Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído

dc.contributor.advisorQuevedo, Rodolfo
dc.contributor.authorGonzalez Oñate, Andres Felipe
dc.contributor.orcidQuevedo, Rodolfo [0000-0003-3023-9576]spa
dc.contributor.researchgroupQuimica macrociclicaspa
dc.date.accessioned2023-11-27T14:48:40Z
dc.date.available2023-11-27T14:48:40Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn esta tesis se estudió la reacción de 4-hidroxibencilaminas con formaldehído. Primero se estableció que la aminación reductiva indirecta es útil para la obtención de 4-hidroxibencilaminas-N-bencilsustituidas a partir de 4-hidroxibencilamina y aldehídos aromáticos. Cuando la aminación reductiva se realizó a partir de aldehídos aromáticos e hidróxido de amonio, se obtienen mezclas equimolares de las respectivas bencilaminas primarias y secundarias. Esto debido a que la reacción entre aldehídos aromáticos e hidróxido de amonio no forma la imina correspondiente si no las respectivas hidrobenzamidas, compuestos producidos por la condensación de tres moléculas de aldehído con dos de amoniaco. Por medio de cálculos computacionales se demostró que la 4-hidroxibencilamina y las 4-hidroxibencilaminas-N-bencilsustituidas forman arreglos cíclicos. Estos están estabilizados por puentes de hidrogeno e interacciones dispersivas tanto en fase gaseosa como en solución. El análisis espectroscópico del producto de reacción de 4-hidroxibencilamina y 4-hidroxibencilaminas-N-bencilsustituidas con formaldehído permitió concluir que: El producto de la reacción de 4-hidroxibencilamina con formaldehido es mayoritariamente el azaciclofano respectivo. Para el caso de las 4-hidroxibencilaminas-N-bencilsustituidas, el producto es una mezcla entre el dímero lineal y el azaciclofano respectivo. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis, the reaction of 4-hydroxybenzylamines with formaldehyde was studied. At first, it was established that indirect reductive amination is useful for obtaining N-benzyl-substituted 4-hydroxybenzylamines from 4-hydroxybenzylamine and aromatic aldehydes. When the reductive amination is carried out using aromatic aldehydes and ammonium hydroxide, equimolar mixtures of the respective primary and secondary benzylamines are obtained. This is because the reaction between aromatic aldehydes and ammonium hydroxide does not form the corresponding imine, but rather the respective hydrobenzamides, compounds produced by the condensation of three molecules of aldehyde with two molecules of ammonia. Through computational calculations, it was demonstrated that 4-hydroxybenzylamine and N-benzyl-substituted 4-hydroxybenzylamines form cyclic arrangements. These arrangements are stabilized by hydrogen bonds and dispersive interactions, both in the gas phase and in solution. The spectroscopic analysis of the reaction product of 4-hydroxybenzylamine and N-benzyl-substituted 4-hydroxybenzylamines with formaldehyde allowed to conclude that: The product of the reaction of 4-hydroxybenzylamine with formaldehyde is predominantly the respective azacyclophane. In the case of N-benzyl-substituted 4-hydroxybenzylamines, the product is a mixture between the linear dimer and the respective azacyclophane.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Químicaspa
dc.description.researchareaSintesis organicaspa
dc.format.extentxxii, 138 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84967
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesQuevedo, R.; A. Sierra, C. Intrinsic Fluorescence of 1,3-Benzoxazinephanes. Heterocycles 2011, 83 (12), 2769.spa
dc.relation.referencesMaldonado, M.; Martinez-Manjarres, A.; Quevedo, R. 1H-NMR Spectroscopic and Thermogravimetric Research Regarding Alcohol Interaction with Tyrosine-Derived Azacyclophanes. Res. chem. intermed. 2018, 44 (7), 4073–4082.spa
dc.relation.referencesQuevedo, R.; Pabón, L.; Quevedo-Acosta, Y. 1H NMR Study on the Intermolecular Interactions of Macrocyclic and Single α-Amino Acids. J. Mol. Struct. 2013, 1041, 68–72.spa
dc.relation.referencesQuevedo, R. 1H- and 13C-NMR Spectroscopic Study of Intermolecular Interactions between Tyrosine-Derived Azacyclophanes and Aromatic Rings. J. Mol. Struct. 2020, 1207 (127777), 127777.spa
dc.relation.referencesNuñez-Dallos, N.; Reyes, A.; Quevedo, R. Hydrogen Bond Assisted Synthesis of Azacyclophanes from L-Tyrosine Derivatives. Tetrahedron Lett. 2012, 53 (5), 530–534.spa
dc.relation.referencesAlabugin, I. Hydrogen Bonding in Organic Synthesis Hydrogen Bonding in Organic Synthesis. Edited by Petri M. Pihko (University of Jyväskylä, Finland). WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim. 2009. Xii + 384 Pp. $215. ISBN 978-3-527-31895-7. J. Am. Chem. Soc. 2010, 132 (19), 6863–6864.spa
dc.relation.referencesPark, Y.; Chang, S. Asymmetric Formation of γ-Lactams via C–H Amidation Enabled by Chiral Hydrogen-Bond-Donor Catalysts. Nat. Catal. 2019, 2 (3), 219–227.spa
dc.relation.referencesSeo, M.-S.; Jang, S.; Jung, H.; Kim, H. Hydrogen-Bonding-Assisted Ketimine Formation of Benzophenone Derivatives. J. Org. Chem. 2018, 83 (23), 14300–14306.spa
dc.relation.referencesTuckerman, M. M.; Mayer, J. R.; Nachod, F. C. Anomalous PKa Values of Some Substituted Phenylethylamines1. J. Am. Chem. Soc. 1959, 81 (1), 92–94.spa
dc.relation.referencesGross, K. C.; Seybold, P. G. Substituent Effects on the Physical Properties and PKa of Aniline. Int. J. Quantum Chem. 2000, 80 (4–5), 1107–1115.spa
dc.relation.referencesHuang, N.-K.; Chern, Y.; Fang, J.-M.; Lin, C.-I.; Chen, W.-P.; Lin, Y.-L. Neuroprotective Principles from Gastrodia Elata. J. Nat. Prod. 2007, 70 (4), 571–574.spa
dc.relation.referencesOngena, M.; Jourdan, E.; Schäfer, M.; Kech, C.; Budzikiewicz, H.; Luxen, A.; Thonart, P. Isolation of an N-Alkylated Benzylamine Derivative from Pseudomonas Putida BTP1 as Elicitor of Induced Systemic Resistance in Bean. Mol. Plant. Microbe. Interact. 2005, 18 (6), 562–569.spa
dc.relation.referencesKoyama, M.; Obata, Y.; Sakamura, S. Identification of Hydroxybenzylamines in Buckwheat Seeds (Fagopyrum EsculentumMoench). Agric. Biol. Chem. 1971, 35 (12), 1870–1879.spa
dc.relation.referencesFrandsen, H. B.; Sørensen, J. C.; Petersen, I. L.; Sørensen, H. Glutamine as an Ammonia Donor in Catabolism of the Glucosinolate, Sinalbin, in Biosynthesis of 4-Hydroxybenzylamine. J. Nat. Prod. 2020, 83 (2), 179–184.spa
dc.relation.referencesMaeda T.; Takase M.; Ishibashi A.; Yamamoto T.; Sasaki K.; Arika T.; Yokoo M.; Amemiya K. Synthesis and antifungal activity of butenafine hydrochloride (KP-363), a new benzylamine antifungal agent. Yakugaku Zasshi 1991, 111 (2), 126–137.spa
dc.relation.referencesIgnacimuthu, S.; Shanmugam, N. Antimycobacterial Activity of Two Natural Alkaloids, Vasicine Acetate and 2-Acetyl Benzylamine, Isolated from Indian Shrub Adhatoda Vasica Ness. Leaves. J. Biosci. 2010, 35 (4), 565–570.spa
dc.relation.referencesAkıncıoğlu, A.; Göksu, S.; Naderi, A.; Akıncıoğlu, H.; Kılınç, N.; Gülçin, İ. Cholinesterases, Carbonic Anhydrase Inhibitory Properties and in Silico Studies of Novel Substituted Benzylamines Derived from Dihydrochalcones. Comput. Biol. Chem. 2021, 94 (107565), 107565.spa
dc.relation.referencesVicker, N.; Bailey, H. V.; Day, J. M.; Mahon, M. F.; Smith, A.; Tutill, H. J.; Purohit, A.; Potter, B. V. L. Substituted Aryl Benzylamines as Potent and Selective Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 3. Molecules 2021, 26 (23), 7166.spa
dc.relation.referencesDurgun, M.; Turkmen, H.; Ceruso, M.; Supuran, C. T. Synthesis of 4-Sulfamoylphenyl-Benzylamine Derivatives with Inhibitory Activity against Human Carbonic Anhydrase Isoforms I, II, IX and XII. Bioorg. Med. Chem. 2016, 24 (5), 982–988.spa
dc.relation.referencesSağlık, B. N.; Osmaniye, D.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Atlı Eklioğlu, Ö.; Özkay, Y.; Koparal, A. S.; Kaplancıklı, Z. A. Synthesis, in Vitro Enzyme Activity and Molecular Docking Studies of New Benzylamine-Sulfonamide Derivatives as Selective MAO-B Inhibitors. J. Enzyme Inhib. Med. Chem. 2020, 35 (1), 1422–1432.spa
dc.relation.referencesMoret, V.; Laras, Y.; Cresteil, T.; Aubert, G.; Ping, D. Q.; Di, C.; Barthélémy-Requin, M.; Béclin, C.; Peyrot, V.; Allegro, D.; Rolland, A.; De Angelis, F.; Gatti, E.; Pierre, P.; Pasquini, L.; Petrucci, E.; Testa, U.; Kraus, J.-L. Discovery of a New Family of Bis-8-Hydroxyquinoline Substituted Benzylamines with pro-Apoptotic Activity in Cancer Cells: Synthesis, Structure-Activity Relationship, and Action Mechanism Studies. Eur. J. Med. Chem. 2009, 44 (2), 558–567.spa
dc.relation.referencesTao, H.; Huang, J.; Yancey, P. G.; Yermalitsky, V.; Blakemore, J. L.; Zhang, Y.; Ding, L.; Zagol-Ikapitte, I.; Ye, F.; Amarnath, V.; Boutaud, O.; Oates, J. A.; Roberts, L. J.; Davies, S. S.; Linton, M. F. Scavenging of Reactive Dicarbonyls with 2-Hydroxybenzylamine Reduces Atherosclerosis in Hypercholesterolemic Ldlr-/- Mice. Nat. Commun. 2020, 11 (1), 4084.spa
dc.relation.referencesVarela, M. T.; Dias, R. Z.; Martins, L. F.; Ferreira, D. D.; Tempone, A. G.; Ueno, A. K.; Lago, J. H. G.; Fernandes, J. P. S. Gibbilimbol Analogues as Antiparasitic Agents--Synthesis and Biological Activity against Trypanosoma Cruzi and Leishmania (L.) Infantum. Bioorg. Med. Chem. Lett. 2016, 26 (4), 1180–1183.spa
dc.relation.referencesde Macedo-Silva, S. T.; Visbal, G.; Souza, G. F.; Dos Santos, M. R.; Cämmerer, S. B.; de Souza, W.; Rodrigues, J. C. F. Benzylamines as Highly Potent Inhibitors of the Sterol Biosynthesis Pathway in Leishmania Amazonensis Leading to Oxidative Stress and Ultrastructural Alterations. Sci. Rep. 2022, 12 (1), 11313.spa
dc.relation.referencesHou, S.-F.; Chen, J.-Y.; Xue, M.; Jia, M.; Zhai, X.; Liao, R.-Z.; Tung, C.-H.; Wang, W. Cooperative Molybdenum-Thiolate Reactivity for Transfer Hydrogenation of Nitriles. ACS Catal. 2020, 10 (1), 380–390.spa
dc.relation.referencesYan, T.; Feringa, B. L.; Barta, K. Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols. ACS Catal. 2016, 6 (1), 381–388.spa
dc.relation.referencesHeuer, L. Benzylamine. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006.spa
dc.relation.referencesYan, G.; Zhang, Y.; Wang, J. Recent Advances in the Synthesis of Aryl Nitrile Compounds. Adv. Synth. Catal. 2017, 359 (23), 4068–4105.spa
dc.relation.referencesWinans, C. F. Hydrogenation of Aldehydes in the Presence of Ammonia. J. Am. Chem. Soc. 1939, 61 (12), 3566–3567.spa
dc.relation.referencesSenthamarai, T.; Murugesan, K.; Schneidewind, J.; Kalevaru, N. V.; Baumann, W.; Neumann, H.; Kamer, P. C. J.; Beller, M.; Jagadeesh, R. V. Simple Ruthenium-Catalyzed Reductive Amination Enables the Synthesis of a Broad Range of Primary Amines. Nat. Commun. 2018, 9 (1).spa
dc.relation.referencesMurugesan, K.; Beller, M.; Jagadeesh, R. V. Reusable Nickel Nanoparticles‐catalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angew. Chem. Int. Ed Engl. 2019, 58 (15), 5064–5068.spa
dc.relation.referencesIrrgang, T.; Kempe, R. Transition-Metal-Catalyzed Reductive Amination Employing Hydrogen. Chem. Rev. 2020, 120 (17), 9583–9674.spa
dc.relation.referencesNakamura, Y.; Kon, K.; Touchy, A. S.; Shimizu, K.-I.; Ueda, W. Selective Synthesis of Primary Amines by Reductive Amination of Ketones with Ammonia over Supported Pt Catalysts. ChemCatChem 2015, 7 (6), 921–924.spa
dc.relation.referencesGross, T.; Seayad, A. M.; Ahmad, M.; Beller, M. Synthesis of Primary Amines: First Homogeneously Catalyzed Reductive Amination with Ammonia. Org. Lett. 2002, 4 (12), 2055–2058.spa
dc.relation.referencesCrossley, F. S.; Moore, M. L. Studies on the Leuckart Reaction. J. Org. Chem. 1944, 09 (6), 529–536.spa
dc.relation.referencesPollard, C. B.; Young, D. C. The Mechanism of the Leuckart Reaction. J. Org. Chem. 1951, 16 (5), 661–672.spa
dc.relation.referencesAlexander, E. R.; Wildman, R. B. Studies on the Mechanism of the Leuckart Reaction. J. Am. Chem. Soc. 1948, 70 (3), 1187–1189.spa
dc.relation.referencesAdams, R.; Bachmann, W. E.; Frieser, L. F.; Blatt, A. H.; Jhonson, J. R.; Snyder, H. R. The Leuckart Reaction. En Organic Reactions. Moore, M. L. John Wiley & Sons: Hoboken, 1960; Vol 5, pp 301- 330.spa
dc.relation.referencesAbdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures1. J. Org. Chem. 1996, 61 (11), 3849–3862.spa
dc.relation.referencesCho, B. T.; Kang, S. K. Direct and Indirect Reductive Amination of Aldehydes and Ketones with Solid Acid-Activated Sodium Borohydride under Solvent-Free Conditions. Tetrahedron. 2005, 61 (24), 5725–5734.spa
dc.relation.referencesSprung, M. A. A Summary of the Reactions of Aldehydes with Amines. Chem. Rev. 1940, 26 (3), 297–338.spa
dc.relation.referencesSani, U.; Na’ibi, H. U.; Dailami, S. A. In Vitro Antimicrobial and Antioxidant Studies on N-(2- Hydroxylbenzylidene) Pyridine -2-Amine and Its M(II) Complexes. Nig J Bas App Sci 2018, 25 (1), 81.spa
dc.relation.referencesMason, A. T.; Winder, G. R. XXI.—Condensation Products from Benzylamine and Several Benzenoïd Aldehydes. J. Chem. Soc. 1894, 65 (0), 191–193.spa
dc.relation.referencesBujnowski, K.; Adamczyk, A.; Synoradzki, L. O-AMINOMETHYL DERIVATIVES OF PHENOLS. PART 1. BENZYLAMINES: PROPERTIES, STRUCTURE, SYNTHESIS AND PURIFICATION. Org. Prep. Proced. Int. 2007, 39 (2), 153–184.spa
dc.relation.referencesNielsen, A. T.; Nissan, R. A.; Chafin, A. P.; Gilardi, R. D.; George, C. F. Polyazapolycyclics by Condensation of Aldehydes with Amines. 3. Formation of 2,4,6,8-Tetrabenzyl-2,4,6,8-Tetraazabicyclo[3.3.0]Octanes from Formaldehyde, Glyoxal, and Benzylamines. J. Org. Chem. 1992, 57 (25), 6756–6759.spa
dc.relation.referencesPine, S. H.; Sanchez, B. L. Formic Acid-Formaldehyde Methylation of Amines. J. Org. Chem. 1971, 36 (6), 829–832.spa
dc.relation.referencesAdams, R.; Bachmann, W. E.; Frieser, L. F.; Blatt, A. H.; Jhonson, J. R.; Snyder, H. R. The Mannich Reaction. En Organic Reactions. Blicke, F.F. John Wiley & Sons: Hoboken, 1942; Vol 1, pp 303- 341.spa
dc.relation.referencesMannich, C.; Krösche, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. (Weinheim) 1912, 250 (1), 647–667.spa
dc.relation.referencesHof, F.; Schär, M.; Scofield, D. M.; Fischer, F.; Diederich, F.; Sergeyev, S. Preparation OfTröger Base Derivatives by Cross-Coupling Methodologies. Helv. Chim. Acta 2005, 88 (8), 2333–2344.spa
dc.relation.referencesSatishkumar, S.; Periasamy, M. A Convenient Method for the Synthesis and Resolution of Tröger Base. Tetrahedron Asymmetry 2006, 17 (7), 1116–1119.spa
dc.relation.referencesTramontini, N.; Angiolini, L. MANNICH BASES: Chemistry and uses. CRC Press: Boca Raton, 1994.spa
dc.relation.referencesFields, D. L.; Miller, J. B.; Reynolds, D. D. Mannich-Type Condensation of Hydroquinone, Formaldehyde, and Primary Amines. J. Org. Chem. 1962, 27 (8), 2749–2753.spa
dc.relation.referencesBurke, W. J.; Glennie, E. L. M.; Weatherbee, C. Condensation of Halophenols with Formaldehyde and Primary Amines1. J. Org. Chem. 1964, 29 (4), 909–912.spa
dc.relation.referencesBurke, W. J.; Nasutavicus, W. A.; Weatherbee, C. Synthesis and Study of Mannich Bases from 2-Naphthol and Primary Amines1. J. Org. Chem. 1964, 29 (2), 407–410.spa
dc.relation.referencesMatta, C. F.; Hernández-Trujillo, J.; Tang, T.-H.; Bader, R. F. W. Hydrogen-Hydrogen Bonding: A Stabilizing Interaction in Molecules and Crystals. Chemistry 2003, 9 (9), 1940–1951.spa
dc.relation.referencesHibbert, F.; Emsley, J. Hydrogen Bonding and Chemical Reactivity. In Advances in Physical Organic Chemistry; Elsevier, 1990; pp 255–379.spa
dc.relation.referencesKollman, P. A.; Allen, L. C. Theory of the Hydrogen Bond. Chem. Rev. 1972, 72 (3), 283–303.spa
dc.relation.referencesAlkota, I.; Rozas, I.; Elguero, J. Non-convencional hydrogen bonds Chem. Soc. Rev. 1998, 27, 163-170.spa
dc.relation.referencesSteiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed Engl. 2002, 41 (1), 49–76.spa
dc.relation.referencesVögtle, F.; Pawlitzki, G.; Hetera (Cyclo-)phanes. En Modern Cyclophane Chemisty. Gleiter, R.; Hopf, H. Wiley-VCH: Weinheim, 2004; Vol. 1, pp 41-80.spa
dc.relation.referencesGulder, T.; Baran, P. S. Strained Cyclophane Natural Products: Macrocyclization at Its Limits. Nat. Prod. Rep. 2012, 29 (8), 899–934.spa
dc.relation.referencesSteed, J. W.; Atwood, J. L. Supramolecular Chemistry. John Wiley & Sons: Hoboken, 2022.spa
dc.relation.referencesQuevedo, R.; Moreno-Murillo, B. One-Step Synthesis of a New Heterocyclophane Family. Tetrahedron Lett. 2009, 50 (8), 936–938.spa
dc.relation.referencesQuevedo, R.; Díaz-Oviedo, C.; Quevedo-Acosta, Y. Role of Hydroxyl Groups on the Aromatic Ring in the Reactivity and Selectivity of the Reaction of β-Phenylethylamines with Non-Enolizable Aldehydes. Res. chem. intermed. 2015, 41 (12), 9835–9843.spa
dc.relation.referencesNuñez-Dallos, N.; Reyes, A.; Quevedo, R. Hydrogen Bond Assisted Synthesis of Azacyclophanes from L-Tyrosine Derivatives. Tetrahedron Lett. 2012, 53 (5), 530–534.spa
dc.relation.referencesQuevedo, R.; Nuñez-Dallos, N.; Wurst, K.; Duarte-Ruiz, Á. A Structural Study of the Intermolecular Interactions of Tyramine in the Solid State and in Solution. J. Mol. Struct. 2012, 1029, 175–179.spa
dc.relation.referencesDíaz-Oviedo, C.; Quevedo, R. N-Benzylazacyclophane synthesis via aromatic Mannich reaction. Tetrahedron Lett. 2014, 55 (48), 6571–6574.spa
dc.relation.referencesNuñez-Dallos, N.; Díaz-Oviedo, C.; Quevedo, R. Hydroxy- and aminomethylation reactions in the formation of oligomers from l-tyrosine and formaldehyde in basic medium. Tetrahedron Lett. 2014, 55 (30), 4216–4221.spa
dc.relation.referencesLeal, L. F.; Chaves, S.; Quevedo, R. Synthesis and Structural Analysis of an Asymmetric Azacyclophane via Mannich Cross Macrocyclisation of -Tyrosine Derivatives. Results Chem. 2023, 5 (100684), 100684.spa
dc.relation.referencesQuevedo, R.; González, M.; Díaz-Oviedo, C. Synthesis of Macrocyclic α-Amino Esters through the Chemoselective Hydrolysis of Benzoxazinephanes. Tetrahedron Lett. 2012, 53 (13), 1595–1597.spa
dc.relation.referencesGaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.spa
dc.relation.referencesAllouche, A.-R. Gabedit--a Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32 (1), 174–182.spa
dc.relation.referencesHirayama, K. Nomenclature of Cyclophanes. Tetrahedron Lett. 1972, 13 (21), 2109–2112.spa
dc.relation.referencesFrancis, F. Notiz Über Die Einwirkung von Ammoniak Auf Benzaldehyd Und Die Darstellung Von »Benzaldehyd‐Ammoniak«. Ber. Dtsch. Chem. Ges. 1909, 42 (2), 2216–2218.spa
dc.relation.referencesCrowell, T. I.; McLeod, R. K. Kinetics of Hydrobenzamide Formation from P-Dimethylaminobenzaldehyde and Ammonia. Role of the Imine. J. Org. Chem. 1967, 32 (12), 4030–4033.spa
dc.relation.referencesStrain, H. H. Hydrobenzamide and Benzylidene Imine as Ammono Aldehydes. J. Am. Chem. Soc. 1927, 49 (6), 1558–1571spa
dc.relation.referencesDenat, F.; Tripier, R.; Boschetti, F.; Espinosa, E.; Guilard, R. Reaction of Polyamines with Diethyloxalate: A Convenient Route for the Synthesis of Tetraazacycloalkanes. ARKIVOC 2006, 2006 (4), 212–233.spa
dc.relation.referencesBoyd, E.; Coumbarides, G. S.; Eames, J.; Jones, R. V. H.; Stenson, R. A.; Suggate, M. J. Synthesis and Derivatisation of N,N′-Trisubstituted 1,2-Diamines Derived from (1R,2R)-1,2-Diaminocyclohexane. Tetrahedron Lett. 2005, 46 (20), 3479–3484.spa
dc.relation.referencesSalerno, A.; Figueroa, M. A.; Perillo, I. A. A Convenient “One-Pot” Reaction for Selective Monoalkylation ofN,N′-Disubstituted Ethylenediamines. Synth. Commun. 2003, 33 (18), 3193–3204.spa
dc.relation.referencesSalerno, A.; Ceriani, V.; Perillo, I. A. Reduction of Substituted 1H-4,5-Dihydroimidazolium Salts. J. Heterocycl. Chem. 1992, 29 (7), 1725–1733.spa
dc.relation.referencesGrimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465.spa
dc.relation.referencesMarenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396.spa
dc.relation.referencesMoser, A.; Range, K.; York, D. M. Accurate Proton Affinity and Gas-Phase Basicity Values for Molecules Important in Biocatalysis. J. Phys. Chem. B 2010, 114 (43), 13911–13921.spa
dc.relation.referencesLias, S. G.; Liebman, J. F.; Levin, R. D. Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules. J. Phys. Chem. Ref. Data 1984, 13 (3), 695–808.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembChemistry, organiceng
dc.subject.lembQuímica orgánicaspa
dc.subject.proposalHidrobenzamidaspa
dc.subject.proposal4-hidroxibencilaminaspa
dc.subject.proposalAzaciclofanospa
dc.subject.proposalPuentes de hidrógenospa
dc.subject.proposalFormaldehídospa
dc.subject.proposalHydrobenzamideeng
dc.subject.proposal4-hydroxybenzylamineeng
dc.subject.proposalAzacyclophaneeng
dc.subject.proposalHydrogen bondseng
dc.subject.proposalFormaldehydeeng
dc.titleEstudio de la reactividad de 4-hidroxibencilaminas frente a formaldehídospa
dc.title.translatedStudy of the reactivity of 4-hydroxybenzylamines with formaldehydeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído.pdf
Tamaño:
5.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: