sus aleaciones depositados por medio de sputtering con magnetrón desbalanceado

dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.advisorDuarte Moller, José Alberto
dc.contributor.authorOtálora Barrero, Diana María
dc.date.accessioned2021-04-09T16:26:01Z
dc.date.available2021-04-09T16:26:01Z
dc.date.issued2020-08-15
dc.descriptionilustraciones, graficas, fotografías, tablasspa
dc.description.abstractEn esta investigación se desarrollaron tres tipos de películas delgadas: Cu – Al, Cu – Al – N y multicapas de Cu – Al – N, donde cada capa se depositó bajo las mismas condiciones. Las películas se depositaron por medio de co-sputtering o pulverización catódica con magnetrón desbalanceado sobre sustratos de bronce fosforado. Se utilizaron dos blancos: el de cobre se conectó a una fuente RF y el de aluminio a una fuente DC pulsada. En este último, se varió la potencia en cuatro valores distintos con el objetivo de modificar el contenido de aluminio en los recubrimientos. Para el crecimiento de las películas Cu – Al – N y multicapas, se utilizó una atmósfera de Ar – N2, mientras que para las de Cu – Al se usó solo argón. Se evaluó la influencia de las condiciones de crecimiento, es decir, potencia de la fuente DC, atmósfera de trabajo y método de crecimiento (monocapa o multicapa) sobre la morfología, estructura, composición química, propiedades mecánicas, eléctricas, electroquímicas y tribológicas de los recubrimientos. La morfología y composición elemental se analizaron por medio de EDS – SEM, la estructura con difracción de rayos X y TEM, y XPS para identificar los enlaces entre elementos. Las propiedades tribológicas se evaluaron utilizando el método de ball on disk, las propiedades mecánicas con nanoindentación y con la técnica de las cuatro puntas o de Van der Pauw se analizó la resistividad de los recubrimientos. Finalmente, para la caracterización electroquímica se usaron las técnicas de polarización potenciodinámica y EIS. Las películas mostraron una morfología nodular, con un tamaño de grano que varía con la potencia de la fuente DC pulsada y el método de crecimiento. Las multicapas fueron las de menor tamaño de grano. La mayor dureza se presentó en las películas delgadas Cu – Al, al igual que la menor resistividad eléctrica, seguidas de los recubrimientos tipos Cu – Al – N. El mejor comportamiento electroquímico lo presentaron en general las multicapas, pero esto depende de las condiciones de deposición.spa
dc.description.abstractIn this research work three types of thin films were developed: Cu – Al, Cu – Al – N and multilayers of Cu – Al – N, in which each layer was deposited under the same conditions. The films were deposited by means of unbalanced magnetron cosputtering on substrates of phosphor bronze. Two targets were used: the coppertarget was connected to a RF source and the aluminum one to a DC pulsed source. In the last one, the power in four different values was varied in order to vary the content of aluminum in the coating. In the Cu – Al - N thin films and multilayers, an atmosphere of Ar – N2 was used, while for the Cu – Al ones, it only used argon. The influence of growing conditions was assessed, that is to say, DC power source, atmosphere of work and growing method (monolayer or multilayer), about the morphology, structure, chemical composition, mechanical properties, electrical, electrochemical and tribological of the coatings. The morphology and elemental composition was analyzed by means of EDS – SEM, the structure with X ray diffraction and TEM, and XPS in order to identify the bonds between elements. The tribological properties were assessed using the ball on disk method, the mechanical properties by nanoindentation, and the resistivity of coatings was analyzed with the four point probe or Van der Pauw technique. Finally, for the electrochemical characterization, the potentiodynamic polarization and EIS techniques were used. The morphology of the coatings turned out to be nodular, so that the size of the grain varies with the DC pulsed power source and the growing method. The multilayers had the smaller grain size. The highest hardness was presented in the Cu – Al thin films, as well as the lowest electrical resistivity, followed by the Cu – Al – N coatings. The best electrochemical behavior were presented by the multilayers in general, but this depends on the deposition conditions.eng
dc.description.degreelevelDoctoradospa
dc.format.extent1 recurso en linea (204 paginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional UNspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79394
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.references[1] H. W. Richarson, Handbook of copper compounds and Applications, CRC Press, 1997.spa
dc.relation.references[2] J.-M. Welter, Copper; Proceedings of the International Conference Copper 06 - Better Properties for Innovative Products, WILEY-VCH Verlag GmbH & Co. KGaA, 2006.spa
dc.relation.references[3] G. S. Brady, H. R. Clauser y J. A. Vaccari, Materials Handbook, McGraw - Hill.spa
dc.relation.references[4] R. Francis, The Corrosion of Copper and Its Alloys A Practical Guide for Engineers, NACE Internationa, 2010.spa
dc.relation.references[5] C. Powell y P. Webster, Copper Alloys for Marine Environments, Copper Development Association, 2012.spa
dc.relation.references[6] J. R. Davis, ASM Specialty Handbook. Copper and Copper Alloys, ASM International, 2001.spa
dc.relation.references[7] A. G. Massey, N. R. Thompson, B. F. G. Johnson y R. Davis, The Chemistry of COPPER, SILVER AND GOLD, PERGAMON PRESS , 1973.spa
dc.relation.references[8] D. Féron, Corrosion behaviour and protection of copper and aluminium alloys in seawater, Woodhead Publishing Limited and CRC Press LLC, 2007.spa
dc.relation.references[9] B. Giroire, M. A. Ahmad, G. Aubert, L. Teule-Gay, D. Michau, J. Watkins, C. Aymonier y A. Poulon-Quintin, «A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques,» Thin Solid Films, vol. 643, pp. 53 - 59, 2017.spa
dc.relation.references[10] T.-C. Hu, Y.-T. Wang, F.-C. Hsu, P.-K. Sun y M.-T. Lin, «Cyclic creep and fatigue testing of nanocrystalline copper thin films,» Surface & Coatings Technology, nº 215, p. 393–399, 2013.spa
dc.relation.references[11] E. M. Pinto, A. S. Ramos, M. T. Vieira y C. M. Brett, «A corrosion study of nanocrystalline copper thin,» Corrosion Science, nº 52, p. 3891–3895, 2010.spa
dc.relation.references[12] P. Gordo, M. Duarte Naia, A. Ramos, M. Vieira y Z. Kajcsos, «Positron studies on nanocrystalline copper thin films doped with nitrogen,» de ICPA15 – 15th International Conference on Positron Annihilation, Kolkata, India, 2009.spa
dc.relation.references[13] Y.-S. Lee, S. Ha, J.-H. Park y S.-B. Lee, «Structure-dependent mechanical behavior of copper thin films,» Materials Characterization, nº 128, p. 68–74, 2017.spa
dc.relation.references[14] J. Schiøtz y K. W. Jacobsen, «A Maximum in the Strength of Nanocrystalline Copper,» Science, vol. 301, pp. 1357-1359, 2003.spa
dc.relation.references[15] S. Zhang, M. Sakane, T. Nagasawa y K. Kobayashi, «Mechanical Properties Of Copper Thin Films Used In Electronic Devices,» Procedia Engineering, vol. 10, pp. 1497 - 1502, 2011.spa
dc.relation.references[16] H. Ma, Y. Zou, A. S. Sologubenko y R. Spolenak, «Copper thin films by ion beam assisted deposition: Strong texture, superior thermal stability and enhanced hardness,» Acta Materialia, vol. 98, pp. 17 - 28, 2015.spa
dc.relation.references[17] M. Rashidian Vaziri y F. Hajiesmaeilbaigi, «Optical and structural properties of copper nanostructured thin films prepared by pulsed laser deposition,» Optik, nº 126, p. 1348–1351, 2015.spa
dc.relation.references[18] P. Zhang, J. Y. Zhang, G. L. J. Li, K. Wu, Y. Q. Wang y J. Sun, «Combined effect of texture and nanotwins on mechanical properties of the nanostructured Cu and Cu–Al films prepared by magnetron sputtering,» Journal of Materials Science, vol. 50, p. 1901–1907, (2015).spa
dc.relation.references[19] A. Cavaleiro y J. T. M. D. Hosson, Nanostructured Coatings, Springer, 2006.spa
dc.relation.references[20] O. ANDEROGLU, NANOSCALE GROWTH TWINS IN SPUTTERED COPPER FILMS, Texas A&M University, Thesis PhD, 2010.spa
dc.relation.references[21] M. Ohring, The Materials Science of Thin Films, Academic Press, 1992.spa
dc.relation.references[22] S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan y K. Jeyadheepan, «Facile fabrication of spinel structured n-type CuAl2O4 thin film with nanograss like morphology by sputtering technique,» Applied Surface Science, nº 483, p. 601–615, 2019.spa
dc.relation.references[23] K. Yang, S. W. P. Hu, L. Ren, M. Yang, W. Zhou, F. Yu, Y. Wang, M. Meng, G. Wang y S. Li, «Room-temperature ferromagnetic CuO thin film grown by plasma-assisted molecular beam epitaxy,» Materials Letters, nº 166, p. 23–25, 2016.spa
dc.relation.references[24] A. Amri, K. Hasan, H. Taha, M. M. Rahman, S. Herman, Andrizal, E. Awaltanova, I. wantono, H. Kabir, C.-Y. Yin, K. Ibrahim, S. Bahri, N. Frimayanti, M. A. Hossain y Z.-T. Jiang, «Surface structural features and optical analysis of nanostructured Cu-oxide thin film coatings coated via the sol-gel dip coating method,» Ceramics International, vol. 45, p. 12888–12894, 2019.spa
dc.relation.references[25] M. Crivello, C. Pérez, E. Herrero, G. Ghione, S. Casuscelli y E. Rodríguez-Castellón, «Characterization of Al–Cu and Al–Cu–Mg mixed oxides and their catalytic activity in dehydrogenation of 2-octanol,» Catalysis Today, p. 107–108, 2005.spa
dc.relation.references[26] A. Pashusky, «XPS and AES studies of Cu-Al(lO0) alloy surfaces,» Vacuum, vol. 44, nº 10, pp. 997 - 999, 1993.spa
dc.relation.references[27] Y. Liu, P. Bailey, T. C. Q. Noakes, G. E. Thompson, P. Skeldon y M. R. Alexander, «Chemical environment of copper at the surface of a CuAl2 model alloy: XPS, MEIS and TEM analyses,» SURFACE AND INTERFACE ANALYSIS, vol. 36, p. 339–346, 2004.spa
dc.relation.references[28] C. Cascio, «sciencing,» Leaf Group Media, 2020. [En línea]. Available: https://sciencing.com/effects-oxidation-copper-8613905.html. [Último acceso: 2020].spa
dc.relation.references[29] E. Cano, M. F. López, J. Simancas y J. M. Bastidas, «X-Ray Photoelectron Spectroscopy Study on the Chemical Composition of Copper Tarnish Products Formed at Low Humidities,» Journal of The Electrochemical Society, vol. 148, pp. E26-E30, 2001.spa
dc.relation.references[30] J. Tao, Surface composition and corrosion behavior of an Al-Cu alloy, Paris: Université Pierre et Marie Curie - Paris VI, 2016.spa
dc.relation.references[31] D. Knorr y D. Tracy, «A review of microstructure in vapor deposited copper thin films,» Materials Chemistry and Physics, vol. 41, pp. 206 - 216, 1995.spa
dc.relation.references[32] F. Al-Kharafi y W. Badawy, «Inhibition of Corrosion of Al 6061,Aluminum, and an Aluminum-Copper Alloy in Chloride-Free Aqueous Media:Part 2 — Behavior in Basic Solutions,» CORROSION, vol. 54, nº 5, pp. 377 - 385, 1998.spa
dc.relation.references[33] T. F. S. Inc., «Thermo Scientific XPS,» 2020. [En línea]. Available: https://xpssimplified.com/elements/copper.php. [Último acceso: 02 2020].spa
dc.relation.references[34] ASTM international, «Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing,» United States, 2015.spa
dc.relation.references[35] J. Schiøtz, F. D. D. Tolla y K. W. Jacobsen, «Softening of nanocrystalline metals at very small grain sizes,» Nature, vol. 391, p. 561–563, 1998.spa
dc.relation.references[36] D. Read, Y. Cheng y R. Geiss, «Morphology, microstructure, and mechanical properties of a copper electrodeposit,» Microelectronic Engineering, vol. 75, pp. 63 - 70, 2004.spa
dc.relation.references[37] H. HUANG y F. SPAEPEN, «TENSILE TESTING OF FREE-STANDING Cu, Ag AND Al THIN FILMS AND Ag/Cu MULTILAYERS,» Acta Materialia, vol. 48, p. 3261–3269, 2000.spa
dc.relation.references[38] S. Zhang, Nanostructured Thin Films and Coatings, CRC Press Taylor & Francis Group, 2010.spa
dc.relation.references[39] J. Musil, F. Kunc, H. Zeman y H. Polakova, «Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings,» Surface and Coatings Technology, nº 154, p. 304–313, 2002.spa
dc.relation.references[40] P. L. Menezes, S. P. Ingole, M. Nosonovsky, S. V. Kailas y M. R. Lovell, Tribology for Scientists and Engineers. From Basics to Advanced Concepts, Springer, 2013.spa
dc.relation.references[41] B. Bhushan, MODERN TRIBOLOGY HANDBOOK Volume One Principles of Tribology., CRC Press LLC, 2001.spa
dc.relation.references[42] D. H. Mesa Grajales, O. F. Higuera Cobos y E. A. Ariza Echeverri, Fundamentos de Tribología, Editorial UTP, 2017.spa
dc.relation.references[43] M. Winnicki, A. Małachowska, A. Baszczuk, M. Rutkowska-Gorczyca, D. Kukla, M. Lachowicz y A. Ambroziak, «Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying,» Surface & Coatings Technology, vol. 318, pp. 90 - 98, 2017.spa
dc.relation.references[44] M. Afifeh, S. J. Hosseinipour y R. Jamaati, «Nanostructured copper matrix composite with extraordinary strength and high electrical conductivity produced by asymmetric cryorolling,» Materials Science & Engineering A, vol. 763, p. 138146, 2019.spa
dc.relation.references[45] K. MECH, R. KOWALIK y P. ŻABIŃSKI, «Cu THIN FILMS DEPOSITED BY DC MAGNETRON SPUTTERING FOR CONTACT SURFACES ON ELECTRONIC COMPONENTS,» Archives of metallurgy and materials, vol. 56, nº 4, pp. 903 - 908, 2011.spa
dc.relation.references[46] S. Mukherjee, L. Joshi y P. Barhai, «A comparative study of nanocrystalline Cu film deposited using anodic vacuum arc and dc magnetron sputtering,» Surface & Coatings Technology, vol. 205, p. 4582–4595, 2011.spa
dc.relation.references[47] K.-Y. Chan, T.-Y. Tou y B.-S. Teo, «Effects of substrate temperature on electrical and structural properties of copper thin films,» Microelectronics Journal, vol. 37, pp. 930 - 937, 2006.spa
dc.relation.references[48] N.-I. Cho y D. I. Park, «Microstructures of copper thin films prepared by chemical vapor deposition,» Thin Solid Films, pp. 465 - 469, 1997.spa
dc.relation.references[49] N.-I. Cho, H. G. Nam, Y. Choi y J.-S. Yang, «Chemical vapor deposition of copper thin films for multi-level interconnections,» Microelectronic Engineering, vol. 66, pp. 415 - 421, 2003.spa
dc.relation.references[50] Y. Gotoh, H. Yoshii, T. Amioka, K. Kameyama, H. Tsuji y J. Ishikawa, «Structures and properties of copper thin films prepared by ion beam assisted deposition,» ThinSolidFilms, vol. 288, pp. 300 - 308, 1996.spa
dc.relation.references[51] J. Shi, S. Lau, Z. Sun, X. Shi, B. Tay y H. Tan, «Structural and electrical properties of copper thin films prepared by filtered cathodic vacuum arc technique,» Surface and Coatings Technology, vol. 138, pp. 250 - 255, 2001.spa
dc.relation.references[52] S. Singh, H. Singh, S. Chaudhary y R. Kumar Buddu, «Effect of substrate surface roughness on properties of cold-sprayed copper coatings on SS316L steel,» Surface & Coatings Technology, nº 389, 2020.spa
dc.relation.references[53] S. Aksöz, Y. Ocak, N. Maraslı, E. Çadirli, H. Kaya y U. Böyük, «Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al–Cu alloys,» Experimental Thermal and Fluid Science, vol. 34, p. 1507–1516, 2010.spa
dc.relation.references[54] S. Yin, W. Zhu, Y. Deng, Y. Peng, S. Shen y Y. Tu, «Enhanced electrical conductivity and reliability for flexible copper thin-film electrode by introducing aluminum buffer layer,» Materials and Design, vol. 116, pp. 524 - 530, 2017.spa
dc.relation.references[55] G. Choi, H. S. Kim, K. Lee, S. H. Park, J. Cha, I. Chung y W. B. Lee, «Study on thermal conductivity and electrical resistivity of Al-Cu alloys obtained by Boltzmann transport equation and first-principles simulation: Semi-empirical approach,» Journal of Alloys and Compounds, vol. 727, pp. 1237 - 1242, 2017.spa
dc.relation.references[56] J. ZHANG, B.-h. WANG, G.-h. CHEN, R.-m. WANG, C.-h. MIAO, Z.-x. ZHENG y W.-m. TANG, «Formation and growth of Cu−Al IMCs and their effect on electrical property of electroplated Cu/Al laminar composites,» Trans. Nonferrous Met. Soc. China, vol. 26, p. 3283−3291, 2016.spa
dc.relation.references[57] C. Lia, Y. Xie, D. Zhou, W. Zeng, J. Wang, J. Liang y D. Zhang, «A novel way for fabricating ultrafine grained Cu-4.5 vol% Al2O3 composite with high strength and electrical conductivity,» Materials Characterization, vol. 155, 2019.spa
dc.relation.references[58] J. M. Albella Martín, Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones, Madrid: Consejo Superior de Investigaciones Científicas, 2003.spa
dc.relation.references[59] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, 1978.spa
dc.relation.references[60] K. Chopra, Thin Film Phenomena, McGraw-Hill, 1969.spa
dc.relation.references[61] P. R. Roberge, Corrosion Engineering Principles and Practice, McGraw-Hill, 2008.spa
dc.relation.references[62] T. Chang, G. Herting, S. Goidanich, J. S. Amaya, M. Arenas, N. L. Bozec, C. L. Y. Jin y I. O. Wallinder, «The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture,» Corrosion Science, vol. 149, p. 54–67, 2019.spa
dc.relation.references[63] H. N. Krogstad y R. Johnsen, «Corrosion properties of nickel-aluminium bronze in natural seawater—Effect of galvanic coupling to UNS S31603,» Corrosion Science, vol. 121, p. 43–56, 2017.spa
dc.relation.references[64] D. Wang, D. Yang, D. Zhang, K. Li, L. Gao y T. Lin, «Electrochemical and DFT studies of quinoline derivatives on corrosion inhibition of AA5052 aluminium alloy in NaCl solution,» Applied Surface Science, vol. 357, p. 2176–2183, 2015.spa
dc.relation.references[65] Z. Zhang, F. Liu, E.-H. Han y L. Xu, «Mechanical and corrosion properties in 3.5% NaCl solution of cold sprayed Al-based coatings,» Surface & Coatings Technology, vol. 385, 2020.spa
dc.relation.references[66] Y. Zhang, X. Yuan, H. Huang, X. Zuo y Y. Cheng, «Influence of chloride ion concentration and temperature on the corrosion of CueAl composite plates in salt fog,» Journal of Alloys and Compounds, vol. 821, p. 153249, 2020.spa
dc.relation.references[67] C.-P. Liu, S.-J. Chang, Y.-F. Liu y J. Su, «Corrosion-induced degradation and its mechanism study of Cu-Al interface for Cu-wire bonding under HAST conditions,» Journal of Alloys and Compounds, vol. 825, p. 154046, 2020.spa
dc.relation.references[68] N. V. Dale, M. D. Mann, H. Salehfar, A. M. Dhirde y T. Han, «ac Impedance Study of a Proton Exchange Membrane Fuel Cell Stack Under Various Loading Conditions,» Journal of Fuel Cell Science and Technology, vol. 7, 2010.spa
dc.relation.references[69] J. Zhang, J. Wu y H. Zhang, PEM Fuel Cell Testing and Diagnosis, Elsevier, 2013.spa
dc.relation.references[70] D. Bessarabov, H. Wang, H. Li y N. Zhao, PEM Electrolysis for Hydrogen Production: Principles and Applications, CRCPress, 2015.spa
dc.relation.references[71] G. W. WALTER, «A review of impedance plot methods used for corrosion performance analysis of painted metals,» Corrosion Science, vol. 26, nº 9, pp. 681-703, 1986.spa
dc.relation.references[72] C. Liu, Q. Bi, A. Leyland y A. Matthews, «An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling,» Corrosion Science, vol. 45, p. 1243–1256, 2003.spa
dc.relation.references[73] C. Liu, Q. Bi, A. Leyland y A. Matthews, «An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrosion behaviour,» Corrosion Science, vol. 45, p. 1257–1273, 2003.spa
dc.relation.references[74] M. E. ORAZEM y B. TRIBOLLET, ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY, JOHN WILEY & SONS, INC., 2008.spa
dc.relation.references[75] A. J. Bard, G. Inzelt y F. Scholz, Electrochemical Dictionary, Springer, 2008.spa
dc.relation.references[76] E. Barsoukov y J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, John Wiley & Sons, Inc., 2005.spa
dc.relation.references[77] R. G. Kelly, J. R. Scully, D. W. Shoesmith y R. G. Buchheit, Electrochemical Techniques in Corrosion science and Engieering, Marcel Dekker, Inc., 2002.spa
dc.relation.references[78] R. Padash, G. S. Sajadi, A. H. Jafari, E. Jamalizadeh y A. S. Rad, «Corrosion control of aluminum in the solutions of NaCl, HCl and NaOH using 2,6-dimethylpyridine inhibitor: Experimental and DFT insights,» Materials Chemistry and Physics, vol. 244, p. 122681, 2020.spa
dc.relation.references[79] X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang y C. Cao, «Corrosion behaviour of copper under chloride-containing thin electrolyte layer,» Corrosion Science, vol. 53, p. 3289–3298, 2011.spa
dc.relation.references[80] A. E. Bolzán y L. M. Gassa, «Comparative EIS study of the adsorption and electro-oxidation of thiourea and tetramethylthiourea on gold electrodes,» Journal of Applied Electrochemistry, 2014.spa
dc.relation.references[81] H. Brandstätter, I. Hanzu y M. Wilkening, «Myth and Reality about the Origin of Inductive Loops in Impedance Spectra of Lithium-Ion Electrodes — A Critical Experimental Approach,» Electrochimica Acta, nº 207, pp. 218 - 223, 2016.spa
dc.relation.references[82] D. Prabhu y P. Rao, «Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media,» Arabian Journal of Chemistry, vol. 10, p. S2234–S2244, 2017.spa
dc.relation.references[83] A. M. Dhirde, N. V. Dale, H. Salehfar, M. D. Mann y T.-H. Han, «Equivalent Electric Circuit Modeling and Performance Analysis of a PEM Fuel Cell Stack Using Impedance Spectroscopy,» IEEE TRANSACTIONS ON ENERGY CONVERSION, vol. 25, nº 3, 2010.spa
dc.relation.references[84] I. Pivac, B. Simi y F. Barbir, «Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells,» Journal of Power Sources, vol. 365, pp. 240 - 248, 2017.spa
dc.relation.references[85] I. Pivac y F. Barbir, «Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review,» Journal of Power Sources, vol. 326, pp. 112 - 119, 2016.spa
dc.relation.references[86] D. Klotz, «Negative capacitance or inductive loop? – A general assessment of a common low frequency impedance feature,» Electrochemistry Communications, vol. 98, pp. 58 - 62, 2019.spa
dc.relation.references[87] S. Taibl, G. Fafilek y J. Fleig, «Impedance spectra of Fe-doped SrTiO3 thin films upon bias voltage: inductive loops as a trace of ion motion,» Nanoscale, vol. 8, p. 13954–13966, 2016.spa
dc.relation.references[88] Y. HOSHI, Y. ITO, T. KATO, I. SHITANDA y M. ITAGAKI, «Interpretation of Negative Resistance Observed in Electrochemical Impedance during Copper Electrodeposition Containing Thiourea,» vol. 83, pp. 142 - 149, 2015.spa
dc.relation.references[89] J. Bisquert, G. Garcia-Belmonte, Á. Pitarch y H. J. Bolink, «Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes,» Chemical Physics Letters, vol. 422, p. 184–191, 2006.spa
dc.relation.references[90] J. Gregori, J. J. García-Jareño, M. Keddam y F. Vicente, «A kinetic interpretation of a negative time constant in impedance equivalent circuits for the dissolution/passive transition,» Electrochimica Acta, vol. 52, p. 7903–7909, 2007.spa
dc.relation.references[91] F. A. Cotton y G. Wilkinson, Advanced Inorganic Chemistry. A comprehensive text., John Wiley & Sons., 1980. Cuarta edición.spa
dc.relation.references[92] J. Piersona, D. Wiederkehr y A. Billard, «Reactive magnetron sputtering of copper, silver, and gold,» Thin Solid Films, vol. 478, pp. 196 - 205, 2005.spa
dc.relation.references[93] G. Yue, P. Yan y J. Wang, «Study on the Preparation and Properties of Copper Nitride Thin Films,» Journal of Crystal Growth, vol. 274, pp. 464 - 468, 2005.spa
dc.relation.references[94] Z. Liu, W. Wang, T. Wang, S. Chao y S. Zheng, «Thermal Stability of Copper Nitride Films Prepared by RF Magnetron Sputtering,» Thin Solid Films, vol. 325, 1998.spa
dc.relation.references[95] X. Yuan, P. Yan y J. Liu, «Preparation and characterization of copper nitride films at various nitrogen contents by reactive radio-frequency magnetron sputtering,» Materials Letters, vol. 60, pp. 1809 - 1812, 2006.spa
dc.relation.references[96] R. Calinas, M. T. Vieira y P. J. Ferreira, «The Effect of Nitrogen on the Formation of Nanocrystalline Copper Thin Films,» Journal of Nanoscience and Nanotechnology, vol. 9, pp. 3921 - 3926, 2009.spa
dc.relation.references[97] G. Soto, J. Díaz y W. d. l. Cruz, «Copper nitride films produced by reactive pulsed laser deposition,» Materials Letters, vol. 57, p. 4130–4133, 2003.spa
dc.relation.references[98] C. Gallardo-Vega y W. d. l. Cruz, «Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition,» Applied Surface Science, nº 252, p. 8001–8004, 2006.spa
dc.relation.references[99] A. Fallberg, M. Ottosson y J.-O. Carlsson, «CVD of Copper(I) Nitride,» Chemical Vapor Deposition, vol. 15, pp. 300 - 305, 2009.spa
dc.relation.references[100] W. Chen, H. Zhang, B. Yang, B. Li y Z. Li, «Characterization of Cu3N/CuO thin films derived from annealed Cu3N for,» Thin Solid Films, nº 672, pp. 157 - 164, 2019.spa
dc.relation.references[101] X. Fan, ZhiguoWu, H. Li, B. Geng, C. Li y P. Yan, «Morphology and thermal stability of Ti-doped copper nitride films,» JOURNAL OF PHYSICS D: APPLIED PHYSICS, nº 40, p. 3430–3435, 2007.spa
dc.relation.references[102] L. Gao, A. Ji, W. Zhang y Z. Cao, «Insertion of Zn atoms into Cu3N lattice: Structural distortion and modification of electronic properties,» Journal of Crystal Growth, nº 321, pp. 157 - 161, 2011.spa
dc.relation.references[103] X. Fan, Z. Li, A. Meng, C. Li, Z. Wu y P. Yan, «Improving the Thermal Stability of Cu3N Films by Addition of Mn,» Journal of Materials Science & Technology, vol. 31, pp. 822 - 827, 2015.spa
dc.relation.references[104] S. Alex, R. K. P, K. Chattopadhyay, H. C. Barshilia y B. Basu., «Thermally evaporated Cu-Al thin film coated flexible glass mirror for concentrated,» Materials Chemistry and Physics, vol. 232, pp. 221-228, 2019.spa
dc.relation.references[105] L. Rosenberger, R. Baird, E. McCullen, G. Auner y G. Shrevea, «XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy,» Surface and interface analysis, vol. 40, p. 1254–1261, 2008.spa
dc.relation.references[106] J. Mo y M. Zhu, «Tribological oxidation behaviour of PVD hard coatings,» Tribology International, vol. 42, p. 1758–1764, 2009.spa
dc.relation.references[107] P. Motamedi y K. Cadien, «XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition,» Applied Surface Science, nº 315, p. 104–109, 2014.spa
dc.relation.references[108] N. Sharma, S. Ilango, S. Dash y A. K. Tyagi, «XPS studies on AlN thin films grown by ion beam sputtering in reactive assistance of N+/N2+ ions: Substrate temperature induced compositional variations,» Thin Solid Films, vol. 636, pp. 626-633, 2017.spa
dc.relation.references[109] A. Cavaleiro y C. Louro, «Nanocrystalline structure and hardness of thin films,» Vacuum, vol. 64, pp. 211 - 218, 2002.spa
dc.relation.references[110] M. J. y V. J., «Magnetron sputtering of alloy-based films and its specifity,» Czechoslovak Journal of Physics, vol. 48, nº 10, 1998.spa
dc.relation.references[111] T. Vieira, J. Castanho y CristinaLouro, «Chapter 16 - Hard Coatings Based on Metal Nitrides, Metal Carbides and Nanocomposite Materials: PVD Process and Properties,» de Materials Surface Processing by Directed Energy Techniques, European Materials Research Society Series, 2006, pp. 537 - 572.spa
dc.relation.references[112] S. Zherebtsov, I. P. Semenova, H. Garbacz y M. Motyka, «Chapter 6 - Advanced mechanical properties,» de Nanocrystalline Titanium, Micro and Nano Technologies, 2019, pp. 103-121.spa
dc.relation.references[113] A. Jiang, M. Qi y J. Xiao, «Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review,» Journal of Materials Science & Technology, vol. 34, p. 1467–1473, 2018.spa
dc.relation.references[114] L. Xing’ao, L. Zuli, Z. Anyou, Y. Zuobin, Y. Jianping y Y. Kailun, «Properties of Al-doped Copper Nitride Films Prepared by Reactive Magnetron Sputtering,» Journal of Wuhan University of Technology-Mater, pp. 446 - 449, 2007.spa
dc.relation.references[115] N. Yamada, J. Yoshikawa, Y. Katsuda y a. H. Sakai, «Electrical Resistivity Control of Hot-pressed Aluminum Nitride Ceramics,» Key Engineering Materials, vol. 403, pp. 49 - 52, 2009.spa
dc.relation.references[116] G. Zyła y J. Fal, «Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride–ethylene glycol (AlN–EG) nanofluids,» Thermochimica Acta, vol. 637, pp. 11 - 16, 2016.spa
dc.relation.references[117] Z. Shi, S. Chen, J. Wang, G. Qiao y Z. Jin, «Mechanical and electrical properties of carbon nanofibers reinforced aluminum nitride composites prepared by plasma activated sintering,» Journal of the European Ceramic Society, vol. 31, p. 2137–2143, 2011.spa
dc.relation.references[118] T. Kusunose y T. Sekino, «Improvement in fracture strength in electrically conductive AlN ceramics with high thermal conductivity,» Ceramics International, vol. 42, p. 13183–13189, 2016.spa
dc.relation.references[119] L.-H. Hu, Y.-K. Wang y S.-C. Wang, «Aluminum nitride surface functionalized by polymer derived silicon oxycarbonitride ceramic for anti-hydrolysis,» Journal of Alloys and Compounds, vol. 772, pp. 828 - 833, 2019.spa
dc.relation.references[120] Z. Liu, G. Huang y M. Gu, «Effect of hydrolysis of AlN particulates on the corrosion behavior of Al/AlNp composites,» Materials Chemistry and Physics, vol. 99, pp. 75 - 79, 2006.spa
dc.relation.references[121] Z. Liu, W. Wang, T. Wang, S. Chao y S. Zheng, «Thermal stability of copper nitride films prepared by rf magnetron sputtering,» Thin Solid Films, nº 325, p. 55–59, 1998.spa
dc.relation.references[122] S.-C. Chen, S.-Y. Huang, S. Sakalley, A. Paliwal, Y.-H. Chen, M.-H. Liao, H. Sun y S. Biring, «Optoelectronic properties of Cu3N thin films deposited by reactive magnetron sputtering and its diode rectification characteristics,» Journal of Alloys and Compounds, nº 789, pp. 428 - 434, 2019.spa
dc.relation.references[123] National Institute of Standards and Technology (NIST), «NIST X-ray Photoelectron Spectroscopy Database,» 6 Junio 2000. [En línea]. Available: https://srdata.nist.gov/xps/Default.aspx. [Último acceso: 2019].spa
dc.relation.references[124] T. Vieira, J. Castanho y C. Louro, «Hard Coatings Based on Metal Nitrides, Metal Carbides and Nanocomposite Materials: PVD Process and Properties,» de Materials Surface Processing by Directed Energy Techniques, Elservier, 2006, pp. 537 - 572.spa
dc.relation.references[125] https://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=O, Nist.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc720 - Arquitectura::721 - Materiales arquitectónicos y elementos estructuralesspa
dc.subject.proposalPeliculas delgadasspa
dc.subject.proposalRecubrimientos nanoestructuradosspa
dc.subject.proposalMagnetron sputteringspa
dc.subject.proposalCorrosiónspa
dc.subject.proposalNanodurezaspa
dc.subject.proposalResistencia al desgastespa
dc.subject.proposalSputteringeng
dc.subject.proposalNanostructured coatingseng
dc.subject.proposalMultilayerseng
dc.subject.proposalCorrosioneng
dc.subject.proposalWeareng
dc.subject.unescoEstructura molecular
dc.subject.unescoCorrosión
dc.titleProducción y caracterización de recubrimientos de Cu y algunas de sus aleaciones depositados por medio de sputtering con magnetrón desbalanceadospa
dc.title.translatedProduction and characterization of coatings of cu and some of its alloys deposited by means of sputtering with unbalanced magnetron
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DOCUMENTO TESIS FINAL DIANA MARIA OTALORA BARRERO.pdf
Tamaño:
7.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y tecnología de los Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: