Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales

dc.contributor.advisorCalderón Villanueva, Sergio Alejandrospa
dc.contributor.authorArbeláez Quintero, Sebastiánspa
dc.date.accessioned2023-05-25T20:33:21Z
dc.date.available2023-05-25T20:33:21Z
dc.date.issued2022
dc.descriptionilustracionesspa
dc.description.abstractLa introducción de los modelos TAR en el análisis económico ha permitido capturar el comportamiento no lineal, usualmente observado en este tipo de series de tiempo. Adicional a la no linealidad, las series de tiempo económicas pueden presentar comportamientos estacionales cuyo análisis podría llevar a conclusiones más acordes con la realidad. Por otro lado, realizar pronósticos acertados sobre los valores que una serie de tiempo tomará, es un tema importante en economía, por lo que un sector de la literatura se ha encargado de comparar la precisión de los pronósticos generados a partir de diferentes tipos de modelos. En este trabajo se compara la precisión de los pronósticos obtenidos al ajustar el modelo Multiplicative Seasonal Threshold Autoregressive with exogenous input - TSARX, con respecto a otros modelos usualmente empleados en la literatura. El modelo TSARX permite capturar el comportamiento estacional multiplicativo de las series de tiempo para explicar el proceso de interés. (Texto tomado de la fuente).spa
dc.description.abstractIntroduction of TAR models in economic analysis has allowed to capture the non linear behavior usually observed this kind of time series. In addition to non linearity, economic time series may exhibit seasonal patterns whose analysis may carry to conclusions more in line with reality. Otherwise, accurate forecasting for time series its a relevant topic in economics, thus a part of literature has been in charge to compare the accuracy of forecasts generated by different types of models. In this work, accuracy of forecast obtained by adjusting Multiplicative Seasonal Threshold Autorregessive with exogenous input - TSARX models, is compared with those obtained by adjusting other models usually used in literature. TSARX model allows to capture time series multiplicative seasonality to explain the process of interest.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.notesIncluye anexosspa
dc.format.extentxiii, 168 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83875
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesBates, J. M., y Granger, C. W. J. (1969). The combination of forecasts. Journal of the Operational Research Society, 20 (4), 451-468.spa
dc.relation.referencesBox, G., y Jenkins, G. M. (1991). Time Series Analysis: Forecasting and Control. PrenticeHall.spa
dc.relation.referencesBrown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.spa
dc.relation.referencesBrown, R. L., Durbin, J., y Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society. Series B (Methodological), 37 (2), 149-192.spa
dc.relation.referencesCao, W., Zhu, W., Wang, W., Demazeau, Y., y Zhang, C. (2020). A deep coupled lstm approach for usd/cny exchange rate forecasting. IEEE Intelligent Systems, 35 (2), 43-53. doi: 10.1109/MIS.2020.2977283spa
dc.relation.referencesCongodon, P. (2007). Bayesian statistical modelling. Southern Gate, Chichester: John Wiley & Sons.spa
dc.relation.referencesDANE. (2015). Metodología general gran encuesta integrada de hogares geih.spa
dc.relation.referencesDANE. (2016). Metodología general indicador de seguimiento a la economía isespa
dc.relation.referencesDe Gooijer, J. G., y Vidiella-i Anguera, A. (2003). Nonlinear stochastic inflation modelling using seasetars. Insurance: Mathematics and Economics, 32 ((1)), 27–36.spa
dc.relation.referencesDellaportas, P., Foster, J. J., y Ntzoufras, I. (2002). On bayesian model and variable selection using mcmc. Statistics and Computing, 12 ((1)), 27–36.spa
dc.relation.referencesDiebold, F., y Mariano, R. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13 ((3)), 253–263.spa
dc.relation.referencesDixon, M. F., Halperin, I., y Bilokon, P. (2020). Machine learning in finance from theory to practice. Switzerland: SP.spa
dc.relation.referencesEdgerton, D., y Wells, C. (1994). Critical values for the cusumsq statistic in medium and large sized samples. Oxford Bulletin of Economics and Statistics, 56 (3), 355-365.spa
dc.relation.referencesEtuk, E. H. (2012). Predicting inflation rates of nigeria using a seasonal box-jenkins model. Journal of Statistical and Econometric Methods, 1-3 , 27-37.spa
dc.relation.referencesGonzález, J., y Nieto, H., F. (2020). Bayesian analysis of multiplicative seasonal threshold autoregressive processes. Revista Colombiana de Estadística - Applied Statistics, 43 (2), 251–285.spa
dc.relation.referencesHansen, B. E. (2011). Threshold autoregression in economics. Statistics and their interface, 4 , 123–127.spa
dc.relation.referencesHochreiter, S., y Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.spa
dc.relation.referencesHolt, C. (2004). Forecasting seasonals and trends by exponentially weighted averages. En Onr memorandum no. 52.spa
dc.relation.referencesHyndman, R., y Athanasopoulos, G. (2021). Forecasting: principles and practice (3rd ed.). Melbourne: OTexts.spa
dc.relation.referencesJiehua, L., Chao, W., Wei, G., y Qiumin, Z. (2021). An economic forecasting method based on the lightgbm-optimized lstm and time-series model. Neural Computation, 2021 , 1-10.spa
dc.relation.referencesKryzanowski, L., y Zhang, H. (1992). Economic forces and seasonality in security returns. Review of Quantitative Finance and Accounting, 2 , 227-244.spa
dc.relation.referencesLuetkepohl, H., y Xu, F. (2012). Forecasting annual inflation with seasonal monthly data: Using levels versus logs of the underlying price index. Journal of Statistical and Econometric Methods, 1-3 , 27-37.spa
dc.relation.referencesNieto, F. H. (2005). Modeling bivariate threshold autoregressive processes in the presence of missing data. Communications in Statistics. Theory and Methods, 34 , 905–930.spa
dc.relation.referencesNieto, F. H. (2008). Forecasting with univariate tar models. Statistical Methodology, 5 , 263–276.spa
dc.relation.referencesPeirano, R., Kristjanpoller, W., y Minutolo, M. (2021). Forecasting inflation in latin american countries using a sarima–lstm combination. Neural Computation, 25 , 10851–10862.spa
dc.relation.referencesPeña, D., y Tsay, R. S. (2021). Statistical Learning for Big Dependent Data. Wiley Series in Probability and Statisticsspa
dc.relation.referencesSiami-Namini, S., Tavakoli, N., y Siami Namin, A. (2018). A comparison of arima and lstm in forecasting time series. En 2018 17th ieee international conference on machine learning and applications (icmla) (p. 1394-1401). doi: 10.1109/ICMLA.2018.00227spa
dc.relation.referencesTong, H., y Chen, C. H. (1978). Pattern recognition and signal processing. Netherlands: Springer.spa
dc.relation.referencesTong, H., y Lim, K. S. (1980). Threshold autoregression, limit cycles, and cyclical data. Journal of the Royal Statistical Society, Series B, 42 ((3)), 245–292.spa
dc.relation.referencesTsay, R. S. (1998). Testing and modeling multivariate threshold models. Journal of the American Statistical Association, 93 (443), 1188–1202.spa
dc.relation.referencesUrrutia, J. D., Rivera, C. I., Quite, J. A., Belamide, J. A., y Quinto, J. Q. (2014). Application of seasonal autoregressive integrated moving average (sarima) in modeling and forecasting philippine real gross domestic product. European Academic Research, II, 11247-11297.spa
dc.relation.referencesVaca, P. A. (2018). Analysis of the forecasting performance of the threshold autorregresive model (Tesis de Master no publicada). Universidad Nacional de Colombia.spa
dc.relation.referencesWinters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342.spa
dc.relation.referencesZhang, G., y Qi, M. (2005). Neural network forecasting for seasonal and trend time series. EJOR, 160 (2), 501-514.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalNo linealidadspa
dc.subject.proposalModelos de umbralspa
dc.subject.proposalEstacionalidadspa
dc.subject.proposalPronósticosspa
dc.subject.proposalEconomíaspa
dc.subject.proposalNon-linearityeng
dc.subject.proposalThreshold modelseng
dc.subject.proposalSeasonalityeng
dc.subject.proposalForecasteng
dc.subject.proposalEconomicseng
dc.subject.unescoPrevisiónspa
dc.subject.unescoForecastingeng
dc.subject.unescoInferencia estadísticaspa
dc.subject.unescoStatistical inferenceeng
dc.subject.unescoSeries temporalesspa
dc.subject.unescoTime serieseng
dc.titlePronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionalesspa
dc.title.translatedNon-linear time series forecasting: application of the TSARX model and comparison with models for seasonal dataspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030623144.2022.pdf
Tamaño:
1.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: