Evaluación de la reproducibilidad y precisión para diferentes técnicas de cuantificación en Medicina Nuclear

dc.contributor.advisorPlazas de Pinzón, María Cristinaspa
dc.contributor.advisorBarbosa Parada, Nathalyspa
dc.contributor.authorNiño Duarte, Franklinspa
dc.date.accessioned2020-06-10T16:18:05Zspa
dc.date.available2020-06-10T16:18:05Zspa
dc.date.issued2019-12-05spa
dc.description.abstractLa cuantificación de actividad es una labor importante dentro de las aplicaciones de la Medicina Nuclear, ya que de ésta dependen la dosimetría para la terapia con radionúclidos, la planificación de tratamiento y la efectividad del mismo. A su vez la cuantificación depende de la reproducibilidad de las técnicas y la precisión en la adquisición de la información necesaria para estos procesos. Este trabajo evalúa la reproducibilidad y precisión para la cuantificación de actividad de I-131 mediante técnicas imagenológicas y no imagenólogicas. Para cuantificar con precisión mediante las técnicas empleadas (SPECT-CT, Sonda de captación tiroidea y Geiger-Müller), se requiere la corrección de efectos degradantes asociados con procesos físicos que afectan la información recuperada, como el fondo, atenuación, dispersión, tiempo muerto, entre otros. A su vez es necesario definir una geometría de medición que permita reproducir estos procesos. Para cada técnica fue calculado un Factor de Calibración (FC) que permite convertir la información corregida en unidades de actividad. Se realizaron distintas pruebas para la estimación de los efectos de influencia y su posterior corrección para cada técnica. Se encontró que las técnicas empleadas son reproducibles para las geometrías definidas. De igual forma se determinó el FC para I-131 en cada una de estas geometrías con un adecuado grado de precisión. Para técnicas imagenológicas se encontró que el FC calculado es independiente de la técnica de adquisición, sin embargo, muestra dependencia con el volumen de la fuente. Se obtuvo para SPECT-CT un FC=(1,24 +/- 0,13) cpm/kBq, para la sonda de captación tiroidea un FC= (7,44 +/- 0,01) cpm/kBq, para los detectores Geiger-Müller un FCH1(x)= (33,75 +/- 14,22$)x^ (-2,82 +/- 1,24) uSv/h/GBq y FCH2(x)= (20,47 +/- 11,15)x^ (-2,45 +/- 1,48) uSv/h/GBq, estos últimos en función de la distancia al detector.spa
dc.description.abstractQuantification of activity is an important work within the applications of Nuclear Medicine, since dosimetry for radionuclide therapy, treatment planning and its effectiveness depend on it. In turn quantification depends on the reproducibility of the techniques and precision in acquiring the information needed for these processes. This study evaluates the reproducibility and accuracy for the quantification of activity I-131 by imaging and non-imaging techniques. To quantify accurately by the techniques used (SPECT-CT, Thyroid uptake probe and Geiger-Müller), the correction of degrading effects associated with physical processes that affect the information retrieved, such as background, attenuation, dispersion, dead time is required , among others. In turn, it is necessary to define a measurement geometry that allows reproducing these processes. For each technique a Calibration Factor (CF) was calculated, which allows the corrected information to be converted into units of activity. Different tests were performed to estimate the influence effects and their subsequent correction for each technique. It was found that the techniques used are reproducible for the defined geometries. In the same way the CF was determined for I-131 in each of these geometries with an adequate degree of precision. For imaging techniques it was found that the calculated CF is independent of the acquisition technique, however, it shows dependence on the volume of the source. A CF=(1,24 +/- 0,13) cpm/kBq was obtained for SPECT-CT, for the thyroid uptake probe a CF= (7,44 +/- 0,01) cpm/kBq, for Geiger-Müller detectors a CFH1(x)= (33,75 +/- 14,22$) x^ (-2,82 +/- 1,24) uSv/h/GBq and CFH2(x)= (20,47 +/- 11,15) x^ (-2,45 +/- 1,48) uSv/h/GBq, the latter depending on the distance to the detector.spa
dc.description.additionalMagister en Física Médicaspa
dc.description.degreelevelMaestríaspa
dc.format.extent108spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77637
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesIrene Buvat, Eric Frey, Alan Green, and Michael Ljungberg. Quantitative Nuclear Medicine Imaging: concepts, requirements and methods. Human Health Reports, 9, 2014.spa
dc.relation.referencesTECNOLÓGICA NUCLEAR Y PROTECCIÓN RADIOLÓGICA. Glosario de seguridad tecnológica del oiea.spa
dc.relation.referencesGobierno de Canarias. https://www3.gobiernodecanarias.org/sanidad/scs/contenidoGenerico, 19 de Abril de 2020.spa
dc.relation.referencesRachel A Powsner, Edward R Powsner, and Rachel A Powsner. Essential Nuclear Medicine Physics. 2006.spa
dc.relation.referencesInternational Bureau of Weights, Measures, Barry N Taylor, and Ambler Thompson. The international system of units (SI). US Department of Commerce, Technology Administration, 2001.spa
dc.relation.referencesCraig Edwards. Fundamental quantities and units for ionizing radiation icru report 60, 1999.spa
dc.relation.referencesPedro L Esquinas, Jesse Tanguay, Marjorie Gonzalez, Milan Vuckovic, Cristina RodrÍguez-RodrÍguez, Urs O H afeli, and Anna Celler. Accuracy, reproducibility, and uncertainty analysis of thyroid-probe-based activity measurements for determination of dose calibrator settings. Medical physics, 43(12):6309-6321, 2016.spa
dc.relation.referencesSimon R Cherry, James A Sorenson, and Michael E Phelps. Physics in Nuclear Medicine. Elsevier Health Sciences, 2012.spa
dc.relation.referencesAndrew Taylor Jr, Jack A Ziffer, Ann Steves, Dennis Eshima, VB Delaney, and JD Welchel. Clinical comparison of I-131 orthoiodohippurate and the kit formulation of Tc-99m mercaptoacetyltriglycine. Radiology, 170(3):721{725, 1989.spa
dc.relation.referencesDavid Dowsett, Patrick A Kenny, and R Eugene Johnston. The physics of diagnostic imaging. CRC Press, 2006.spa
dc.relation.referencesJennifer Prekeges. Nuclear Medicine Instrumentation (book). Jones & Bartlett Publishers, 2012.spa
dc.relation.referencesGlenn F Knoll. Radiation Detection and Measurement. John Wiley & Sons, 2010.spa
dc.relation.referencesGustav Brolin. Image-based Partial-Volume Correction in SPECT: Application to 177Lu radionuclide therapy. 2011.spa
dc.relation.referencesBIODEX. https://biodex.com/, 1 de Noviembre de 2019.spa
dc.relation.referencesALDERSON PHANTOMS. http://rsdphantoms.com//, 3 de Noviembre de 2019.spa
dc.relation.referencesIAEA, Human Healt Campus. https://humanhealth.iaea.org/, 17 de Noviembre de 2019.spa
dc.relation.referencesSOCIEDAD ESPAÑOLA DE FÍSICA MÉDICA. Fundamentos de Física Médica. Vol2. Radiodiagnóstico: Bases Físicas, equipos y control de calidad. Madrid: ADI, 2012.spa
dc.relation.referencesV Chisté and MM Bé. Table of radionuclides (vol. 1-a= 1 to 150). Monographie BIPM-5, 1, 2004.spa
dc.relation.referencesGE Healthcare. Discovery NM/CT 670, 2011.spa
dc.relation.referencesMC Cantone. ICRP publication 106: Radiation Dose to Patients from Radiopharmaceuticals: a third amendment to ICRP 53. 2009.spa
dc.relation.referencesJeffry A Siegel, Stephen R Thomas, James B Stubbs, Michael G Stabin, Marguerite T Hays, Kenneth F Koral, James S Robertson, Roger W Howell, Barry W Wessels, Darrell R Fisher, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. Journal of Nuclear Medicine, 40(2):37S-61S, 1999.spa
dc.relation.referencesYuni K Dewaraja, Michael Ljungberg, Alan J Green, Pat B Zanzonico, Eric C Frey, Wesley E Bolch, A Bertrand Brill, Mark Dunphy, Darrell R Fisher, Roger W Howell, et al. MIRD pamphlet no. 24: guidelines for quantitative 131i SPECT in dosimetry applications. Journal of Nuclear Medicine, 54(12):2182-2188, 2013.spa
dc.relation.referencesY Chain and Luis Illanes. Radiofármacos en Medicina Nuclear fundamentos y aplicación clínica. Recuperado de: http://sedici. unlp. edu. ar/bitstream/handle/10915/46740/Documento completo. pdf, 2015.spa
dc.relation.referencesMarcelo Tatit Sapienza and José Willegaignon. Radionuclide therapy: current status and prospects for internal dosimetry in individualized therapeutic planning. Clinics, 74, 2019.spa
dc.relation.referencesAlicia MAROTO SÁNCHEZ. Incertidumbre en métodos analíticos de rutina. Tarragona-España, 2002. PhD thesis, Tesis Doctoral, Universitat Rovira i Virgili. Facultad de Química.spa
dc.relation.referencesMai Khuong Nguyen, Tuong T Truong, Marcela Morvidone, and Habib Zaidi. Scattered radiation emission imaging: Principles and applications. International journal of biomedical imaging, 2011, 2011.spa
dc.relation.referencesVahid Changizi, Abbas Takavar, Azadeh Babakhani, and Mahdi Sohrabi. Scatter correction for heart SPECT images using TEW method. Journal of applied clinical medical physics, 9(3):136-140, 2008.spa
dc.relation.referencesSyed Naeem Ahmed. Physics and Engineering of Radiation Detection. Academic Press, 2007.spa
dc.relation.referencesAbdullah Norhayati, Sara Deraman Siti, Sa e Saleha, and Sya q Jawari Mohd. Performance Assessment of a Thyroid Counter.spa
dc.relation.referencesEric C Frey, John L Humm, and Michael Ljungberg. Accuracy and precision of radioactivity quanti cation in Nuclear Medicine images. In Seminars in nuclear medicine, volume 42, pages 208{218. Elsevier, 2012.spa
dc.relation.referencesJohannes Zeintl, Alexander Hans Vija, Amos Yahil, Joachim Hornegger, and Torsten Kuwert. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. Journal of Nuclear Medicine, 51(6):921-928, 2010.spa
dc.relation.referencesPhilipp Ritt, Hans Vija, Joachim Hornegger, and Torsten Kuwert. Absolute quanti cation in SPECT. European journal of nuclear medicine and molecular imaging, 38(1):69-77, 2011.spa
dc.relation.referencesMpumelelo Nyathi, Enoch Sithole, and Ouma Rama . Quanti cation of partial volume effects in planar imaging. Iranian Journal of Nuclear Medicine, 24(2):115-120, 2016.spa
dc.relation.referencesRonald Boellaard, Nanda C Krak, Otto S Hoekstra, and Adriaan A Lammertsma. Effects of noise, image resolution, and ROI de nition on the accuracy of standard uptake values: a simulation study. Journal of Nuclear Medicine, 45(9):1519-1527, 2004.spa
dc.relation.referencesCapintec INC. Captus 3000 Thyroid Uptake System Owners Manual, 2001.spa
dc.relation.referencesTécnicas Radiofísicas. http://trf.es/es/product-items/gm-rady/, 2 de Octubre de 2019.spa
dc.relation.referencesInstituto Nacional de Cancerología. Descripción de Actividad para el Control de Calidad de Gammacámaras. page 30, 2018.spa
dc.relation.referencesInstituto Nacional de Cancerología. Instructivo para la calibración del equipo Captus 3000. page 8, 2016.spa
dc.relation.referencesDaryl Graham Beth A. Harkness S. Cheenu Kappadath Mark T. Madsen Richard J. Massoth James A. Patton Sharon L. White Lawrence E. Williams Wesley W. Wooten James R. Halama, Chair. Acceptance Testing and Annual Physics Survey Recommendations for Gamma Camera, SPECT, and SPECT/CT Systems The Report of AAPM Task Group 177. pages 1-55, 2019.spa
dc.relation.referencesAmerican College of Radiology et al. National electrical manufacturers association (nema) standards publication for data compression standards. NEMA Publication PS-2, Washington, DC, 1989.spa
dc.relation.referencesIAEA TECDOC. 602. Quality Control of Nuclear Medicine instruments 1991. issn 1011-4289. International Atomic Energy Agency, Vienna.spa
dc.relation.referencesEllinor Busemann Sokole, Anna P lachcínska, Alan Britten, Maria Lyra Georgosopoulou, Wendy Tindale, Rigobert Klett, et al. Routine quality control recommendations for nuclear medicine instrumentation. European journal of nuclear medicine and molecular imaging, 37(3):662-671, 2010.spa
dc.relation.referencesPat Zanzonico. Routine quality control of clinical Nuclear Medicine instrumentation: a brief review. Journal of Nuclear Medicine, 49(7):1114-1131, 2008.spa
dc.relation.referencesMaximiliano Huerfano Correa et al. Validación del programa imagej para cuanti cación de imágenes en dosimetría interna para pacientes de terapia con 131I. PhD thesis, Universidad Nacional de Colombia-Sede Bogotá.spa
dc.relation.referencesRichard B Schwartz, Basem M Garada, AL Komaro , HM Tice, M Gleit, FA Jolesz, and BL Holman. Detection of intracranial abnormalities in patients with chronic fatigue syndrome: comparison of MR imaging and SPECT. AJR. American journal of roentgenology, 162(4):935-941, 1994.spa
dc.relation.referencesJinsong Ouyang, Georges El Fakhri, and Stephen C Moore. Improved activity estimation with MC-JOSEM versus TEW-JOSEM in SPECT. Medical physics, 35(5):2029-2040, 2008.spa
dc.relation.referencesPaul Mercea. Quanti cation of longitudinal tumor changes using PET imaging in 3D Slicer. 2013.spa
dc.relation.referencesMichael Ljungberg, Sven-Erik Strand, and Michael A King. Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging. CRC Press, 2012.spa
dc.relation.referencesM Silosky, V Johnson, C Beasley, and S Cheenu Kappadath. Characterization of the count rate performance of modern gamma cameras. Medical physics, 40(3):032502, 2013.spa
dc.relation.referencesRalph Adams and Duane Zimmerman. Methods for calculating the deadtime of Anger camera systems. Journal of Nuclear Medicine, 14(7):496-498, 1973.spa
dc.relation.referencesSarah J Chittenden, Brenda E Pratt, Kay Pomeroy, Peter Black, Clive Long, Nicholas Smith, Susan E Buckley, Frank H Saran, and Glenn D Flux. Optimization of equipment and methodology for whole body activity retention measurements in children undergoing targeted radionuclide therapy. Cancer biotherapy & radiopharmaceuticals, 22(2):243-249, 2007.spa
dc.relation.referencesIAEA CRP. Dosimetry in Molecular Radiotherapy for Personalized Patient Treatments. https://www.iaea.org/newscenter/news/new-crp-dosimetry-in-radiopharmaceutical- therapy-for-personalized-patient-treatment-e23005.spa
dc.relation.referencesErick Mora Ramírez. Evaluación de la uniformidad intrínseca en gamma cámaras del servicio de medicina nuclear del Hospital San Juan de Dios. Revista de Ciencia y Tecnología Vol. 25 Núm. 1 y 2 2009, 2009.spa
dc.relation.referencesGopal B Saha. Physics and Radiobiology of Nuclear Medicine. Springer Science & Business Media, 2012.spa
dc.relation.referencesIAEA. IAEA-NMQC Toolkit for Fiji Application, Version 1.00, User´s Manual. https://humanhealth.iaea.org/HHW/MedicalPhysics/NuclearMedicine/QualityAssurance/NMQC-Plugins/index.html, 2017.spa
dc.relation.referencesMargarita Núñez. Control de calidad de los sistemas de detección usados en Medicina Nuclear. Esc. Univ. Tecnol. Médica. UdelaR, Montevideo, Uruguay. Com. Tecnólogos ALASBIMN, 2008.spa
dc.relation.referencesHC Rajpoot. Solid angle subtended by a rectangular right pyramid (solid/hollow) at its apex. 2019.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.proposalActivity quantificationeng
dc.subject.proposalCuantificación de actividadspa
dc.subject.proposalI-131spa
dc.subject.proposalI-131eng
dc.subject.proposalPrecisioneng
dc.subject.proposalPrecisiónspa
dc.subject.proposalFactor de calibraciónspa
dc.subject.proposalCalibration factoreng
dc.subject.proposalImagenológicasspa
dc.subject.proposalImagingeng
dc.subject.proposalNo Imagingeng
dc.subject.proposalNo imagenológicasspa
dc.titleEvaluación de la reproducibilidad y precisión para diferentes técnicas de cuantificación en Medicina Nuclearspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79977481.2020.pdf
Tamaño:
27.13 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: