29° Simposio Internacional de estadística

dc.contributor.corporatenameUniversidad Nacional de Colombia. Sede Bogotá. Facultad de Ciencias. Departamento de Estadísticaspa
dc.coverage.temporal15 de julio de 2019 - 19 de julio de 2019
dc.date.accessioned2025-05-02T15:57:29Z
dc.date.available2025-05-02T15:57:29Z
dc.date.issued2019-07
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractEl Simposio de Estadística de la Universidad Nacional de Colombia cuya primera versión se realizó en 1990 con el tema central "Análisis de Regresión", se ha constituido desde esa época en la cita anual que la comunidad científica, académica, investigativa, técnica y usuarios de la Estadística viene acudiendo en forma permanente. Con perseverancia, dedicación, calidad y trabajo, hemos llegado en el año 2016, a la versión número 26 de este evento, el más importante encuentro de estadística en el país y la región. Gracias a estos encuentros se ha llegado a tener un fortalecimiento dinámico y sostenido en el quehacer estadístico nacional: con lo cual los pioneros de esta idea pueden sentirse satisfechos, pues los diferentes comités organizadores le han cumplido al país y a la Universidad con el objetivo propuesto en la primera versión. En los 29 años del Simposio, el Comité Organizador quiere dejar plasmado en estas memorias los diferentes trabajos que se sometieron a un proceso de selección con las temáticas centrales del Simposio. El Simposio de Estadística en su XXIX versión, reunió en la Universidad del Norte a cerca de 270 participantes, quienes pudieron interactuar en un ambiente académico con una oferta de 6 cursillos, 10 conferencias magistrales, 102 comunicaciones y 76 pósters en temáticas tales como: Bioestadística, Muestreo, Estadística Industrial, Bayesiana, Econometría, Datos Funcionales, Análisis Multivariado, Series de Tiempo, Biometría, Ambiental, Epidemiología, Diseño de Experimentos y Modelamiento las cuales contribuyeron a generar un ambiente propicio de intercambio y discusión académica. Se destaca la participación de los invitados del exterior quienes contribuyeron con cursillos y conferencias especializadas en las diferentes áreas de la temática general del Simposio, lo que muestra que efectivamente en el Simposio se abordan ternas de punta en el desarrollo estadístico mundial. Tuvimos el privilegio de tener como figuras centrales en este encuentro a los profesores Brenda Betancourt de University of Florida (USA), Richard Davis de Columbia University (USA), Victor Leiva de la Pontificia Universidad Católica de Valparaíso (Chile), Roger Nelsen de Lewis & Clark College Portland, (USA), Daniel Pena de la Universidad Carlos III Madrid, (Espana), Ulrich Rendtel de De Freie Universitat Berlin (Germany). De igual manera contamos con la asistencia del director del Dane, Dr. Juan Daniel Oviedo. Resaltamos la consolidación de diferentes redes de cooperación internacional con Universidades de reconocido prestigio, para actividades como: jurados de tesis, dirección de tesis, árbitros para la Revista Colombiana de Estadística, pasantías, convenios para realizar estudios de posgrado en el exterior y profesores para cursos en los diferentes programas de estadística. Expresamos nuestro agradecimiento a todos las personas que contribuyeron con conferencias, comunicaciones y pósters. Gracias a ellos es y seguirá siendo viable este Simposio. (Texto tomado de la fuente)spa
dc.description.editionPrimera edición, 2019spa
dc.description.tableofcontents1. A continuous-continuous compounded model based on the Weibull distribution. F Peña, R Rojas, C. Tablada. -- 2. A DD-plot Based Homogeneity Test for Functional. A Calle, H Laniado, F Zuluaga -- 3. A new methodology for monitoring atmospheric contamination. C Marchant, V Leiva, G Christakos, M Cavieres. -- 4. A Record Linkage Model Incorporating Relational Data. J Sosa, A Rodríguez -- 5. A simulation approach for a new Ristic-Balakrishnan generalized model. R Rojas, F Peña, L Zea, M Correa -- 6. A statistical method to estimate fundamental niches of species from occurrence and physiological data. L Jiménez, J Soberon, A Christen -- 7. A stochastic model of the drug degradation in the body. R Cano J Jiménez, J Ruíz -- 8. Adaptación de algunas técnicas de prospectiva en R y su aplicación. S Gonzalez, J Aristizabal -- 9. Algunos resultados del proceso de Hofmann no-homogéneo. G Palomino, J Jiménez -- 10. An approach to calculate critical values of relevance measures in variable selection methods in data envelopment analysis. J. Villanueva, M Muñoz -- 11. An asymmetric model for small area estimation applied to Chilean data. M Rodríguez, M Huerta, V Leiva, A Tapia -- 12. Análisis de correspondencia canónica de factores de malnutrición. L Alemán, F Corena, J Cepeda, M Vertel -- 13. Analysis of variance for spatially correlated functional data application to brain data. J Aristizabal, R Giraldo, J Mateu -- 14. Another approach to Variable Interruption Rate Processes _ J Aristizabal -- 15. Aplicación de las extensiones de la distribución Weibull en el tiempo de mantenimiento de vehículos - A Urrea, F Hernández, C Patiño, O Usuga -- 16. Aplicaciones de la distribución Tweedie con modelos lineales generalizados. D Bermúdez, W Pineda -- 17. Assessment of Gene Regulatory Network Inference Algorithms Using Montecarlo simulations. L Lopez, A Zuur -- 18. Aumento de datos en muestras pequeñas para la estimación de parámetros de ítems en modelos TRI usando imputación múltiple. M Córdoba, J García -- 19. Bayesian networks applied to the risk of desertion of the college students. M Arango, V Pallares, C Barrera -- 20. Bootstrap and Asymptotic Location Runs Tests. J Corzo, M Vergara, G. Babativa -- 21. Capacidad de procesos en perfiles no lineales multivariados. T López, R Guevara -- 22. Classification and descriptive analysis for multivariate functional data of IMF signals. E Vargas, R Guevara, M Bohorquez S Villamizar -- 23. Classification for georeferenced functional brain signals. L Vargas, M Bohórquez, R Guevara, L Sarmiento -- 24. Classification for geostatistical functional data using depth. A Navarrete, R Guevara, M Bohórquez, J Bacca -- 25. Comparativo de los regímenes pensionales colombianos. J Huertas -- 26. Construcción y comparación de redes génicas de co-expresión de genes activos en cáncer de pulmón. M Carvajal, M Florez, L Lopez, D Osuna, A Otalora -- 27. Construction of Gene Regulatory Network using RNA Sequencing data based on graphical. C González, L López -- 28. Consumo de tabaco en estudiantes universitarios motivación a la cesación y dependencia: Un análisis factorial. F León, G Orlandoni, Y Bernal, F Gómez, L Amaya -- 29. Convergence of the trajectory of random walks systems on the complete graph. M Estrada, E Lebensztayn -- 30. Creación de un modelo predictor de abandono para la cadena Éxito. J Galindo, V López, C Castaño -- 31. Dashboard en R para Business Intelligence. S Londoño, Y Ocampo, R Iral -- 32. Detección de anomalías para la predicción de malware usando machine learning. A Velez, F Aldana, E Uribe, J Rivera -- 33. Detección de factores comunes en presencia de ruido serialmente correlacionado: algunos hallazgos. S Bolívar, F Nieto, D Peña -- 34. Detección de fallas en la industria textil utilizando un modelo de Campos de Markov. M Mendoza, V Rulloni, H Llinás, M Morales -- 35. Detección de Outliers en Series de Tiempo Funcionales. R Guevara, J Solano, S Calderon -- 36. Detección de puntos de cambio para datos funcionales multivariados. D Latorre, R Guevara -- 37. Distribución espacial del riesgo de lesiones en mujeres víctimas de violencia física. I Camargo, C Mariño. K Florez, C Sarmiento, E Navarro -- 38. Efecto de la Distribución de los Parámetros de los Ítems en la Confiabilidad de un Modelo de Respuesta al Ítem 3PL. R Duplat, C Reyes -- 39. El efecto de la agregación de vectores de conteos que dependen de una covariable aleatoria. V Morales, J Vargas -- 40. Enhanced method of using EWMA charts in Phase I processes. C Panza -- 41. Estadística Q (i) para PLSR. J Martínez -- 42. Estimación de un Modelo Arima que explique el comportamiento de la masa monetaria en Chile. H Mendoza, R Castro -- 43. Estimación del consumo total de energía mediante la técnica de calibración en caso completo, utilizando MDS con las métricas Euclidiana. C Sanchez, J Vera, M Rueda -- 44. Estimación en dos ocasiones usando la técnica de conteo de ítems de Hussain para poblaciones finitas. E Cruz, L González -- 45. Estimación en Modelamiento Estadístico de dos Variables Aleatorias dadas variables Explicativas a partir de un tipo de Subcópulas Bivariadas. L Castillo, L González -- 46. Estimating usual dietary intake of food within 24 hr recalls using a bivariate non linear measuremente error in adult and children. A Perez, T Atkins -- 47. Estudio de la acidez de los extractos del café mediante un modelo de regresión lineal múltiple. S Acevedo, N Ramirez, M Jaramillo -- 48. Evaluación de pronósticos de las reservas internacionales netas en Colombia - O Espinosa -- 49. Factores sociodemográficos y parasitológicos determinantes en la capacidad de aprendizaje y estado nutricional en escolares rurales: Minería de Datos para la toma de decisiones. M Méndez. J Martinez, S Fernandez, M Vertel --50. Forecasting Population in Colombia An Education Approach. A Sánchez -- 51. Gasto Público Social y Crecimiento Económico Evidencia para América Latina 1990 – 2016. M. Ortíz, J Campo -- 52. Geocomputación con R. H Torres -- 53. Hierarchical Clustering based on Categorical Data: Applications in Political Science, Entrepreneurship and Finance. N Hernández, C Murillo -- 54. Implementación pruebas no paramétricas MST, procesos de control. V Orjuela, R Guevara -- 55. Incidencia de enfermedades respiratorias según esquema de movilidad en Bucaramanga (Santander, Colombia). G Orlandoni, J Ramoni, M Pérez -- 56. Incorporating Gaussian concentration graph models in high dimensional linear regression problems: A hierarchical bayes approach. C Martínez, K Khare -- 57. Marcadores neuropsicológicos y factores asociados al deterioro cognitivo leve de predominio amnésico: Análisis desde modelos de regresión logística multinomial. J Benítez. C De Oro. K Florez, E Navarro. -- 58. Measuring the smoothness in the trend of a time series with autocorrelated errors: An application to a time seres of Mexico's GDP. D Cortés, V Guerrero -- 59. Método de Ecuaciones Estructurales en el análisis de la Encuesta de Salud Mental en la ciudad de Bogotá. Y Rojas, L Trujillo, A Suárez -- 60. Minería de texto para estudiar algunas terminologías sobre la ciencia de datos en Colombia. Y Marín, H Bermúdez, K Amaya, R Iral -- 61. Modelo de Exhibiciones Rentables. J Mejía, J Orozco, E Estrada -- 62. Modelo de regresión multinomial generalizado cero inflado aplicado a un experimento de agronomía. O Melo, S Melo, C Melo -- 63. Modelos de urna y sus aplicaciones. L Blanco -- 64. Monitoreo en fase II de multiples perfiles no lineales. J Bernal, R Guevara, C Panza, J Vargas -- 65. Multivariate outlier detection and robust estimation in high-dimensional data using skewness and projections. S Ortiz, H Laniado -- 66. Network data as an alternative to point patterns to analyze the street robberies - M Bohórquez, A Forero, R Rentería -- 67. No linealidades, Integración Fraccional y Convergencia de la tasa de Desempleo en Colombia - J Campo -- 68. Paquete en R para el desarrollo de algunas pruebas en estadística no paramétrica basadas en rangos. Y Ocampo, B Cano, M Jaramillo -- 69. Percepción frente al consumo de marihuana en universitarios mediante técnica de árboles de decisión. L Fonseca, J Ariza, J Aristizabal -- 70. Perfil sociodemográfico del votante en procesos de ele -- 71. cción N Magallanes, L Trueba -- 72. Perspectivas de la definición de número reproductivo básico en modelos epidemiológicos estocásticos con perturbaciones aleatorias. A Ríos, G Patrón, W Arunachalam -- 73. Por una estimación total de los Líderes Sociales asesinados. E Espinosa, J Rincón -- 74. Power Student t Model for Censored Data. J Villanueva, M Muñoz -- 75. Predicción de la precipitación del Departamento del Valle del Cauca a partir de información satelital. J Aparicio, D Soto, D Arango, J Olaya -- 76. Presencia de síndrome metabólico analizado mediante árboles de decisión: Caso clínica la inmaculada 2017. J Martín, L Fonseca, J Aristizabal -- 77. Privacy-preserving parametric inference: a case for robust statistics. M Avella -- 78. Procedimientos en la construcción de intervalos de confianza para la confiabilidad de sistemas en serie O Bru, M. Jaramillo -- 79. Propuesta didáctica de Machine Learning: un ejemplo de comparación de métodos de clasificación por medio de clasificación por medio de validación cruzada. A Angarita, F Grajales -- 80. Rasch’s Dichotomic model applied to a financial culture test. Y Ramírez, J Zábala -- 81. Regresión discontinua para análisis de causalidad con diseños de muestreo complejos. N Arteaga, L Trujillo -- 82. Robust three-step regression based on comedian and its performance in cellwise and casewise outliers. H Velasco, H Laniado, V Leiva, MToro -- 83. Selección de una Combinación Lineal de Factores Comunes como un Índice Coincidente para la Economía Colombiana. M Arrieta, F Nieto -- 84. Skew Normal: Ajuste vía GAMLSS versus SN. L González -- 85. Spatio-temporal Forecasting of Very-Short Term Predictive Densities in the context of Wind Power Output. M Arrieta, K Schell -- 86. Study of the immune response in patients with TBC using Bayes methods. V Díaz, J Tovar -- 87. Subregistro de conteos de procedimientos médicos aproximación por estimadores de calibración y muestreo Bernoulli. L Trujillo, A Suarez, N Suarez, Y Rojas -- 88. Técnicas de Regresión para Datos de Recuento. E Díaz, A Jaramillo -- 89. Topological Data Analysis on Time Series. A Domínguez -- 90. Un Análisis de Supervivencia sobre la Morosidad de los Microcréditos en Uruguay 2012- 2016. M Seijas, M Vibel, R Lado, S Fernández -- 91. Un Enfoque Bayesiano para la Estimación de Modelos TAR Multivariadoscon distribución de error generalizada. D Abril, S Calderón -- 92. Un método evolutivo para la optimización de las funciones de verosimilitud en modelos lineales mixtos. M Mazo -- 93. Una familia de estadísticas construidas a partir de rangos y secuencias para prueba de hipótesis de un problema de dos vías sin interacción. M Arrieta, J Ortíz -- 94. Una función de intensidad para un proceso de Poisson no homogéneo bivariado. B Suárez -- 95. Una propuesta para el monitoreo de observaciones normales multivariados en fase II. J Vélez, J Vargas, C Panza -- 96. Universal Kriging Based on Multivariate Kernel Regression. R Giraldo, S Martínez, W Caballero -- 97. Using The Random Projection Method in Classification of Spatial Functional Data. D Sánchez, R Guevara, M Bohórquez, R Giraldo -- 98. Uso de algoritmos de ensamble para la generación de índices sintéticos de concentración vía contratación en el sector salud colombiano. O Espinosa, G Moreno, J Ramírez, C Pinzón, L Riveros, M Jordán -- 99. Uso de modelo M2PL y distancia de Levenshtein para la detección de asociación incorrecta en encuestas longitudinales en pruebas de estado. M Córdoba, M Ramírez, D Contreras -- 100. Validación del Finnish Diabetes Risk Score (FINDRISC) como instrumento para la detección del riesgo de padecer diabetes tipo 2 en Europa utilizando la Curva ROC y modelos de regresión logística. L Anillo, K Flórez, T Acosta, E Navarro, R Sánchez, P Aschner -- 101. Ventajas y desventajas del modelo de volatilidad estocástica de Heston sobre una opción del SP500 - D Camargo -- 102. Web Application Developed for Spatial Modelling of Field trials. J Aparicio, D Ariza, B Raatzspa
dc.format.extent732 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.issn2463-0861
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlrepositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88145
dc.language.isospaspa
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Estadísticaspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.referencesCuevas, A., Febrero, M. & Fraiman, R. (2007), 'Robust estimation and classifica- tion for functional data via projection-based depth notions', Computational Statistics 22(3), 481-496. *https://doi.org/10.1007/s00180-007-0053-0spa
dc.relation.referencesFerraty, F. & Vieu, P. (2006), Nonparametric Functional Data Analysis: Theory and Practice, Springer Series in Statistics, Springer.spa
dc.relation.referencesFlores, R., Lillo, R. & Romo, J. (2018), 'Homogeneity test for functional data', Journal of Applied Statistics 45(5), 868-883. *https://doi.org/10.1080/02664763.2017.1319470spa
dc.relation.referencesFraiman, R. & Muniz, G. (2001), "Trimmed means for functional data', Test 10(2), 419-440.spa
dc.relation.referencesLiu, R. Y., Parelius, J. M. & Singh, K. (1999), 'Multivariate analysis by data depth: Descriptive statistics, graphics and inference', The Annals of Statistics 27(3), 783-840.spa
dc.relation.referencesRuiz-Meana, M., Garcia-Dorado, D., Pina, P., Inserte, J., Agullo, L. & Soler-Soler, J. (2003), 'Cariporide preserves mitochondrial proton gradient and delays atp depletion in cardiomyocytes during ischemic conditions', American Journal of Physiology-Heart and Circulatory Physiology 285(3), H999-H1006. PMID: 12915386. *https://doi.org/10.1152/ajpheart.00035.2003spa
dc.relation.referencesSzkély, G. J. (2002), e-statistics: The energy of statistical samples, Technical report, Bowling Green State University, Bowling Green, Ohio 43403, EE. UU.spa
dc.relation.referencesAhn, S., Korattikara, A., and Welling, M. (2012). Bayesian posterior sampling via stochastic gradient fisher scoring. arXiv preprint arXiv:1206.6380.spa
dc.relation.referencesBartunov, S., Korshunov, A., Park, S .- T., Ryu, W., and Lee, H. (2012). Joint link-attribute user identity resolution in online social networks. In Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, Workshop on Social Network Mining and Analysis. ACM.spa
dc.relation.referencesBeal, M. J. (2003). Variational algorithms for approximate Bayesian inference. University of London.spa
dc.relation.referencesBelin, T. R. and Rubin, D. B. (1995). A method for calibrating false-match rates in record linkage. Journal of the American Statistical Association, 90(430):694-707.spa
dc.relation.referencesBetancourt, B., Zanella, G., Miller, J. W., Wallach, H., Zaidi, A., and Steorts, R. C. (2016). Flexible models for microclustering with application to entity resolution. In Advances in Neural Information Processing Systems, pages 1417-1425.spa
dc.relation.referencesBinder, D. A. (1978). Bayesian cluster analysis. Biometrika, 65(1):31-38.spa
dc.relation.referencesBinder, D. A. (1981). Approximations to bayesian clustering rules. Biometrika, 68(1):275-285.spa
dc.relation.referencesBroderick, T. and Steorts, R. C. (2014). Variational bayes for merging noisy databases. arXiv preprint arXiv:1410.4792.spa
dc.relation.referencesBuccafurri, F., Lax, G., Nocera, A., and Ursino, D. (2012). Discovering links among social networks. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 467-482. Springer.spa
dc.relation.referencesChen, T., Fox, E., and Guestrin, C. (2014). Stochastic gradient hamiltonian monte carlo. In International Conference on Machine Learning, pages 1683-1691.spa
dc.relation.referencesChristen, P. (2012). Data matching: concepts and techniques for record linkage, entity resolution, and duplicate detection. Springer Science & Business Media.spa
dc.relation.referencesDomingos, P. (2004). Multi-relational record linkage. In In Proceedings of the KDD-2004 Workshop on Multi-Relational Data Mining. Citeseer.spa
dc.relation.referencesFellegi, I. P. and Sunter, A. B. (1969). A theory for record linkage. Journal of the American Statistical Association, 64(328):1183-1210.spa
dc.relation.referencesFienberg, S. E., Makov, U. E., and Sanil, A. P. (1997). A bayesian approach to data disclosure: Optimal intruder behavior for continuous data. Journal of Ofiicial Statistics -Srockholm-, 13:75-79.spa
dc.relation.referencesGelman, A., Hwang, J., and Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Statistics and Computing, 24(6):997-1016.spa
dc.relation.referencesGutman, R., Afendulis, C. C., and Zaslavsky, A. M. (2013). A bayesian procedure for file linking to analyze end-of-life medical costs. Journal of the American Statistical Association, 108(501):34-47.spa
dc.relation.referencesHoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the american Statistical association, 97(460):1090-1098.spa
dc.relation.referencesJordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1998). An introduction to variational methods for graphical models. Springer.spa
dc.relation.referencesKrivitsky, P. N. and Handcock, M. S. (2008). Fitting latent cluster models for networks with latentnet. Journal of Statistical Software, 24(5).spa
dc.relation.referencesLarsen, M. D. and Rubin, D. B. (2001). Iterative automated record linkage using mixture models. Journal of the American Statistical Association, 96(453):32-41.spa
dc.relation.referencesLau, J. W. and Green, P. J. (2007). Bayesian model-based clustering procedures. Journal of Computational and Graphical Statistics, 16(3):526-558.spa
dc.relation.referencesLiseo, B. and Tancredi, A. (2013). Some advances on bayesian record linkage and inference for linked data. http://www.ine.es/e/essnetdi_ws2011/ppts/Liseo_Tancredi.pdfspa
dc.relation.referencesMalhotra, A., Totti, L., Meira Jr, W., Kumaraguru, P., and Almeida, V. (2012). Studying user footprints in different online social networks. In Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), pages 1065-1070. IEEE Computer Society.spa
dc.relation.referencesMiller, J., Betancourt, B., Zaidi, A., Wallach, H., and Steorts, R. C. (2015). Microcluster- ing: When the cluster sizes grow sublinearly with the size of the data set. arXiv preprint arXiv:1512.00792.spa
dc.relation.referencesNarayanan, A. and Shmatikov, V. (2009). De-anonymizing social networks. In Security and Privacy, 2009 30th IEEE Symposium on, pages 173-187. IEEE.spa
dc.relation.referencesNeal, R. M. (2000). Markov chain sampling methods for dirichlet process mixture models. Journal of computational and graphical statistics, 9(2):249-265.spa
dc.relation.referencesNunes, A., Calado, P., and Martins, B. (2012). Resolving user identities over social networks through supervised learning and rich similarity features. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, pages 728-729. ACM.spa
dc.relation.referencesRosenthal, J. S. et al. (2011). Optimal proposal distributions and adaptive memc. Handbook of Markov Chain Monte Carlo, 4.spa
dc.relation.referencesSaul, L. K., Jaakkola, T., and Jordan, M. I. (1996). Mean field theory for sigmoid belief networks. Journal of artificial intelligence research, 4(1):61-76.spa
dc.relation.referencesShu, K., Wang, S., Tang, J., Zafarani, R., and Liu, H. (2017). User identity linkage across online social networks: A review. ACM SIGKDD Explorations Newsletter, 18(2):5-17.spa
dc.relation.referencesSpiegelhalter, D. J., Best, N. G., Carlin, B. P., and Linde, A. (2014). The deviance informa- tion criterion: 12 years on. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(3):485-493.spa
dc.relation.referencesSpiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4):583-639.spa
dc.relation.referencesSteorts, R. C. et al. (2015a). Entity resolution with empirically motivated priors. Bayesian Analysis, 10(4):849-875.spa
dc.relation.referencesSteorts, R. C., Hall, R., and Fienberg, S. E. (2014). Smered: a bayesian approach to graphical record linkage and deduplication. arXiv preprint arXiv:1403.0211.spa
dc.relation.referencesSteorts, R. C., Hall, R., and Fienberg, S. E. (2015b). A bayesian approach to graphical record linkage and deduplication. Journal of the American Statistical Association: Theory and Methods.spa
dc.relation.referencesTancredi, A. and Liseo, B. (2011). A hierarchical bayesian approach to record linkage and population size problems. The Annals of Applied Statistics, 5(2B):1553-1585.spa
dc.relation.referencesVeldman, I. (2009). Matching profiles from social network sites. Master's thesis, University of Twente.spa
dc.relation.referencesVosecky, J., Hong, D., and Shen, V. Y. (2009). User identification across multiple social networks. In Networked Digital Technologies, 2009. NDT'09. First International Conference on, pages 360-365. IEEE.spa
dc.relation.referencesWatanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applica- ble information criterion in singular learning theory. Journal of Machine Learning Research, 11(Dec):3571-3594.spa
dc.relation.referencesWatanabe, S. (2013). A widely applicable Bayesian information criterion. Journal of Machine Learning Research, 14(Mar):867-897.spa
dc.relation.referencesWelling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dy namics. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 681-688.spa
dc.relation.referencesZhang, H., Kan, M .- Y., Liu, Y., and Ma, S. (2014). Online social network profile linkage. In Information Retrieval Technology, pages 197-208. Springer.spa
dc.relation.referencesZhang, Y., Tang, J., Yang, Z., Pei, J., and Yu, P. S. (2015). Cosnet: Connecting heterogeneous social networks with local and global consistency. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1485-1494. ACM.spa
dc.relation.referencesAustin, M., Nicholls, A. & Margules, C. R. (1990), 'Measurement of the realized qualitative niche: environmental niches of five eucalyptus species', Ecological monographs 60(2), 161-177.spa
dc.relation.referencesAustin, M. P. (1999), 'A silent clash of paradigms: some inconsistencies in com- munity ecology', Oikos pp. 170-178. Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. (2014), 'The n-dimensional hypervolume', Global Ecology and Biogeogruphy 23(5), 595-609. *http://doi.wiley.com/10.1111/geb.12146spa
dc.relation.referencesCarnes, B. A. & Slade, N. A. (1982), 'Some comments on niche analysis in canon- ical space', Ecology 63(4), 888-893.spa
dc.relation.referencesChase, J. M. & Leibold, M. A. (2003), Ecological niches: linking classical and contemporary approaches, University of Chicago Press.spa
dc.relation.referencesChristen, J. A., Fox, C. et al. (2010), 'A general purpose sampling algorithm for continuous distributions (the t-walk)', Bayesian Analysis 5(2), 263-281.spa
dc.relation.referencesColwell, R. K. & Futuyma, D. J. (1971), 'On the measurement of niche breadth and overlap', Ecology 52(4), 567-576.spa
dc.relation.referencesColwell, R. K. & Rangel, T. F. (2009), 'Hutchinson's duality: the once and fu- ture niche', Proceedings of the National Academy of Sciences 106(Supplement 2), 19651-19658.spa
dc.relation.referencesEdwards, J. L., Lane, M. A. & Nielsen, E. S. (2000), 'Interoperability of bio- diversity databases: biodiversity information on every desktop', Science 289(5488), 2312-2314.spa
dc.relation.referencesElith, J. & Graham, C. H. (2009), 'Do they? how do they? why do they differ? on finding reasons for differing performances of species distribution models', Ecography 32(1), 66-77.spa
dc.relation.referencesElith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E. & Yates, C. J. (2011), 'A statistical explanation of MaxEnt for ecologists', Diversity and Distributions 17(1), 43-57.spa
dc.relation.referencesFarber, O. & Kadmon, R. (2003), 'Assessment of alternative approaches for bio- climatic modeling with special emphasis on the mahalanobis distance', Eco- logical modelling 160(1-2), 115-130.spa
dc.relation.referencesFranklin, J. (2010), Mapping species distributions: spatial inference and prediction, Cambridge University Press.spa
dc.relation.referencesGreen, R. H. (1974), 'Multivariate niche analysis with temporally varying envi- ronmental factors', Ecology 55(1), 73-83.spa
dc.relation.referencesGuisan, A. & Zimmermann, N. E. (2000), 'Predictive habitat distribution models in ecology', Ecological modelling 135(2-3), 147-186.spa
dc.relation.referencesHijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005), 'Very high resolution interpolated climate surfaces for global land areas', In- ternational Journal of Climatology: A Journal of the Royal Meteorological Society 25(15), 1965-1978.spa
dc.relation.referencesHirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. (2002), 'Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data?', Ecology 83(7), 2027-2036.spa
dc.relation.referencesHolt, R. D. (2009), 'Bringing the hutchinsonian niche into the 21st century: eco- logical and evolutionary perspectives', Proceedings of the National Academy of Sciences 106(Supplement 2), 19659-19665.spa
dc.relation.referencesHolt, R. D. (2009), 'Bringing the hutchinsonian niche into the 21st century: eco- logical and evolutionary perspectives', Proceedings of the National Academy of Sciences 106(Supplement 2), 19659-19665.spa
dc.relation.referencesHozo, S. P., Djulbegovic, B. & Hozo, I. (2005), 'Estimating the mean and variance from the median, range, and the size of a sample', BMC medical research methodology 5(1), 13.spa
dc.relation.referencesHutchinson, G. E. (1957), 'Cold spring harbor symposium on quantitative biology', Concluding remarks 22, 415-427.spa
dc.relation.referencesHutchinson, G. E. (1978), 'An introduction to population ecology.'.spa
dc.relation.referencesJackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. (2011), 'Comparing isotopic niche widths among and within communities: Bayesian analysis of stable isotope data', Journal of Animal Ecology 80(3), 595-602. *https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365- 2656.2011.01806.x%4010.1111/%28ISSN%291365- 2745.ecologyandevolutionirelandspa
dc.relation.referencesJimenez, L., Soberon, J., Christen, J. A. & Soto, D. (2019), 'On the problem of modeling a fundamental niche from occurrence data', Ecological Modelling 397, 74-83. *https://www.sciencedirect.com/science/article/pii/S0304380019300407spa
dc.relation.referencesLegendre, P. & Legendre, L. F. (2012), Numerical ecology, Vol. 24, Elsevier.spa
dc.relation.referencesMartinez-Meyer, E., Diaz-Porras, D., Peterson, A. T. & Yanez-Arenas, C. (2013), 'Ecological niche structure and rangewide abundance patterns of species', Biology Letters 9(1), 20120637-20120637. *http://rsbl.royalsocietypublishing.org/cgi/doi/10.1098/rsbl.2012.0637spa
dc.relation.referencesOrtega-Garcia, S., Guevara, L., Arroyo-Cabrales, J., Lindig-Cisneros, R., Martinez-Meyer, E., Vega, E. & Schondube, J. E. (2017), "The thermal niche of neotropical nectar-feeding bats: Its evolution and application to predict responses to global warming', Ecology and evolution 7(17), 6691-6701.spa
dc.relation.referencesOsorio-Olvera, L. A., Falconi, M. & Soberón, J. (2016), 'Sobre la relación entre idoneidad del habitat y la abundancia poblacional bajo diferentes escenarios de dispersión', Revista Mericana de Biodiversidad 87(3), 1080-1088. *http://linkinghub.elsevier.com/retrieve/pii/S1870345316300719spa
dc.relation.referencesPeterson, A. T., Soberon, J., Pearson, R. G., Anderson, R. P., Martinez-Meyer, E., Nakamura, M. & Araujo, M. B. (2011), Ecological niches and geographic distributions (MPB-49), Vol. 56, Princeton University Press.spa
dc.relation.referencesPulliam, H. R. (2000), 'On the relationship between niche and distribution', Ecol- ogy Letters 3(4), 349-361.spa
dc.relation.referencesQiao, H., Feng, X., Escobar, L. E., Peterson, A. T., Soberón, J., Zhu, G. & Pa- peŧ, M. (2019), 'An evaluation of transferability of ecological niche models', Ecography 42(3), 521-534.spa
dc.relation.referencesSoberon, J. & Arroyo-Pena, B. (2017), 'Are fundamental niches larger than the realized? testing a 50-year-old prediction by hutchinson', PloS one 12(4), e0175138.spa
dc.relation.referencesSunday, J. M., Bates, A. E. & Dulvy, N. K. (2010), 'Global analysis of thermal tolerance and latitude in ectotherms', Proceedings of the Royal Society B: Biological Sciences 278(1713), 1823-1830.spa
dc.relation.referencesOksendal, B. (2010), Stochastic differential equations: an introduction with appli- cations, Universitext, 6th ed edn, Springer.spa
dc.relation.referencesRamanathan, M. (1999a), 'An application of itô's lemma in population pharmaco- kinetics and pharmacodynamics', Pharmaceutical Research 16(4), 584-586.spa
dc.relation.referencesRamanathan, M. (1999b), 'A method for estimating pharmacokinetic risks of con- centration dependent drug interactions from preclinical data', Drug Metabo- lism and disposition 27, 1479 1487.spa
dc.relation.referencesRowland, M. y Tozer, T. (1995), Clinical Pharmacokinetics: Concepts and Appli- cations, third edn, Lippincott Williams & Wilkins.spa
dc.relation.referencesSweeney, G. (1983), 'Variability in the human drug response', Thrombosis Research 29,3-15.spa
dc.relation.referencesGodet, M. (1993), De la anticipación a la acción: manual de prospectiva y estrategia, Marcombo S.A, Paris.spa
dc.relation.referencesGodet-Michel (2000), La caja de herramientas de la prospectiva estratégica, Laboratoire d'Investigation Prospective et Stratégique 5(4), 68 - 74.spa
dc.relation.referencesJouvenel, H. (2005), Invitation a la Prospective, Editions Futuribles, Paris.spa
dc.relation.referencesMartínez Miguelez, M. (2012), Nuevos Fundamentos de la Investigación Científica, Trillas, México.spa
dc.relation.referencesMojica, J. (2006), Concepto y aplicación de la prospectiva estratégica', Revista Med 1, 122 - 131.spa
dc.relation.referencesPinto-J.P (2008), Las herramientas de la prospectiva estratégica: usos, abusos y limitaciones, Cuadernos de Administración (40), 47 - 56.spa
dc.relation.referencesGrandell, J. (1997), Mixed Poisson Processes, Monographs on Statistics & Applied Probability, Springer US.spa
dc.relation.referencesHofmann, M. (1955), Uber zusammengesetzte Poisson-Prozesse und ihre An- wendungen in der Unfallversicherung, Phd thesis, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Germany. *https://www.research-collection.ethz.ch/bitstream/handle/20. 500.11850/133380/eth-33067-02.pdfspa
dc.relation.referencesMcFadden, J. A. (1965), 'The mixed poisson process', Sankhya: The Indian Journal of Statistics, Series A (1961-2002) 27(1), 83-92.spa
dc.relation.referencesPhilipson, C. (1960), 'Note on the application of compound poisson processes to sickness and accident statistics', ASTIN Bulletin 1(4), 224 237.spa
dc.relation.referencesWalhin, J. & Paris, J. (1999), 'Using mixed poisson processes in connection with bonus-malus systems', ASTIN Bulletin 29(1), 81-99.spa
dc.relation.references[1] Measuring the efficiency of decision making units. A. Charnes, W. W. Cooper, E. Rhodes. European Journal of Operational Research, 2 (6). 1978, DOI: 10.1016/ 0377 2217(78)90138 8.spa
dc.relation.references[2] Stepwise selection of variables in DEA using contribution loads. Fernando Ferna ndez Palac i n, Mari a Auxil iador a Lo pez Sa nchez, Manuel Mun oz Ma rquez. Pesquisa Operacional, 38:1, 31 52. 2018, DOI: 10.1590/0101 7438.2018.038.01.0031.spa
dc.relation.referencesAlkema, L., New, J. R., Pedersen, J., & You, D. (2014). Child mortality estimation 2013: an overview of updates in estimation methods by the United Nations Inter-agency Group for Child Mortality Estimation. PloS One, 9 (7). Recuperado de: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101112spa
dc.relation.referencesAcosta, K., & Romero, J. (2014). Estimación indirecta de la tasa de mortalidad infantil en Colombia, 1964-2008. Banco de la República-Economía Regional. Recuperado de: http://www.banrep.gov.co/sites/default/files/publicaciones/archivos/dtser_199.pdfspa
dc.relation.referencesComisión Económica para América Latina y el Caribe – CEPAL- (2017) Anuario Estadístico de América Latina y el Caribe. Recuperado de: file:///C:/Users/Adriano%20Aleman/Desktop/simposio/CEPAL.pdfspa
dc.relation.referencesChessel et al. (2005) The ade4 Package — II: Two-table and K-table Methods. Recuperado de: https://pbil.univ-lyon1.fr/ade4/article/rnews2/rnews2.pdfspa
dc.relation.referencesDávila., C. & Pardo., A. (2016). Análisis de la tendencia e impacto de la mortalidad por causas externas: México, 2000-2013. Recuperado de: file:///C:/Users/Adriano%20Aleman/Desktop/simposio/descarga%20(2).pdfspa
dc.relation.referencesFondo de las Naciones Unidas para la Infancia – NICEF -. (s.f.) Nutrición Infantil y Crecimiento. Recuperado de: https://unicef.org.co/nutricion-crecimiento.spa
dc.relation.referencesForero., L. (2017) Mortalidad por desnutrición en menores de cinco años, aproximación estadística de los determinantes, Colombia 2009-2012. Recuperado de: file:///C:/Users/Adriano%20Aleman/Desktop/simposio/80656429%202016.pdfspa
dc.relation.referencesJaramillo, M., Chernichovsky, D. & Jiménez, J. (2017). Determinantes de la mortalidad infantil en Colombia. Path Análisis. Recuperado de: file:///C:/Users/Adriano%20Aleman/Desktop/simposio/0124-0064-rsap-20-01-00003.pdfspa
dc.relation.referencesOrganización mundial de la salud (2018) género y salud. Recuperado de : https://www.who.int/es/news-room/fact-sheets/detail/genderspa
dc.relation.referencesPardo., C. & Del Campo., P. (2007) Combinación de métodos factoriales y de análisis de conglomerados en R: el paquete FactoClass. Recuperado de: http://www.scielo.org.co/pdf/rce/v30n2/v30n2a06.pdfspa
dc.relation.referencesRajmil., L. Díez., E & Peiró R. (2010) desigualdades sociales en la salud infantil. Informe SESPAS 2010. Recuperado de: file:///C:/Users/Adriano%20Aleman/Desktop/simposio/1-s2.0-S0213911110002591-main.pdfspa
dc.relation.referencesR Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Recuperado de: https://www.R-project.orgspa
dc.relation.referencesValle., E. (2016) Conceptualización básica en demografía. Recuperado de: http://www.saludcapital.gov.co/DSP/COVES/2016/Julio/Presentaciones/3.%20Conceptualizaci%C3%B3n%20demograf%C3%ADa.pdf.spa
dc.relation.referencesAristizabal-Rodríguez, J. (2011). Metodología Estadística para el análisis de datos funcionales cerebrales: Una aproximación con potenciales evocados. Master Thesis. Statistics Department, Universidad Nacional de Colombia http://www.bdigital.unal.edu.co/5320/.spa
dc.relation.referencesChatrian, G. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked eeg activity. American Journal of EEG Technology, 25, 83–92.spa
dc.relation.referencesCressie, N. (1993). Statistics for Spatial Data. New York: John Wiley & Sons.spa
dc.relation.referencesCuesta-Albertos, J., & Febrero-Bande, M. (2010). A simple multiway ANOVA for functional data. TEST, 19, 537–557.spa
dc.relation.referencesDelicado, P., Giraldo, R., Comas, C., & Mateu, J. (2010). Statistics for spatial functional data: some recent contributions. Environmetrics, 21, 224–239.spa
dc.relation.referencesDiggle, P., & Ribeiro, P. (2007). Model-Based Geostatistics. New York: Springer. Downer, R. (2002). A permutation alternative and other test procedures for spatially correlated data in one-way ANOVA. Journal of Statistical Computation and Simulation, 72, 747–757.spa
dc.relation.referencesFerraty, F., & Vieu, P. (2006). Non Parametric Functional Data Analysis. Theory and Practice. New York: Springer.spa
dc.relation.referencesFomby, T., Stanley, R., Johnson, S., & Hill, R. (1984). Advanced Econometric Methods. chapter Feasible Generalized Least Squares Estimation. (pp. 147–169). Springer.spa
dc.relation.referencesGervini, D., & Carter, P. (2014). Warped functional analysis of variance. Biometrics, 70, 26–535spa
dc.relation.referencesGiraldo, R. (2009). Geostatistical analysis of functional data. Ph.D. thesis Universitat Politecnica de Catalunyaspa
dc.relation.referencesGiraldo, R., Caballero, W., & Camacho-Tamayo, J. (2018). Mantel test for spatial functional data. Advances in Statistical Analysis, 102, 21–39.spa
dc.relation.referencesGiraldo, R., Delicado, P., & Mateu, J. (2011). Ordinary kriging for function-valued spatial data. Environmental and Ecological Statistics, 18, 411–426.spa
dc.relation.referencesGiraldo, R., Molina, A., Torres, J., Acosta, M., & Mart´ınez, S. (2016). Study of the spectral signatures of oil palms a ected with lethal wilt, using functional data analysis. Palmas, 37, 131–139.spa
dc.relation.referencesGneiting, T., Kleiber,W., & Schlater, M. (2010). Matern cross-covariance functions for multivariate random fields. Journal of the American Statistical Association, 105, 1167–1177.spa
dc.relation.referencesGoovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. New York: Oxford University Pressspa
dc.relation.referencesGoulard, M., & Voltz, M. (1992). Linear corregionalization model: tools for estimation and choice of crossvariogram matrix. Mathematical Geology, 24, 269–282.spa
dc.relation.referencesHorváth, L., & Kokoszka, P. (2012). Inference for Functional Data with Applications. New York: Springer.spa
dc.relation.referencesJohnson, R., & Wichern, D. (2002). Applied Multivariate Statistical Analysis. New Jersey: Prentice Hallspa
dc.relation.referencesKokozska, P., & Reimherr, M. (2019). Some recent developments in inference for geostatistical functional data. Revista Colombiana de Estadística, 42, 101–122.spa
dc.relation.referencesLindquist, A. (2008). The statistical analysis of fMRI data. Statistical Science, 23, 439–464.spa
dc.relation.referencesMa, L., & Soriano, J. (2018). Efficient functional ANOVA through wavelet-domain markov groves. Journal of the American Statistical Association, 113, 802–818.spa
dc.relation.referencesOostenvelda, R., & Praamstr, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112, 713–719.spa
dc.relation.referencesPini, A., Vantini, S., Colosimo, B., & Grasso, M. (2018). Domain-selective functional analysis of variance for supervised statistical profile monitoring of signal data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 67, 55–81.spa
dc.relation.referencesRamsay, J., & Silverman, B. (2005). Functional Data Analysis. Second edition. New York: Springerspa
dc.relation.referencesRuiz-Medina, M. (2016). Functional analysis of variance for Hilbert-valued multivariate fixed effect models. Statistics, 50, 689–715spa
dc.relation.referencesSchabenberger, O., & Gotway, C. (2005). Statistical Methods for Spatial Data Analysis. Boca Raton: Chapman & Hall/CRC.spa
dc.relation.referencesSchwaller, M., & Morris, K. (2011). A ground validation network for the global precipitation measurement mission. Journal of Atmospheric and Oceanic Technology, 28, 301–319.spa
dc.relation.referencesShen, Q., & Faraway, J. (2004). An F test for linear models with functional responses. Statistica Sinica, 14, 1239–1257.spa
dc.relation.referencesSørensen, H., Goldsmith, J., & Sangalli, L. (2013). An introduction with medical applications to functional data analysis. Statistics in Medicine, 32, 5222–5240.spa
dc.relation.referencesStaicu, A., Crainiceanu, C., & Carroll, R. (2010). Fast methods for spatially correlated multilevel functional data. Biostatistics, 11, 177–194.spa
dc.relation.referencesVempala, S. (2004). The Random Projection Method. Rhode Island: American Mathematical Society. Ver Hoef, J., & Barry, R. (1998). Constructing and fitting models for cokriging and multivariable spatial prediction. Journal of Statistical Planning and Inference, 69, 275–294.spa
dc.relation.referencesWackernagel, H. (2003). Multivariate Geostatistics. Berlin: Springer-Verlag.spa
dc.relation.referencesYudofsky, S., & Hales, R. (2007). Neuropsychiatry and Behavioral Neurosciences. Arlington: The American Psychiatric Publishing.spa
dc.relation.referencesZhang, J. (2014). Analysis of Variance of Functional Data. Boca Rat´on: CRC Press.spa
dc.relation.referencesMurray R. Spiegel, John Schiller, Alu Srinivasan. (2013), ‘Probability and Statistics’ McGraw Hillspa
dc.relation.referencesLuis Leithod. (1994), ‘El Cálculo’. Oxford University Pressspa
dc.relation.referencesAlimian, M.,Saidi-Mehrabad,M.&Jabbarzadeh,A.(2019),‘Arobustintegrated productionandpreventivemaintenanceplanningmodelformulti-statesys- tems withuncertaindemandandcommoncausefailures’, In Transportation ResearchProcedia 50, 263–277.spa
dc.relation.referencesAlmalki, S.&Nadarajah,S.(2014),‘ModificationsoftheWeibulldistribution:A review’, ReliabilityEngineeringandSystemSafety 124, 32–55.spa
dc.relation.referencesBurnham, K. & Anderson,D.(2002), Model selection and inference: A Practical Information Theoretic Approach., secondedn, New York: Springer.spa
dc.relation.referencesFadda, E., Gobbato, L., Perboli, G., Rosano, M. & Tadei, R. (2018), 'Waste Collection in Urban Areas: A Case Study', Interfaces pp. 1-16.spa
dc.relation.referencesGreenwich, M. (1991), ' A unimodal hazard rate function and its failure distribu- tion', Statistical Papers 33, 187-202.spa
dc.relation.referencesJardine, A. & Tsang, A. (2013), Maintenance, Replacement, and Reliability. Sec- ond, second edn, New York: CRCPress.spa
dc.relation.referencesLaks, P. & Verhagen, W. (2017), 'Identification of optimal preventive mainte- nance decisions for composite components', Transportation Research Procedia 29, 202-212.spa
dc.relation.referencesMecánica, D. I. (2019), Informe técnico de mantenimiento correctivo y preventivo de vehículos, Technical report, Universidad Nacional de Colombia.spa
dc.relation.referencesSanchez, N., Venable, L., Fahrenbachc, J. & Churpek, M. (2016), ' Comparison of variable selection methods for clinical predictive modeling', International journal of medical informatics 116, 10-17.spa
dc.relation.referencesRafter, D.(2019),‘To keep your waste trucks running, focus on preventive maintenance.’ *https://www.foresternetwork.com/msw-management/waste-collection-vehicles/article/13024953/to-keep-your-waste-trucks-running-focus-on-preventive-maintenancespa
dc.relation.referencesSermpinis, G., Tsoukas, S. & Zhang, P.(2018),‘Modelling market implied ratings using LASSO variable selection techniques’, Journal of Empirical Finance 48, 19–35.spa
dc.relation.referencesWilliams, P.,Kendall, W.& Hooten, M.(2019), ‘Selecting ecological models using multi-objective optimization’, Ecological Modelling 404, 21–26.spa
dc.relation.referencesBonat, W. H., Kokonendji, C. C. (2017). Flexible Tweedie regression mod- els for continuous data. Journal of Statistical Computation and Simulation, 87(11), 2138-2152.spa
dc.relation.referencesJørgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society: Series B (Methodological), 49(2), 127-145.spa
dc.relation.referencesSinger, James (1938). A Theorem in finite projective geometry and some ap- plications to number Theory, Transactions of the American Mathematical Society, 43, 377-385 pp.spa
dc.relation.referencesTweedie, M. C. K. (1984, December). An index which distinguishes between some important exponential families. In Statistics: Applications and new di- rections: Proc. Indian statistical institute golden Jubilee International con- ference (Vol. 579, pp. 579-604).spa
dc.relation.referencesde Ayala, R.J. (2009), The Theory and Practice of Item Response Theory, THE GUILFORD PRESS - New York London, New York.spa
dc.relation.referencesFoley, P (2010), 'Improving IRT parameter estimates with small sample sizes: Evaluating the efficacy of a new data augmentation technique', Educatio- nal Assessment, Evaluation, and Research Commons, Educational Psychology Commons, and the Quantitative Psychology Commons 7, 1.spa
dc.relation.referencesReckase, M.D (2009), Multidimensional Item Response Theory, Statistics for Social and Behavioral Sciences - Springer, New York.spa
dc.relation.referencesRubin D.B. (1987 ), 'Multiple Imputation for Nonresponse in Surveys', New York: Wiley 6(1), 111-122.spa
dc.relation.referencesBayesFusion LLC. (2016). GeNIe. Pittsburgh: BayesFusion Downloads for Academia. Retrieved from https://download.bayesfusion.com/files.html?category=Academiaspa
dc.relation.referencesCabrera, A., Nora, A., & Castaneda, M. (1993). College persistence: Structural Equations modelling test of integrated model of student retention. Journal of Higher Education, 106(2), 262-333.spa
dc.relation.referencesDávila Aragón, G., Ortiz Arango, F., & Cruz Aranda, F. (2016). Cálculo del valor en riesgo operacional mediante redes bayesianas para una empresa financiera. Contaduria y Administracion, 61(1), 176-201.spa
dc.relation.referencesFarnaz, N., Song, S., Stowd, & Craig. (2017). Comparative analysis of discretization methods in Bayesian networks. Environmental Modelling & Software, 87, 64–71.spa
dc.relation.referencesGroden, M., & Collette, M. (2017). Fusing fleet in-service measurements using Bayesian networks. Marine Structures, (54), 38–49. https://doi.org/10.1016/j.marstruc.2017.03.001spa
dc.relation.referencesJaramillo García, I., González Restrepo, L., & Quintero Salgado, M. (2019). Lineamientos de política interistitucional para la permanencia y graduación estudiantil. Medellín, Colombiaspa
dc.relation.referencesJensen, F. V. (2001). Bayesian Networks and Decision Graphs. Barcelona, España: Springer.spa
dc.relation.referencesKrieg, M. L. (2001). A tutorial on Bayesian belief networks.spa
dc.relation.referencesLozano, M. R. (2011). El papel de las redes bayesianas en la toma de decisiones. La Simulación Al Servicio de La Academia, (2), 1–11.spa
dc.relation.referencesMasmoudi, K., & Masmoudi, A. (2019). A new class of continuous Bayesian networks. International Journal of Approximate Reasoning, 109(june), 125–138.spa
dc.relation.referencesMontes Gutiérrez, I., Almonacid Hurtado, P., Gómez Cardona, S., Zuluaga Díaz, F., & Tamayo Zea, E. (2010). Análisis de la deserción estudiantil en los programas de pregrado de la Universidad EAFIT. Cuadernos de Investigación. Medellín, Colombia.spa
dc.relation.referencesPallares-Arboleda, V., Barrera-Causil, C., & Arango-Uribe, M. (2017). Construction of a sustainable business model through Bayesian networks. In XXVII Simposio Internacional de Estadística – 5th International Workshop on Applied S. Medellín, Colombia: Universidad Nacional de Colombia, Sede Bogotá.spa
dc.relation.referencesPhan, T., Smart, J., Capon, S., Hadwen, W., & Sahin, O. (2016). Applications of Bayesian belief networks in water resource management: a systematic review. Environmental Modelling & Software, 85, 98–111.spa
dc.relation.referencesRicoachury, H., & Lara, L. (1984). Los Desertores. Cuadernos de Planeación. Bogotá: Universidad Pedagógica Nacionalspa
dc.relation.referencesSandoval, J., & Barrera-Causil, C. J. (2010). Algunos Factores Relacionados con La Deserción Universitaria. Una visión desde los Desertores.spa
dc.relation.referencesSarmiento-Gómez, A. (2006). Una Estrategia para Aumentar la Retención de los Estudiantes. Ministerio de Educación Nacional. Departamento Nacional de Planeación.spa
dc.relation.referencesSusi García, R. (2007). Análisis de sensibilidad en Redes Bayesianas Gaussianas. Universidad Complutense de Madridspa
dc.relation.referencesTinto, V. (1975). Dropout from higher education: A theorical synthesis of recent research. Review of Educational Research, 45(1), 89–125.spa
dc.relation.referencesUribe Orozco, S., Peláez Cardona, V., Correa Henao, J., & Mejía Juménez, J. (2016). Análisis diagnóstico de la situación y las políticas de Educación Superior en Medellín. Agencia de Educación Superior de Medellín - sapiencia-.spa
dc.relation.referencesHajek, J. (1999), Theory of Rank Test, 2 edn, Academic Press, New York.spa
dc.relation.referencesHesterberg, T., Moore, D. S., Monaghan, S., Clipson, A. & Epstein, R. (2005), 'Bootstrap methods and permutation tests', Introduction to the Practice of Statistics 5, 1-70.spa
dc.relation.referencesHettmansperger, T. (1984), Statistical Inference Based on Ranks, John Wiley & Sons, New York.spa
dc.relation.referencesHiggins, J. J. (2003), 'Introduction to modern nonparametric statistics'.spa
dc.relation.referencesThompson, B. (1993), 'The use of statistical significance tests in research: Bootstrap and other alterna- tives', The Journal of Eaperimental Education 61(4), 361-377.spa
dc.relation.referencesBohorquez, M., Giraldo, R. & Mateu, J. (2016a), 'Multivariate functional random fields: prediction and optimal sampling', Stochastic Environmental Research and Risk Assessment 31.spa
dc.relation.referencesBohorquez, M., Giraldo, R. & Mateu, J. (2016b), 'Optimal sampling for spatial prediction of functional data', Statistical Methods Applications 25(1), 39-54. *https://EconPapers.repec.org/RePEc:spr:stmapp:v:25:y:2016:i:1:p:39-54spa
dc.relation.referencesDai, W. & Genton, M. G. (2018), 'Multivariate functional data visualization and outlier detection', Journal of Computational and Graphical Statistics 27(4), 923-934. *https://doi.org/10.1080/10618600.2018.1473781spa
dc.relation.referencesDai, W. & Genton, M. G. (2019), 'Directional outlyingness for multivariate functional data', Computational Statis- tics Data Analysis 131, 50 - 65. High-dimensional and functional data analysis. *http://www.sciencedirect.com/science/article/pii/S016794731830077Xspa
dc.relation.referencesHuang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N .- C., Tung, C. C. & Liu, H. H. (1998), 'The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis', Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454(1971), 903-995.spa
dc.relation.referencesLiang, H., Bressler, S. L., Desimone, R. & Fries, P. (2005), 'Empirical mode decomposition: a method for analyzing neural data', Neurocomputing 65-66, 801 - 807. Computational Neuroscience: Trends in Research 2005. *http://www.sciencedirect.com/science/article/pii/S0925231204004655spa
dc.relation.referencesM. Bohorquez, R. Giraldo and J. Mateu. (2017) Multivariate functional ran- dom fields: prediction and optimal sampling. Stochastic Environmental Re- search and Risk Assessment, (31), 1, 53-70.spa
dc.relation.referencesA.C. Rencher and W.F. Christensen. (2012). Multivariate analysis: Methods and applications. John Wiley & Sons, NY.spa
dc.relation.referencesP. Galeano, J. Esdras and R. Lillo. (2015). The Mahalanobis distance for functional data with applications to classification. Technometrics, (57), 2, 281-291.spa
dc.relation.referencesBalzanella, A. & Elvira, R. (2015), A depth function for geostatistical functional data, in 'Advances in Statistical Models for Data Analysis', Springer, pp. 9- 16.spa
dc.relation.referencesBohorquez, M., Giraldo, R. & Mateu, J. (2017), 'Multivariate functional random fields: prediction and optimal sampling', Stochastic environmental research and risk assessment 31(1), 53-70.spa
dc.relation.referencesLopez-Pintado, S. & Romo, J. (2006), 'Depth-based classification for functional data', DIMACS Series in Discrete Mathematics and Theoretical Computer Science 72, 103.spa
dc.relation.referencesHenao, J. D., Lopez-Kleine, L. & Pinzon-Velasco, A. (2019), coernet: coernet: An R package to build CO-EXpression NETworks from Microarray Data. R package version 1.6.0.spa
dc.relation.referencesIbragimov, R., Malek, M., Guo, J. & Baumbach, J. (2013), 'Gedevo: An evolutionary graph edit distance algorithm for biological network alignment', OpenAccess Series in Informatics 34.spa
dc.relation.referencesMeyer (2008), Information-Theoretic Variable Selection and Network Inference from Microarray Data, de l'Université Libre de Bruxelles, Bruxelles, Belgique.spa
dc.relation.referencesColeman, T., Stevenson, K., & Wilson, A. (2002). A new method for describing smokers' consulting behaviours which indicate their motivation to stop smoking: An exploration of validity and reliability. Family Practice, 19(2), 154-160. Doi:10.1093/fampra/19.2.154spa
dc.relation.referencesCastaño Castrillón, J. J., Páez Cala, M. L., Pinzón Montes, J. H., Rojo Bustamante, E., Sánchez Castrillón, G. A., Torres Ríos, J. M., Gallego Giraldo, C. A. (2010). Estudio descriptivo sobre tabaquismo en la comunidad estudiantil de la universidad de Manizales. 2007 -. Revista De La Facultad De Medicina; Vol. 56, Núm. 4 (2008) 2357-3848 0120-0011spa
dc.relation.referencesFernández, V. H., Beligoy, M. E., Lima, Y. V., & Barissi, P. F. (2015). Estudio transversal sobre tabaquismo y su relación con valores espirométricos en estudiantes de tercer año de medicina. Medwave, 15(03), e6124. Doi:10.5867/medwave.2015.03.6124spa
dc.relation.referencesFidler, J. A., Shahab, L., & West, R. (2011). Strength of urges to smoke as a measure of severity of cigarette dependence: Comparison with the fagerstrom test for nicotine dependence and its components. Addiction, 106(3), 631-638. Doi:10.1111/j.1360-0443.2010.03226.xspa
dc.relation.referencesGonzálvez, M. T., Espada, J. P., & Orgilés, M. (2015). Estado de ánimo y consumo de tabaco en una muestra de adolescentes españoles. Revista Latinoamericana de Psicología, 47(2), 86-92. Doi:10.1016/j.rlp.2015.05.001 Espada, & Orgilés (2015)spa
dc.relation.referencesHeatheron, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerström, K. (1991). The Fagerström test for nicotine dependence: A revision of the Fagerström tolerance questionnaire. British Journal of Addiction, 86(9), 1119-1127. Doi:10.1111/j.1360-0443.1991.tb01879.xspa
dc.relation.referencesKotz, D., Brown, J., & West, R. (2013). Predictive validity of the motivation to stop scale (MTSS): A single-item measure of motivation to stop smoking. Drug and Alcohol Dependence, 128(1), 15-19. Doi:10.1016/j.drugalcdep.2012.07.012spa
dc.relation.referencesRadzius, A., Gallo, J. J., Epstein, D. H., Gorelick, D. A., Cadet, J. L., Uhl, G. E., & Moolchan, E. T. (2003a). A factor analysis of the Fagerström test for nicotine dependence (FTND). Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, 5(2), 255-240.spa
dc.relation.referencesRichmond, R. L., Kehoe, L. A., & Webster, I. W. (1993). Multivariate models for predicting abstention following intervention to stop smoking by general practitioners. Addiction (Abingdon, England), 88(8), 1127-1135spa
dc.relation.referencesAlves, O., Machado, F. & Popov, S. (2002), 'Phase transition for the frog model', Electron. J. Probab. 7, 21 pp.|spa
dc.relation.referencesAlves, O. S. M., Lebensztayn, E., Machado, F. P. & Martinez, M. Z. (2006), 'Random walks systems on complete graphs', Bulletin of the Brazilian Math- ematical Society 37(4), 571-580.spa
dc.relation.referencesCorless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J. & Knuth, D. E. (1996), 'On the Lambert W function', Adu. Comput. Math 5, 329.spa
dc.relation.referencesGallo, S. & Rodriguez, P. M. (2018), 'Frog models on trees through renewal theory', Journal of Applied Probability 55(3), 887-899.spa
dc.relation.referencesHermon, J. (2018), 'Frogs on trees?', Electron. J. Probab. 23, 40 pp.spa
dc.relation.referencesHoppensteadt, F. (1982), Mathematical Methods of Population Biology, Cambridge Studies in Mathematical Biology, Cambridge University Press.spa
dc.relation.referencesJohnson, N., Kotz, S. & Kemp, A. (1992), Univariate discrete distributions, Wiley series in probability and mathematical statistics: Probability and mathemat- ical statistics, John Wiley & Sons.spa
dc.relation.referencesJohnson, T. & Junge, M. (2016), 'The critical density for the frog model is the degree of the tree', Electron. Commun. Probab. 21, 12 pp.spa
dc.relation.referencesLebensztayn, E. & Estrada, M. A. (2019), 'Laws of large numbers for the frog model on the complete graph', https://arxiv.org/abs/1903.06305spa
dc.relation.referencesLebensztayn, E., Machado, F. P. & Popov, S. (2005), 'An improved upper bound for the critical probability of the frog model on homogeneous trees', Journal of Statistical Physics 119(1), 331-345.spa
dc.relation.referencesLebensztayn, E., Machado, F. & Zuluaga, M. (2006), 'Random walks systems with finite lifetime on Z', Markou Process. Related Fields 12(4), 735 745.spa
dc.relation.referencesPopov, S. Y. (2001), 'Frogs in random environment', Journal of Statistical Physics 102(1), 191-201.spa
dc.relation.referencesRosenberg, J. (2017), 'Recurrence of the frog model on the 3,2-alternating tree', ArXiv e-prints .spa
dc.relation.referencesTelcs, A. & Wormald, N. C. (1999), 'Branching and tree indexed random walks on fractals', Journal of Applied Probability 36(4), 999-1011.spa
dc.relation.referencesBerhane, F. (9 de 2 de 2017). Youtobe. Obtenido de R Shiny: Email and Text Message Alerts Based on Streaming Sensor Data: https://www.youtube.com/watch?v=0xZZC8SAxAQspa
dc.relation.referencesDiazaraque, J. M. (s.f.). Universidad Carlos III de Madrid. Obtenido de http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/Categor/Tema1Cate.pdfspa
dc.relation.referencesrstudio. (s.f.). shinydashboard. Obtenido de https://rstudio.github.io/shinydashboard/spa
dc.relation.referencesrstudio. (s.f.). flexdashboard for R. Obtenido de https://rmarkdown.rstudio.com/flexdashboard/spa
dc.relation.references. Alhakami, W., ALharbi, A., Bourouis, S., Alroobaea, R., & Bouguila, N. (2019). Network Anomaly Intrusion Detection Using a Nonparametric Bayesian IEEE Access, 7, 52181?52190. https://doi.org/10.1109/ACCESS.2019.2912115spa
dc.relation.referencesIndian Institute of Technology Patna, & Institute of Electrical and Electron- ics Engineers. (n.d.). 2016 Sixth International Symposium on Embedded Computing and System Design ?: ISED 2016 ?: proceedings ?: 15-17 Decem- ber 2016, IIT Patna, Bihar, India.spa
dc.relation.referencesMclachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2018). Annual Review of Statistics and Its Application Finite Mixture Models. https://doi.org/10.1146/annurev- statistics Naway, A., & Li, Y. (2019). Android Malware Detection Using Autoencoder.spa
dc.relation.referencesP. Bhatt, A. M. (2018). HADS: Hybrid Anomaly Detection System for IoT Environments.Park, S., Gondal, I., Kamruzzaman, J., & Oliver, J. (2019). Generative Malware Outbreak Detection.spa
dc.relation.referencesPark, S., Gondal, I., Kamruzzaman, J., & Oliver, J. (2019). Generative Malware Outbreak Detection.spa
dc.relation.referencesStaerman, G., Mozharovskyi, P., Clémençon, S., & d?Alché-Buc, F. (2019). Functional Isolation Forest. Retrieved from http://arxiv.org/abs/1904.04573 . Yan, P., & Yan, Z. (2018). A survey on dynamic mobile malware detection. Software Quality Journal, 26(3), 891?919. https://doi.org/10.1007/s11219- 017-9368-4spa
dc.relation.referencesYe, Y., Chen, L., Hou, S., Hardy, W., & Li, X. (2018). DeepAM: a heteroge- neous deep learning framework for intelligent malware detection. Knowledge and Information Systems, 54(2), 265?285. https://doi.org/10.1007/s10115- 017-1058-9spa
dc.relation.referencesMultivariate Anomaly Detection in Real-World Industrial Systems, Confer- ence: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2008, part of the IEEE World Congress on Computational Intelli- gence, WCCI 2008, Hong Kong, China, June 1-6, 2008spa
dc.relation.referencesAhn, S. C. & Horenstein, A. R. (2013), 'Eigenvalue ratio test for the number of factors', Econometrica 81(3), 1203-1227.spa
dc.relation.referencesLam, C. & Yao, Q. (2012), 'Factor modeling for high-dimensional time series: Inference for the number of factors', The Annals of Statistics 40(2), 694-726.spa
dc.relation.referencesNieto, F. H., Peña, D. & Saboya, D. (2016), 'Common seasonality in multivariate time series', Statistica Sinica 26, 1389-1410. *http://www3.stat.sinica.edu.tw/ss_newpaper/SS-14-184t_na.pdfspa
dc.relation.referencesPena, D. & Poncela, P. (2006), 'Nonstationary dynamic factor analysis', Journal of Statistical Planning and Inference 136, 1237-1257.spa
dc.relation.referencesPena, D. & Box, G. E. P. (1987), 'Identifying a Simplifying Structure in Time Series', Journal of the American Statistical Association 82(399), 836-843. *http://www.jstor.org/stable/2288794spa
dc.relation.referencesONU, Intensificación de esfuerzos para eliminar todas las formas de violencia contra la mujer. 2007 [cited 2018 Jun 8]; Available from: https://www.iom.int/jahia/webdav/shared/shared/mainsite/policy_and_research/un/61/A_RES_61_143_ES.pdfspa
dc.relation.referencesMoreno S. Forensis 2017, Datos para la Vida [Internet]. 2018 [cited 2018 Jun 7]. 293-294 p. Available. from: http://www.medicinalegal.gov.co/documents/20143/262076/Forensis+2017+pdf+interactivo.pdf/e3786e81-8718-b8d5-2731-55758c8ac7ffspa
dc.relation.referencesLeyes | Observatorio de Igualdad de Género [Internet]. [cited 2018 Jun 8]. Available from: https://oig.cepal.org/es/paises/9/profilespa
dc.relation.referencesOrganización Mundial de la Salud. Violencia contra la mujer infligida por su pareja [Internet]. Organization Mundial de la Salud. World Health Organization; 2013 [cited 2018 Jun 8]. Available from: http://www.who.int/gender/violence/who_multicountry_study/summary_report/chapter2/es/index2.htmlspa
dc.relation.referencesValencia U De. La violencia contra la mujer en la pareja. Un estudio en el ámbito de la atención primaria. 2006;20(3):202–8.spa
dc.relation.referencesTobergte DR, Curtis S. Profiling Domestic Violence: A Multi-Country Study. J Chem Inf Model. 2013;53(9):1689–99.spa
dc.relation.referencesVives-Cases C, Gil-González D. La violencia contra las mujeres como problema de salud. ¿Un asunto cuestionable? [Internet]. Vol. 22, Gaceta Sanitaria. Elsevier Doyma; 2008 [cited 2018 Jun 14]. p. 619–20. Available from: https://www.sciencedirect.com/science/article/pii/S0213911108753664?via%3Dihubspa
dc.relation.referencesInstituto Nacional de Medicina Legal y Ciencias Forensis. http://www.medicinalegal.gov.co/cifras-estadisticas/forensisspa
dc.relation.referencesTeam, R. et al. (2015), ‘Rstudio: integrated development for r’, RStudio, Inc., Boston, MA URL http://www. rstudio. com 42, 14.spa
dc.relation.referencesUniversity of Cambridge WinBUGS v.1.4.3/openbugs. https://www.mrc-bsu.cam.ac.uk/training/short-courses/bayescourse/spa
dc.relation.referencesQGIS Development Team (2018). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org”.spa
dc.relation.referencesONU, Intensificación de esfuerzos para eliminar todas las formas de violencia contra la mujer [cited 2019 May 27] url: https://www.un.org/womenwatch/daw/vaw/publications/Spanish%20study.pdfspa
dc.relation.referencesSánchez E. (2013), Análisis espacial de la relación entre mortalidad y vivir cerca de zonas verdes, Universidad Politécnica de Cataluña, Universidad de Barcelona [cited 2019 May 27] https://upcommons.upc.edu/bitstream/handle/2099.1/18165/memoria.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesJ. Besag, J. York, and A. Mollié. Bayesian image restoration, with two applications in spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics, 43:1–59, 1991. [cited 2019 May 27]spa
dc.relation.referencesEnrique Gracia, Antonio López-Quílez, Miriam Marco, Marisol Lila, Neighborhood characteristics and violence behind closed doors: The spatial overlap of child maltreatment and intimate partner violence, Journal Plos one: June 7, 2018, [cited 2019 Jun 10] url: https://doi.org/10.1371/journal.pone.0198684spa
dc.relation.referencesLuis Montealegre, Carlos Valdés, Claudia Niño, Pedro Morales, James Valencia, Yanteh Cuestas, Claudia Monroy, Luisa Alarcón, Martha Pataquiva. Protocolo de valoración del riesgo de violencia mortal contra mujeres por parte de su pareja o expareja. Instituto de Medicina Legal y Ciencias Forenses. 2014[cited 2019 Jun 10] url:http://www.medicinalegal.gov.co/documents/20143/40693/Protocolo+de+valoraci%C3%B3n+del+riesgo+de+violencia+mortal+contra+las+mujeres+por+parte+de+su+pareja+o+expareja.pdf/704722d4-3f17-288e-eab0-dd0dc9b291f7spa
dc.relation.referencesAdams, R. J. (2005). Reliability as a measurement design effect. Studies in Educational Evaluation, 31(2-3), 162-172.spa
dc.relation.referencesArmstrong, R. D., Jones, D. H., \& Wang, Z. (1998). Optimization of classical reliability in test construction. Journal of Educational and Behavioral Statistics, 23(1), 1-17.spa
dc.relation.referencesChalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6):1–29.spa
dc.relation.referencesDodeen, H. (2004). The relationship between item parameters and item fit. Journal of Educational Measurement, 41(3):261–270.spa
dc.relation.referencesEmbretson, S. E., \& Reise, S. P. (2013). Item response theory. Psychology Pressspa
dc.relation.referencesHanson, B. A., \& Béguin, A. A. (2002). Obtaining a common scale for item response theory item parameters using separate versus concurrent estimation in the common-item equating design. Applied psychological measurement, 26(1), 3-24.spa
dc.relation.referencesHope, A. C. (1968). A simplified monte carlo significance test procedure. Journal of the Royal Statistical Society. Series B (Methodological), pages 582–598.spa
dc.relation.referencesICFES (2018), Guía de diseño producción aplicación y calificación. Instituto Colombiano para la Evaluación de la Educación.spa
dc.relation.referencesICFES (2017). Implementación de un diseño de bloques incompletos balanceados en las pruebas genéricas de Saber 11.º. Instituto Colombiano para la Evaluación de la Educación.spa
dc.relation.referencesICFES (2009) Informe técnico SABER 5o. y 9o. 2009 (pág. 62-64). Instituto Colombiano para la Evaluación de la Educaciónspa
dc.relation.referencesLi, Y. H. and Lissitz, R. W. (2004), Applications of the Analytically Derived Asymptotic Standard Errors of Item Response Theory Item Parameter Estimates. Journal of Educational Measurement, 41: 85-117.spa
dc.relation.referencesSinharay, S., & Lu, Y. (2008). A further look at the correlation between item parameters and item fit statistics. Journal of Educational Measurement, 45(1), 1-15.spa
dc.relation.referencesVan der Linden, W., Veldkamp, B., and Carlson, J. (2004). Optimizing balanced incomplete block designs for educational assessments. Applied Psychological Measurement, 28(5):317-331spa
dc.relation.referencesAskoy, S., Weihs, C. & Haralick, R. (2000), Feature normalization and likelihood- based similarity measures for image retrieval, Technical report, University of Washington.spa
dc.relation.referencesKang, L. & Albin, S. (2000), Journal of Quality Technology 43, 196-208.spa
dc.relation.referencesMahmoud, M. & Woodall, W. (2004), Technometrics 46, 380-391.spa
dc.relation.referencesNoorossana, R., A, S. & A, A. (2011), John Wiley & Sons, Inc.spa
dc.relation.referencesNoorossana, R., Fatemi, S. & Zerehsaz, Y. (2015), The International Journal of Advanced Manufacturing Technology 76, 779-787.spa
dc.relation.referencesQi, D., Wang, Z., Xi, X. & Li, Z. (2016), Computers & Industrial Engineering 94, 178-187.spa
dc.relation.referencesQiu, P. & Zou, C. (2010), Statistica Sinica 20, 1655-1682.spa
dc.relation.referencesShang, Y., Tsung, F. & Zou, C. (2011), Journal of Quality Technology 43, 196-208.spa
dc.relation.referencesWilliams, J., Woodall, W. & Birch, J. (2007), Quality and Reliability Engineering International 23, 925-941.spa
dc.relation.referencesZou, C., Qiu, P. & Hawkins, D. (2009), Statistica Sinica 19, 1337-1357.spa
dc.relation.referencesZou, C., Tsung, F. & Wang, Z. (2007), Technometrics 49, 395-408.spa
dc.relation.referencesChakaborti, S., Human, S. & Graham, M. (2009), 'Phase I statistical process control charts: an overview and some results', Quality Engineering 21(1), 52 62.spa
dc.relation.referencesSchoonhoven, M., Riaz, M. & Does, R. (2011), 'Design and analysis of control charts for standard deviation with estimated parameters', Journal of Quality Technology 43(2), 307-333.spa
dc.relation.referencesShen, X., Zou, C., Jiang, W. & Tsung, F. (2013), 'Monitoring Poisson count data with probability control limits when sample sizes are time varying', Naval Research Logistics 60(8), 625-636.spa
dc.relation.referencesTatum, L. (1997), 'Robust estimation of the process standard deviation for control charts', Technometrics 39(2), 127-141.spa
dc.relation.referencesZwetsloot, I., Schoonhoven, M. & Does, R. (2014), 'A robust estimator for loca- tion in Phase I based on an EWMA chart', Journal of Quality Technology 46(4), 302-316.spa
dc.relation.references[Hoskuldsson(1988)] A. Hoskuldsson, PLS Regression Methods, Journal of Chemometrics. 2 (1988) 211-228.spa
dc.relation.referencesMartens & Martens (2001)] H. Martens, & M. Martens, Multivariate Analysis of Quality An Introduction, John Wiley & Sons, (2001).spa
dc.relation.references[Rincon (2009)] L. Rincon, Curso basico de modelos lineales, Publicaciones Uni- versidad Santo Tomás, (2009).spa
dc.relation.referencesFearn (1983] T. Fearn, A Misuse of Ridge Regression in the Calibration of a Near Infrared Reflectance Instrument, Journal of the Royal Statistical Society. 32 (1983) 73-79.spa
dc.relation.references[Martínez (2018a)] J. Martinez, Estimador del impacto causado por una obser- vación en Coeficientes Beta de Regresion PLS, XXVIII Simposio Internacional de Estadística. Bucaramanga-Colombia (2018).spa
dc.relation.references[Martínez (2018b)] J. Martínez, V. Leiva, H. Saulo, F. Ruggeri, G. Arteaga, A new estimator for the covariance of the PLS coefficients estimator with applications to chemical data, Journal of Chemometrics. 32 (2018) 1-17.spa
dc.relation.references[Martínez (2017)] Martinez J, Saulo H, Escobar H, Leao J. A new model selection criterion for partial least squares regression. Chemom Intell Lab Syst. 169 (2017) 64-78.spa
dc.relation.referencesArraño G., E. (2006). Agregados Monetarios: Nuevas Definiciones. Santiago: Estudios Económicos Estadísticosspa
dc.relation.referencesCerda Norambuena, R., & Lema Navarro, A. (2005). Desalineaciones Monetarias y Cambiarias e Inflación. El Trimestre Económico, LXXII(287), 545-579.spa
dc.relation.referencesCruz Hidalgo, E., & Parejo Moruno, F. M. (2016). El dinero en la historia del pensamiento económico: la teoría monetaria post-keynesiana y su confrontación con la ortodoxia. (U. d. Extremadura, Ed.) Iberian Journal of the History of Economic Thought, III(1), 27-41spa
dc.relation.referencesDe Gregorio, J. (2003). Mucho Dinero y Poca Inflación: Chile y la Evidencia Internacional. Cuadernos de Economía, 40(121), 716-724spa
dc.relation.referencesFerrrada K., C., & Tagle E., M. (2014). Estimación reciente de la Demanda de Dinero en Chile. Economía Chilena, 17(3), 86-109.spa
dc.relation.referencesVíctor M. Guerrero, & Eliud Silva. (2013). Graduación no-paramétrica con suavidad y estructura impuestas por el analista: aplicaciones demográficas para México. Estudios Demográficos y Urbanos, 28(2(83)), 429.spa
dc.relation.referencesGarcía S., P., & Pérez N., C. (2017). Desigualdad, inflación, ciclos y crisis en Chile. Estudios de Economía, 44(2), 59-95.spa
dc.relation.referencesGaviria Rios, M. A. (2007). Apuntes de teoría y política monetaria. Pereira, Colombia: edumed.net.spa
dc.relation.referencesMarshall S., J. (1991). Políticas monetarias seguidas en Chile desde la creación del Banco Central. Cuadernos de Economía, 29-54spa
dc.relation.referencesVergara, R. (2003). El Dinero como Indicador de Política Monetaria en Chile. Cuadernos de Economía, 40(121), 707-715.spa
dc.relation.referencesCardot, Herve; Goga, Camelia; Shehzad, Muhammad. (2017.) "Calibration and Partial Calibration on Principal Components when the Number of Auxiliary Variables is Large" Statistica Sinica. 27. pag 243-260.spa
dc.relation.referencesCox, Trevor F .; Cox, Michael A. A. (2001.) "Multidimensional Scaling" Ed. Chapman & Hall/CRC. Second Edition. 2001.spa
dc.relation.referencesDeville, Jean-Caude; Sarndal, Carl-Erik. (1992.) "Calibration Estimators in Survey Sampling" Journal of the American Statistical Association, Vol. 87, No. 418 (Jun., 1992), pp.376-382.spa
dc.relation.referencesArtes, E. & Garcia, A. (2002). Aportaciones al muestreo sucesivo, Revista Colombiana de Estadística 25, No 2: 145-158.spa
dc.relation.referencesChaudhuri, A. & Christofides, T. (2013). Indirect Questioning in Sample Surveys, Springer Science & Business Media.spa
dc.relation.referencesCobo, R. (2013). Respuesta aleatoria y técnicas de preguntas indirectas, Departamento de Estadística e Investigación Operativa. Universidad de Granada.spa
dc.relation.referencesCochran, W. G. (1977). Sampling Techniques, New York, NY (USA) Wiley.spa
dc.relation.referencesCoutts, E. & Jann, B. (2011). Sensitive questions in online surveys: Experimental results for the randomized response technique and the unmatched count technique, Sociological Methods & Research 40(1): 169-193.spa
dc.relation.referencesDroitcour, J., Caspar, R. A., Hubbard, M. L., Parsley, T. L., Visscher, W. & Ezzati, T. M. (1991). The item count technique as a method of indirect questioning: A review of its development and a case study application, Wiley Online Library, pp. 185-210.spa
dc.relation.referencesEfron, B. (1979). Bootstrap methods: Another look at the jackknife, Ann. Statist. 7(1): 1-26. URL: https://doi.org/10.1214/aos/1176344552spa
dc.relation.referencesHussain, Z. & Shabbir, J. (2010). On item count technique in survey sampling, Journal of Informatics and Mathematical Sciences 2(2 & 3): 161-169.spa
dc.relation.referencesHussain, Z., Shah, E. A. & Shabbir, J. (2012). An alternative ítem count technique in sensitive surveys, Revista Colombiana de Estadística 35(1): 39{54.spa
dc.relation.referencesImai, K. (2011). Multivariate regression analysis for the item count technique, Journal of the American Statistical Association.spa
dc.relation.referencesKuha, J. & Jackson, J. (2014). The item count method for sensitive survey questions: Modelling criminal behaviour, Journal of the Royal Statistical Society: Series C (Applied Statistics) 63(2): 321-341spa
dc.relation.referencesPatterson, H. (1950). Sampling on successive occasions with partial replacement of units, Journal of the Royal Statistical Society B12: 241-255.spa
dc.relation.referencesSarndal, C.-E., Swensson, B. & Wretman, J. (1992). Model Assisted Survey Sampling, New York: Springer.spa
dc.relation.referencesTrujillo, L., González, L. & Soberanis, V. (2013). Item count techniques in sampling from finite population, Technical report, Universidad Nacional de Colombia.spa
dc.relation.referencesTsuchiya, T., Hirai, Y. & Ono, S. (2007). Study of the properties of the item count technique, Public Opinon Quarterly 71(2): 253-272.spa
dc.relation.referencesDe Amo, E., Díaz Carrillo, M., Durante, F., Fernández Sánchez, J. (2017). Extensions of subcopulas, Journal of Mathematical Analysis and Applications 452 (1): 1 - 15.spa
dc.relation.referencesDurante, F. and Sempi, C., (2016), Principles of Copula Theory, CRC press.spa
dc.relation.referencesErdely, A. (2009), Cópulas y dependencia de variables aleatorias: Una introducción, Miselanea Matemática 48, 7 – 28.spa
dc.relation.referencesErdely, A. (2017), A subcopula based dependence measure, Kybernetika 53 (2), 231 - 243.spa
dc.relation.referencesJoe, H., (2014), Dependence Modeling with Copulas, CRC Press.spa
dc.relation.referencesNelsen, R. B., (2006), An Introduction to Copulas, Vol. 139, Springer, New Yorkspa
dc.relation.referencesShemyakin, A. and Kiniazev, A., (2017), Introduction to Bayesian Estimation and Copula Models of Dependence, Wileyspa
dc.relation.referencesSong, P. X. K., Fan, Y. and Kalbeisch, J. D. (2005), Maximization by parts in likelihood inference, Journal of the American Statistical Association 100 (472), 1145 - 1158.spa
dc.relation.referencesInternational., A., & Latimer, G. W. J. (2016). AOAC Official Method 920.92. In Official methods of analysis of AOAC International. Rockville, MD: AOAC International.spa
dc.relation.referencesK, Y. (1992). Relationship between fresh-roasted flavour and titrable acidity of stored ground coffee. Jpn. Soc. Food Sci. Technol., 39, 619.spa
dc.relation.referencesMacDougall, D. B. (2002). Colour in food : improving quality. CRC Pressspa
dc.relation.referencesManzocco, L., & Nicoli, M. C. (2007). Modeling the Effect of Water Activity and Storage Temperature on Chemical Stability of Coffee Brews. Journal of Agricultural and Food Chemistry, 55(16), 6521–6526. https://doi.org/10.1021/jf070166kspa
dc.relation.referencesR Core Team (2017) R: A language and enviroment for statistical computing. R Foundation for Statistical Computing, Vienna,Autria. URL:https://www.R-project.org/.spa
dc.relation.referencesAguin, V., Rivero, A., Sequera, I., Serrano, R., Pulgar, V., & Renzo, I. (2011). Prevalencia y relación entre parasitosis gastrointestinal y bajo rendimiento académico en escolares que acuden a la escuela Bolivariana de Jayana, Falcon. Revista CES Salud Pública, 125-135spa
dc.relation.referencesAmato, P. R. (2001). Children of divorce in the 1990s. Journal of Family Psychology, 355-370.spa
dc.relation.referencesBarón, M., Solano, L., & Páez, M. C. (2007). Estado nutricional de hierro y parasitosis intestinal en niños de Valencia, Estado Carabobo, Venezuela. Anales Venezolanos de Nutrición, 20(1), 5-11.spa
dc.relation.referencesBundy, D. (1994). Inmunoepidemiology of intestinal helminthic infections. Trans.Royal Soc. Trop. Med. Hyg, 254 –261.spa
dc.relation.referencesCervini, R., Dari, N., & Quiroz, S. (2014). Estructura familiar y rendimiento académico en países de América Latina: Los datos del SERCE. RMIE, 569-597spa
dc.relation.referencesChessel, D., & Dufour, A. (2004). ADE4: Analisis of Evironmental Data: Exploratory and Eucluide an method multivariate. Lyon, Francia: Data analysis and graphical display .spa
dc.relation.referencesDah, D. (5 de febrero de 2016). Package ‘xtable’. Recuperado el 04 de Julio de 2016, de URL: http://xtable.r-forge.r-project.org/spa
dc.relation.referencesDaza, C. (1997). Nutrición infantil y rendimiento escolar. Colombia Médica Vol 28 No. 22, 92-98.spa
dc.relation.referencesEnríquez, C., & Segura, A. &. (2013). Factores de riesgo asociados a bajo rendimiento académico en escolares de Bogotá. Investigaciones Andina. No. 26 Vol. 15., 654-666spa
dc.relation.referencesFajardo, L., Escobar, M., De Ramírez, B., Angel, L., & Lareo, L. &. (1991). Relación entre los niveles de hemoglobina, hierro y ferritina y el rendimiento académico en una población escolar. Revista Colombia Médica Vol 22, No 3, 109-114.spa
dc.relation.referencesHusson, F., & Pages, J. (2011). Exploraty Multivariate Analisis By Example Using R. Taylor and Francis Group.spa
dc.relation.referencesPeña, O. G. (2015). Incidencia de parasitosis en el estado nutricional en niños escolares de la Unidad Educativa “Julio Enrique Fernández”. Repositorio Institucional UniAndes.spa
dc.relation.referencesPollitt, E. (1971). Desnutrición, antecedentes bio-sociales y desarrollo. Revista de Neuropsiquiatría, 21-37.spa
dc.relation.referencesR Development Core Team. (2016). R: A language and environment for statistical computing. Vienna: Foundation for Stadistical Computingspa
dc.relation.referencesRivero, M., De Angelo, C., Nuñez, P., Salas, M., Motta, C., Chiarreta, A., . . . Liang, S. (2017). Environmental and socio-demographic individual,family and neighborhood factors associated withchildren intestinal parasitoses at Iguazu, in the subtropical northern border of Argentina. Argentina. PLoS Negl Trop Disspa
dc.relation.referencesVerhagen LM, I. R. (2013). High Malnutrition Rate in Venezuelan Yanomami Compared to Warao Amerindians and Creoles: Significant Associations WITH Intestinal Parasites and Anemia. PLoS ONE.spa
dc.relation.referencesLovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation with R. CRC Press.spa
dc.relation.referencesCarmona, J.C. (2009), ‘Infección respiratoria aguda en relación con la contaminación atmosférica y otros factores ambientales’, Archivos de medicina 9(1), 69-79.spa
dc.relation.referencesGaviria, C.F., Benavides, P.C. & Tangarife C.A. (2011), ‘Contaminación por material particulado (PM10 y PM2.5) y consultas por enfermedades respiratorias en Medellín (2008-2009)’, Rev. Fac. Nac. Salud Pública 29(3), 240-250.spa
dc.relation.referencesGómez, A., Henao, E., Molina, E. & Molina, F. (2003), ‘Evaluación de las partículas totales (PST) y partículas respirables (PM10) en la zona de Guayabal, Medellín, Colombia’, Revista Facultad de Ingeniería 30, 24-33spa
dc.relation.referencesHernández, L.J., Aristizábal, G., Quiroz, L., Medina, K., Rodríguez, N., Sarmiento, R. & Osorio S.D. (2007), ‘Contaminación del aire y enfermedades respiratorias en menores de cinco años en Bogotá’, Rev Salud Pública 15(4), 503-516.spa
dc.relation.referencesOrlandoni G.; Ramoni, J., & Pérez, M. (2018), ‘Estudio de Calidad del aire en el Área Metropolitana de Bucaramanga, 2016-2017. Un estudio comparativo de series temporales’, XXVIII Memorias Simposio Internacional de Estadística.spa
dc.relation.referencesOrtiz, C.H., Escobar, J., García, D. (1996), ‘Contaminación atmosférica y salud: estimación de una función dosis-respuesta para Cali. Documentos de trabajo CIDSE: Universidad del Vallespa
dc.relation.referencesRodríguez, L.A., Herrera, A.B., Castro, H, Niederbacher, J. & Vera, L.M. (2010), ‘Incidencia de síntomas respiratorios y su asociación con contaminación atmosférica en preescolares: un análisis multinivel’, Cad. Saúde Publica 26 (7), 1411-1418.spa
dc.relation.referencesPetersen RC. Mild cognitive impairment. Continuum (N Y). 2016;22(April):404–18.spa
dc.relation.referencesOkello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Någren K, et al. Conversion of amyloid positive and negative mci to ad over 3 years: An c-pib pet study symbol. Neurology. 2009;73(10):754–60.spa
dc.relation.referencesWHO. World Health Organization. Demencia, Datos y Cifras. 2018;1–7.spa
dc.relation.referencesHosmer Jr, D. W., Lemeshow, S. & Sturdivant, R. X. (2013), Applied logistic regression, Vol. 398, John Wiley & Sons.spa
dc.relation.referencesOMS y Alzheimer’s Disease International (ADI). Dementia: a public health priority. Demencia. 2013. 103spa
dc.relation.referencesCorp., I. (2017), IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0.Armonk, NY, Spssspa
dc.relation.referencesTeam, R. et al. (2015), ‘Rstudio: integrated development for r’, RStudio, Inc., Boston, MA URL http://www. rstudio. com 42, 14spa
dc.relation.referencesFrisoni GB, Perani D, Bastianello S, Bernardi G, Porteri C, Boccardi M, et al. Biomarkers for the diagnosis of Alzheimer’s disease in clinical practice: an Italian intersocietal roadmap. Neurobiol Aging. 2017;52:119–31.spa
dc.relation.referencesBusse A, Hensel A, Gühne U, Angermeyer M, Riedel-Heller S. Mild cognitive impairment: Long-term course of four clinical subtypes. Neurology. 2006;67(12):2176–85.spa
dc.relation.referencesManly JJ, Tang MX, Schupf N, Stern Y, Vonsattel JPG, Mayeux R. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol. 2008;63(4):494–506.spa
dc.relation.referencesA DC. CIND and MCI in the Italian Elderly. Neurology. 2007;68:1909–16.spa
dc.relation.referencesLarrieu S, Letenneur L, Orgogozo JM, Fabrigoule C, Amieva H. Incidence and outcome of mild cognitive impairment in a population-based. Am Acad Neurol. 2002;59:1594–9.spa
dc.relation.referencesCancino M, Rehbein L. Factores de riesgo y precursores del Deterioro Cognitivo Leve (DCL): Una mirada sinóptica. Ter Psicológica. 2016;34(3):183–9spa
dc.relation.referencesGuevara C, Pardo R. manifestación temprana de demencia symptom in dementia Reflexión. 2010;26(3)spa
dc.relation.referencesRodríguez Rodríguez N, Juncos-Rabadán O, Facal Mayo D. Discriminación mediante marcadores cognitivos del deterioro cognitivo leve frente a envejecimiento normal. Rev Esp Geriatr Gerontol. 2008;43(5):291–8spa
dc.relation.referencesText Mining with R, tomado de: https://www.tidytextmining.com/tfidf.html/spa
dc.relation.referencesprocesamiento del lenguaje natural: http://www.iic.uam.es/inteligencia/que-es-procesamiento-del-lenguaje-natural/spa
dc.relation.referencesMinería de texto frente a analítica de texto, tomado de: https://www.educba.com/text-mining-vs-text-analytics/spa
dc.relation.referencesLéopold . Hardle, Wolfgang Karl ; Simar. Applied multivariate statistical analysis. fourth edition. springer, heidelberg, 2015. xiv+580 pp. ISBN: 978-3-662-45170-0; 978-3-662-45171-7.spa
dc.relation.referencesBrett Lantz. Machine learning with r second edition. packt publishing, UK, Second Edition, 2015.ISBN : 978-1-78439-390-8.spa
dc.relation.referencesWilliam F Rencher, Alvin C. ; Christensen. Methods of multivariate analysis.third edition. wiley series in probability and statistics. john wiley & sons, Hoboken, NJ, 2012. xxvi+758 pp. ISBN: 978-0-470-17896-6.spa
dc.relation.referencesDan Simovici. Mathematical analysis for machine learning and data mining. world scientific publis- hing co. pte. Itd., hackensack, nj., 2018. xv+968 pp. ISBN: 978-981-3229-68-6.spa
dc.relation.referencesMontgomery, D. C.(2009). Statistical quality control, Vol.7. Wiley New Yorkspa
dc.relation.referencesMontgomery, D. C. (2009), Statistical Quality Control, Vol. 7, Wiley New York.spa
dc.relation.referencesZhang, J., Ren, H., Yao, R., Zou, C. & Wang, Z. (2015), Phase I analysis of multivariate profiles based on regression adjustment, Vol. 85, Elsevier.spa
dc.relation.referencesZou, C., Wang, Z. & Tsung, F. (2012), A spatial rank-based multivariate EWMA control chart, Vol. 59, Wiley Online Library.spa
dc.relation.referencesAtkinson, A. C. (1994), 'Fast Very Robust Methods for the Detection of Multiple Outliers', Journal of the American Statistical Association 89(428), 1329 - 1339.spa
dc.relation.referencesDavis, C. M. & Adams, B. M. (2005), 'Robust Monitoring of Contaminated Data', Journal of Quality Technology 37(2), 163 - 174.spa
dc.relation.referencesDonoho, D. (1982), Breakdown properties of multivariate location estimators, Technical report, Harvard University, Boston.spa
dc.relation.referencesFilzmoser, P. (2005), 'Identification of Multivariate Outliers: A Performance Study', Austrian Journal of Statistics 34(2), 127 - 138.spa
dc.relation.referencesGaleano, P., Pena, D. & Tsay, R. (2006), 'Outlier detection in multivariate time series by projection pursuit', Journal of the American Statistical Association 101(474), 654 - 669.spa
dc.relation.referencesHubert, M. & Van der Veeken, S. (2008), 'Outlier detection for skewed data', Journal of Chemometrics 22(3-4), 235-246.spa
dc.relation.referencesMagnotti, J. F. & Billor, N. (2014), 'Finding multivariate outliers in fMRI time- series data', Computers in Biology and Medicine 53, 115 - 124.spa
dc.relation.referencesMaronna, R. A., Martin, R. D. & Yohai, V. J. (2006), Robust Statistics: Theory and Methods, Wiley Series in Probability and Statistics, Wiley.spa
dc.relation.referencesMaronna, R. A. & Zamar, R. H. (2002), 'Robust Estimates of Location and Dis- persion for High-Dimensional Datasets', Technometrics 44(4), 307 - 317.spa
dc.relation.referencesPena, D. & Prieto, F. J. (2001), 'Multivariate Outlier Detection and Robust Co- variance Matrix Estimation', Technometrics 43(3), 286 - 300.spa
dc.relation.referencesPena, D. & Prieto, F. J. (2007), 'Combining Random and Specific Directions for Outlier Detection and Robust Estimation in High-Dimensional Multivariatespa
dc.relation.referencesRocke, D. M. (1989), 'Robust Control Charts', Technometrics 31(2), 173- 184.spa
dc.relation.referencesRocke, D. M. & Woodruff, D. L. (1996), 'Identification of outliers in multivariate data', Journal of the American Statistical Association 91(435), 1047 - 1061.spa
dc.relation.referencesRousseeuw, P. J. (1984), 'Least Median of Squares Regression', Journal of the American Statistical Association 79(388), 871 - 880.spa
dc.relation.referencesRousseeuw, P. J. & Leroy, A. (1987), Robust regression and outlier detection, Wiley Series in Probability and Mathematical Statistics, Wiley, New York.spa
dc.relation.referencesRousseeuw, P. J. & Van Driessen, K. (1999), 'A Fast Algorithm for the Minimum Covariance Determinant Estimator', Technometrics 41(3), 212- 223.spa
dc.relation.referencesSajesh, T. A. & Srinivasan, M. R. (2012), 'Outlier detection for high dimensional data using the Comedian approach', Journal of Statistical Computation and Simulation 82(5), 745 - 757.spa
dc.relation.referencesStahel, W. A. (1981), Robuste Schatzungen: infinitesimale Optimalitat und Schatzungen von Kovarianzmatrizen, PhD thesis, ETH, Zurich, Switzerland.spa
dc.relation.referencesBetancur, C., González, M. & Reza, L. (2006), 'Seroepidemiología de la rinotra- queitis infecciosa bovina en el municipio de montería, colombia', Revista MVZ Córdoba 11(2).spa
dc.relation.referencesConover, W. (1980), Practical nonparametric statistics, in 'Practical nonparame- tric statistics', John Wiley & Sons.spa
dc.relation.referencesde Mendiburu, F. (2017), agricolae: Statistical Procedures for Agricultural Re- search. R package version 1.2-8. *https://CRAN.R-project.org/package=agricolaespa
dc.relation.referencesR. Development Core Team (2019), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *http://www.R-project.orgspa
dc.relation.referencesRenzo, A. & Carlos, J. (2005), 'La concordancia entre dos tests clínicos para ca- sos binarios: problemas y solución', Acta bioquimica clínica latinoamericana 39(4).spa
dc.relation.referencesSiegel, S., Villalobos, J. A., Ruseil, L. J. & Cruz-López, R. V. (1972), Estadística no parametrica aplicada a las ciencias de la conducta, Vol. 4, Trillas México.spa
dc.relation.referencesWickham, H. (2015), R Packages, 1st edn, O'Reilly Media, Inc.spa
dc.relation.referencesDíaz, C. (2011). Análisis evaluativo del programa de articulación entre el nivel medio y superior. El caso de los programas de la Secretaría de Educación Distrital de Bogotá. X Congreso Nacional de Sociología. p. 2. ICESI.spa
dc.relation.referencesEspinosa, P. (2014) La prevención del consumo de drogas en el sistema educativo chileno: SENDA y la Escuela. Revista Mad - Universidad de Chile, N°30 (2014), pp. 87-107. Revista del Magíster en Análisis Sistémico Aplicado a la Sociedad Facultad de Ciencias Sociales, Departamento de Antropologíaspa
dc.relation.referencesFonseca, L., Ariza, J., Dueñas, M. (2017). El consumo de marihuana frente a la desigualdad educativa en el nivel medio superior. Segundo Congreso Internacional Virtual sobre Desigualdad Social, Económica y Educativa en el Siglo XXI / Simposio "Fenómeno de la deserción escolar en el nivel medio superior”. Universidad de Málaga. los Andes, Bogotá, Colombia.spa
dc.relation.referencesFonseca, L., Ariza, J., Mariño, P. (2017) La tutoría factor que motiva el rendimiento académico en estudiantes en la transición colegio-universidad. Ponencia. II Encuentro de Ciencias Básicas: Retos frente a la deserción en la transición Colegio-Universidad. Universidad Católica de Colombia. Bogotá, Colombia.spa
dc.relation.referencesGómez, V. (2012) “Sesgo Universitario, subvaloración de la educación “no universitaria” y desigualdad social en educación superior”. X Congreso Nacional de Sociología.spa
dc.relation.referencesUNODC. (2016). Estudio de consumo de sustancias psicoactivas en Bogotá, D.C. Alcaldía mayor de Bogotá, Oficina de las Naciones Unidas Contra la Droga y el Delito, Organización de los Estados Americanos. Bogotá Colombia.spa
dc.relation.referencesG Bastin. Lectures on mathematical modelling of biological systems, 2012.spa
dc.relation.referencesEduardo Cabrera Rode and Manuel E Licea Puig. Nueva definicion, prevalencia, caracterización y tratamiento de la diabetes autoinmune latente del adulto. Revista Cubana de Endocrinología, 19(3):0-0, 2008.spa
dc.relation.referencesOdo Diekmann, JAP Heesterbeek, and Michael G Roberts. The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47):873- 885, 2009.spa
dc.relation.referencesJane M Heffernan, Robert J Smith, and Lindi M Wahl. Perspectives on the basic reproductive ratio. Journal of the Royal Society Interface, 2(4):281-293, 2005.spa
dc.relation.referencesHerbert W Hethcote and P Van den Driessche. Some epidemiological models with nonlinear inci- dence. Journal of Mathematical Biology, 29(3):271-287, 1991. WO Kermack and AG Mckendrick. A contribution to the mathematical theory of epidemics. Proc Roy Soc, 5, 2003.spa
dc.relation.referencesAndrei Korobeinikov. Global properties of sir and seir epidemic models with multiple parallel infectious stages. Bulletin of mathematical biology, 71(1):75-83, 2009.spa
dc.relation.referencesAlun Lloyd. Introduction to epidemiological modeling: Basic models and their properties, 2007. RN Sturrock, SJ Frankel, AV Brown, PE Hennon, JT Kliejunas, KJ Lewis, JJ Worrall, and AJ Woods. Climate change and forest diseases. Plant Pathology, 60(1):133-149, 2011.spa
dc.relation.referencesElisabetta Tornatore, Stefania Maria Buccellato, and Pasquale Vetro. Stability of a stochastic sir system. Physica A: Statistical Mechanics and Its Applications, 354:111-126, 2005.spa
dc.relation.referencesSalvador Galindo Uribarri, Mario Alberto Rodríguez Meza, and Jorge Luis Cervantes Cota. Las matematicas de las epidemias: caso méxico 2009 y otros. CIENCIA ergo-sum, 20(3):238-246, 2013.spa
dc.relation.referencesFengying Wei and Fangxiang Chen. Stochastic permanence of an siqs epidemic model with satu- rated incidence and independent random perturbations. Physica A: Statistical Mechanics and its Applications, 453:99-107, 2016.spa
dc.relation.referencesBishop, Yvonne M. M., Stephen Fienberg and Paul H. Holland. 1975. Discrete Multivariate Analysis: Theory and Practice. Cambridge, MA: MIT Press.spa
dc.relation.referencesDarroch, John, Stephen Fienberg, Gary Glonek and Brian Junker. 1993. “A Three-Sample Multiple-Recapture Approach to Census Population Estimation with Heterogeneous Catchability.” Journal of the American Statistical Association 88(423):1137–1148.spa
dc.relation.referencesPacifista (2019) contador de lideres sociales asesinados, revisando en: https://pacifista.tv/notas/lideres-sociales-asesinados-inicio-implementacion/spa
dc.relation.referencesObservatorio de tierras, Universidad Nacional. Dinámicas del asesinato de líderes rurales, las covariables municipales, revisado en: http://www.observatoriodetierras.org/donde-y-comoestan- matando-a-los-lideres-rurales-variables-municipales-en-el-asesinato-de-lideres-socialesrurales/spa
dc.relation.referencesARELLANO-VALLE, R. B., CASTRO, L. M., GONZALEZ-FARÍAS, G. & MUNOZ GAJARDO, K. A. (2012). Student-t censored regression model: properties and inference. Statistical Methods & Applications 21(4), 453- 473.spa
dc.relation.referencesFAIR, R. C. (1978). A theory of extramarital affairs. Journal of Political Economy 86(1), 45-61.spa
dc.relation.referencesGARAY, A. M., LACHOS, V. H., BOLFARINE, H. & CABRAL, C. R. B. (2017). Linear censored regression models with scale mixtures of normal distributions. Statistical Papers 58(1), 247-278.spa
dc.relation.referencesMOULTON, L. H. & HALSEY, N. A. (1995). A Mixture Model With Detection Limits for Regression Analyses of Antibody Response to Vaccine. Biometrics 51, 1570-1578.spa
dc.relation.referencesMROZ, T. A. (1987). The sensitivity of an empirical model of married women's hours of work to economic and statistical assumptions. Econometrica 55(4), 765-799.spa
dc.relation.referencesOLSEN, R. J. (1978). Note on the uniqueness of the maximum likelihood estimator for the tobit model. Econo- metrica 46(5), 1211-1215.spa
dc.relation.referencesPEWSEY, A., GOMEZ, H. W. & BOLFARINE, H. (2012). Likelihood-based inference for power distributions. Test 21(4), 775-789.spa
dc.relation.referencesTOBIN, J. (1958). Estimation of relationship for limited dependent variables. Econometrica 26(1), 24-36.spa
dc.relation.referencesZHAO, J. & KIM, H. M. (2016). Power t distribution. Communications for Statistical Applications and Methods 23(4), 321-334.spa
dc.relation.referencesAghaKouchak, A., Behrangi, A., Sorooshian, S., Hsu, K. & Amitai, E. (2011), 'Evaluation of satellite-retrieved extreme precipitation rates across the central United States', Journal of Geophysical Research: Atmospheres 116(D2).spa
dc.relation.referencesAndrade Bejarano, M., Conde Arango, G., Castaneda Tique, K. J., Castro Cano, L. M., Cruz, N. J., Delgado, E., Florez Poveda, A., Laverde García, C. A., Malez, V. H., Medina Pacheco, C. N. et al. (2018), Modelación estadística de variables climáticas en el suroccidente colombiano [recurso electrónico], Technical report.spa
dc.relation.referencesBIOPALMIRA (2008), Avance de los temas de investigación clima, biodiversidad y calidad del habitad. http://www.idea.palmira.unal.edu.co/paginas/ proyectos/paginas/avances_invest.pdf.spa
dc.relation.referencesFerraty, F. & Vieu, P. (2006), Nonparametric functional data analysis: theory and practice, Springer Science & Business Media.spa
dc.relation.referencesIvanescu, A. E., Staicu, A .- M., Scheipl, F. & Greven, S. (2013), 'Penalized function-on-function regression', Computational Statistics 30(2), 539-568.spa
dc.relation.referencesMontealegre, J. (2009), 'Estudio de la variabilidad climatica de la precipitación en Colombia asociada a procesos oceánicos y atmosféricos de meso y gran escala', Bogota: IDEAM .spa
dc.relation.referencesOrtega, Jhonny Humberto Garcés y Rodriguez, L. M. S. (2006), 'Aplicación de tec- nologías de información geográfica para el estudio de la variabilidad climática en la cuenca alta del río cauca'.spa
dc.relation.referencesOspina Galindez, J. (2014), 'Modelo de regresión funcional de la precipitación pentadal del Valle del Cauca en el periodo (1993-2011), integrando datos de estaciones climáticas y de satélite', Tesis de maestría. Universidad del Vallespa
dc.relation.referencesRamsay, J., Hooker, G. & Graves, S. (2009), Functional data analysis with R and MATLAB, Springer Science & Business Media.spa
dc.relation.referencesRamsay, J. & Silverman, B. (2006), Functional data analysis, Springer Series in Statistics, 2 edn, Springer.spa
dc.relation.referencesRamsay, J. & Silverman, B. (2007), Applied Functional Data Analysis: Methods and Case Studies, Springer Series in Statistics, 1 edn, Springer.spa
dc.relation.referencesScheipl, F., Staicu, A .- M. & Greven, S. (2013), 'Functional additive mixed models', Journal of Computational and Graphical Statistics 24(2), 477-501.spa
dc.relation.referencesUESVALLE (2016), FICHA TECNICA. Departamento del Valle del Cauca. http: //www.uesvalle.gov.co/publicaciones/237/valle-del-cauca/.spa
dc.relation.referencesBotina N., Diana C., Ayala C., Verónica A., Paz Z., Ingrid C., Limas C., Leidy A., Mafla, A. (2013). Estado nutricional y riesgo de malnutrición en pacientes hospitalizados del Hospital Universitario Departamental de Nariño. Revista de la Universidad Industrial de Santander. Salud, 45 (Septiembre-Diciembre).spa
dc.relation.referencesGiraldo, N., Munera, N., Marrugo, V., Piñeres, L. (2007). Prevalencia de Malnutrición y evaluación de la alta prescripción dietética en pacientes adultos hospitalizados en una institución pública de alta complejidad. Perspectiva Nutrición Humana. 9. 37-47.spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2013). Análisis de Situación de Salud Según Regiones en Colombia. BOGOTA: Ministerio de Salud y Protección Socialspa
dc.relation.referencesMinisterio de Salud, COLCIENCIAS. (2015). Encuesta Nacional de Salud Mental 2015. Bogotá: Ministerio de Salud y Protección Social.spa
dc.relation.referencesRestrepo, M., Quintero, M., Martínez, M., Gómez, A. (2006). Técnica para la toma de medidas antropométricas. 3 ed. Medellín: Centro de Atención Nutricionalspa
dc.relation.referencesUlibarri, J. (2002). Proyecto para la prevención, detección precoz y control de la desnutrición. En: García de Lorenzo P, García Luna P, Marsé M, editors. El libro blanco de la desnutrición clínica en España. Madrid: Acción Médica.spa
dc.relation.referencesVillalobos, C., Mosquera, P., Tovar, H. (2011). Prevalencia del Síndrome Metabólico en consulta de medicina interna Hospital de San José de Bogotá. Septiembre 2009- Marzo 2010. Repertorio de Medicina y Cirugía. Vol 20 Nº 2.spa
dc.relation.referencesAgostinelli, C., Leung, A., Yohai, V. J. & Zamar, R. H. (2015), 'Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contami- nation', Test 24(3), 441-461.spa
dc.relation.referencesAlqallaf, F., Van Aelst, S., Yohai, V. J. & Zamar, R. H. (2009), 'Propagation of outliers in multivariate data', The Annals of Statistics 37(1), 311-331.spa
dc.relation.referencesCroux, C., Van Aelst, S. & Dehon, C. (2003), 'Bounded influence regression using high breakdown scatter matrices', Annals of the Institute of Statistical Mathematics 55(2), 265-285.spa
dc.relation.referencesDanilov, M., Yohai, V. J. & Zamar, R. H. (2012), 'Robust estimation of multivariate loca- tion and scatter in the presence of missing data', Journal of the American Statistical Association 107(499), 1178-1186.spa
dc.relation.referencesDavies, P. L. (1987), 'Asymptotic behaviour of s-estimates of multivariate location pa- rameters and dispersion matrices', The Annals of Statistics pp. 1269-1292.spa
dc.relation.referencesFalk, M. (1997), 'On mad and comedians', Annals of the Institute of Statistical Mathe- matics 49(4), 615-644.spa
dc.relation.referencesFarcomeni, A. (2014), 'Robust constrained clustering in presence of entry-wise outliers', Technometrics 56(1), 102-111.spa
dc.relation.referencesFu, W. J. (1998), 'Penalized regressions: the bridge versus the lasso', Journal of compu- tational and graphical statistics 7(3), 397-416.spa
dc.relation.referencesGervini, D., Yohai, V. J. et al. (2002), 'A class of robust and fully efficient regression estimators', The Annals of Statistics 30(2), 583-616.spa
dc.relation.referencesHuber, P. J. & Ronchetti, E. M. (2009), Robust Statistics, Second Edition, Wiley Series in Probability and Statistics.spa
dc.relation.referencesLeung, A., Danilov, M., Yohai, V. & Zamar, R. (2016), GSE: Robust Estimation in the Presence of Cellwise and Casewise Contamination and Missing Data. R package version 4.1. *https://CRAN.R-project.org/package=GSEspa
dc.relation.referencesLeung, A., Yohai, V. & Zamar, R. (2017), 'Multivariate location and scatter matrix estimation under cellwise and casewise contamination', Computational Statistics & Data Analysis 111, 59-76.spa
dc.relation.referencesLeung, A., Zhang, H. & Zamar, R. (2015), robreg3S: Three-Step Regression and Inference for Cellwise and Casewise Contamination. R package version 0.3. *https://CRAN.R-project.org/package=robreg3Sspa
dc.relation.referencesLeung, A., Zhang, H. & Zamar, R. (2016), 'Robust regression estimation and inference in the presence of cellwise and casewise contamination', Computational Statistics & Data Analysis 99, 1-11.spa
dc.relation.referencesMaronna, R. A. & Yohai, V. J. (2000), 'Robust regression with both continuous and categorical predictors', Journal of Statistical Planning and Inference 89(1-2), 197- 214.spa
dc.relation.referencesMaronna, R. & Morgenthaler, S. (1986), 'Robust regression through robust covariances', Communications in statistics-theory and methods 15(4), 1347-1365.spa
dc.relation.referencesÖllerer, V., Alfons, A. & Croux, C. (2016), 'The shooting s-estimator for robust regres- sion', Computational Statistics 31(3), 829-844.spa
dc.relation.referencesR. Core Team (2017), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *https://www.R-project.org/spa
dc.relation.referencesRicardo A. Maronna, Douglas R. Martin, V. J. Y. (2006), Robust Statistics: Theory and Methods, Wiley Series in Probability and Statistics, 1 edn, Wiley.spa
dc.relation.referencesRocke, D. M. (1996), 'Robustness properties of s-estimators of multivariate location and shape in high dimension', The Annals of statistics 24, 1327-1345.spa
dc.relation.referencesRousseeuw, P. J. (1985), 'Multivariate estimation with high breakdown point', Mathe- matical statistics and applications 8, 283-297.spa
dc.relation.referencesRousseeuw, P. J. & Croux, C. (1993), 'Alternatives to the median absolute deviation', Journal of the American Statistical association 88(424), 1273-1283.spa
dc.relation.referencesRousseeuw, P. & Yohai, V. (1984), Robust regression by means of s-estimators, in 'Robust and nonlinear time series analysis', Springer, pp. 256-272.spa
dc.relation.referencesTodorov, V. & Filzmoser, P. (2009), 'An object-oriented framework for robust multivari- ate analysis', Journal of Statistical Software 32(3), 1-47. *http://www.jstatsoft.org/v32/i03/spa
dc.relation.referencesAzzalini, A. (1985), 'A class of distributions which includes the normal ones', Scandinavian Journal of Statistics 12, 171-178.spa
dc.relation.referencesAzzalini, A. (2014), The Skew-Normal and Related Families, ims Monographs, Cambridge. with the colaboration of Antonella Capitanio.spa
dc.relation.referencesFlecher, C., Allard, D. & Naveau, P. (2010), 'Truncated skew-normal distributions: Moments, estimation by weighted moments and application to climatic data', METRON - International Journal of Statistics LXVIII, 331-345.spa
dc.relation.referencesKim, H. (2004), 'A family of truncated skew-normal distributions', The Korean Communications in Statistics 11, 265-274.spa
dc.relation.referencesLachos, V., Garay, A. & Cabral, C. (2019), 'Moments of truncated scale mixtures of skew-normal distributions', Brazilian Journal of Probability and Statistics . Accepted manuscript.spa
dc.relation.referencesNadarajah, S. & Kotz, S. (2006), 'R programs for computing truncated distributions', Journal of Statistical Software 16, 1-8. URL: http://www.jstatsoft.org/spa
dc.relation.referencesO'Hagan, A. & Leonard, T. (1976), 'Bayes estimation subject to uncertainty about parameter constraints', Biometrika, 63, 201-203.spa
dc.relation.referencesPérez, V., Contreras, D. & Moreno, N. (2018), Estudio correlacional entre la categorización por colciencias de los grupos de investigación en bogotá y la aplicación de prácticas en gerencia de proyectos, en proyectos de investigación. Trabajo de Grado no publicado en Maestría en Desarrollo y Gerencia Integral de Proyectos. URL: https://repositorio.escuelaing.edu.co/handle/001/815spa
dc.relation.referencesR. Core Team (2019), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/spa
dc.relation.referencesRigby, R. & Stasinopoulos, D. (2005), 'Generalized additive models for location, scale and shape', Applied Stdtistics 54, 507-554.spa
dc.relation.referencesBravo, L. E., Corts, A. & Carrascal, E. & Jaramillo, R. & Garca, L. S. & Bravo, P. E. & Badel, A. & Bravo, P. A. (2009), ‘Helicobacter pylori: patología y prevalencia en biopsias gástricas en Colombia.’, Colomb. Med.263 34(3).spa
dc.relation.referencesCastellano, D. (2015), ´Introducción a la estadística bayesiana´, Master’s thesis, Universitat Autónoma de Barcelonaspa
dc.relation.referencesCuevas, J. R., (2015), ‘Inferencia bayesiana e investigación en salud: un caso de aplicación en diagnóstico clínico’, Rev. Méd. Risaralda 21(1), 9–16.spa
dc.relation.referencesHenningsen, A. & Toomet, O. (2011), ‘maxlik: A package for maximum likelihood estimation in R’, Computational Statistics 26(3), 443–458. URL: http://dx.doi.org/10.1007/s00180-010-0217-1spa
dc.relation.referencesMartinez, J. (2017), ´Uso de la distribución Levy para ajustar datos con marcada asimetría y valores extremos´, Universidad del Valle.spa
dc.relation.referencesPan American Health Organization & World Health Organization. (2001), ‘El control de las enfermedades transmisibles’. Washington DC., USA: Publications program of the Pan American Health Organizationspa
dc.relation.referencesPerry, S. & de Jong, BC. & Solnick, JV. & de la Luz Sanchez, M. & Yang, S. & Lin, PL. & Hansen, LM. & Talat, N. & Hill, PC. & Hussain, R. & Adegbola, RA. & Flynn, J. & Canfield, D. & Parsonnet, J. (2010), ‘Infection with helicobacter pylori is associated with protection against tuberculosis’, PLoS One 5 (1).spa
dc.relation.referencesPrieto, VH. & Quintero, C. & Rodríguez, I. (1995), ‘Análisis de Bayes empírico mediante un ejemplo’, Revista Colombiana de Estadística.spa
dc.relation.referencesSprott, D.A. (2000), ´Statistical Inference in Science´, Springer Series in Statisticsspa
dc.relation.referencesSwihart, B. & Lindsey, J. (2018), ´rmutil: Utilities for Nonlinear Regression and Repeated Measurements Models´, R package version 1.1.1. URL: https://CRAN.R-project.org/package=rmutilspa
dc.relation.referencesTeam, R. C. (2017), ´R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing´, Vienna, Austria: URL: https://www.R-project.org/spa
dc.relation.referencesA. Agresti. (2002), Categorical data analysis, New York, Wiley.spa
dc.relation.referencesA.C. Cameron and P.K. Trivedi. (1986), Econometric models based on count data. comparisons and applications of some estimators and tests, Journal of Applied Econometrics 1, no. 1, Pages 29-53, Cited By :862.spa
dc.relation.referencesA.C. Cameron and P.K. Trivedi. (2009), Microeconometrics using stata, Stata Press.spa
dc.relation.referencesR.B. Christopher and M.L. Thomas. (2015), Analysis of categorical data with R, Texts in Statistical Science.spa
dc.relation.referencesF. Felix and S.P. Karan. (2006), Zero-inflated generalized poisson regression model with an application to domestic violence data, Journal of Data Science 4, no. 1, Pages 117-130.spa
dc.relation.referencesJ.M. Hilbe. (2011), Negative binomial regression, Cambridge University Press.spa
dc.relation.referencesD. Lambert. (1992), Zero-inflated poisson regression, with an application to defects in manufacturing, Technometrics 34, no. 1, Pages 1-14, cited By 1414.spa
dc.relation.referencesS.M. Mwalili, E. Lesaffre, and D. Declerck. (2008), The zero-inflated negative binomial regression model with correction for misclassification: An example in caries research, Statistical methods in medical research 17, no. 2, Pages 123-139, Cited By 44.spa
dc.relation.referencesJ.K. Lindsey. (1995), Modelling frequency and count data, Oxford science publications, Clarendon Press.spa
dc.relation.referencesP. McCullagh and J.A. Nelder. (1989), Generalized linear models, Chapman and Hall.spa
dc.relation.referencesJ.A. Nelder and R.W.M.Wedderburn. (1972), Generalized linear models, Journal of the Royal Statistical Society 135, no. 3, Pages 370-384.spa
dc.relation.referencesQ.H. Vuong. (1989), Likelihood ratio tests for model selection and non-nested hypotheses, Econometrica 57, no. 2, Pages 307-333, cited By 2188.spa
dc.relation.referencesO.B. Yusuf, T. Bello, and O. Gureje. (2017), Zero inflated poisson and zero inflated negative binomial models with application to number of falls in the elderly, 1, no. 4, Pages 1-7.spa
dc.relation.referencesBorges, R. (2005), 'Análisis de supervivencia de pacientes con diálisis peritoneal', Revista Colombiana de Estadística 28 (2), 243-259.spa
dc.relation.referencesCaballero, S., G. (1986), Un Estimador del Parámetro g de la Distribución g de Tukey, Tesis de Maestría (Estadística), Universidad Nacional de Colombia, Facultad de Ciencias. Departamento de Estadística, Bogotá.spa
dc.relation.referencesCastro, R. D. (2003), El universo L^TEX, 2 edn, Unibiblos, Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesConover, W., Johnson, M. E. & Johnson, M. (1981), 'A Comparative Study of Tests for Homogeneity of Variances, With Applications to the Outer Continental Shelf Bidding Data', Technometrics 23, 351-361.spa
dc.relation.referencesDodge, Y. (1985), Analysis of Experiments with Missing Data, John Wiley & Sons, New York.spa
dc.relation.referencesSearle, S. R.& Casella, G. & McCulloch, C. (1992), Variance Components, John Wiley & Sons. New York.spa
dc.relation.referencesHenderson, C. R. (1984), Applications of linear models in animal breeding, Tech- nical Report Press, University of Guelph, Guelph, Canada.spa
dc.relation.referencesLaird, N. M. & Ware, J. H. (1982), 'Random-effects models for longitudinal data', Biometrics 38, 963-974.spa
dc.relation.referencesLee, S. (2007), Structural Equation Modeling: A Bayesian Approach, first edn, Wiley, New York.spa
dc.relation.referencesMadar, V. (2015), 'Direct formulation to cholesky decomposition of a general non- singular correlation matrix', Statistics & Probability Letters 103, 142-147.spa
dc.relation.referencesMichalewicz, Z. (1998), Genetic algorithms + data structures= evolution programs, second edn, Springer-Verlag, Berlin Heidelberg.spa
dc.relation.referencesSAS Institute Inc. (2008), SAS/STAT® 9.2 User's Guide. The MIXED Procedure (Chapter 41). Cary, NC: SAS Institute Inc.spa
dc.relation.referencesScrucca, L. (2017), 'On some extensions to ga package: hybrid optimization, pa- rallelisation and islands evolution', Submitted to R Journal. 91(1), 187-206.spa
dc.relation.referencesWolfinger, R. (1993), 'Covariance structure selection in general mixed models', Comunications in Statistics - Simulation and Computation 22, 1079-1106.spa
dc.relation.references[Garthwaite and Koch(2016)] Paul H Garthwaite and Inge Koch. Evaluating the contributions of individual variables to a quadratic form. Australian & New Zealand journal of statistics, 58(1):99-119, 2016.spa
dc.relation.referencesAalto, J., Pirinen, P., Heikkinen, J. & Venaläinen, A. (2013), 'Spatial interpolation of monthly climate data for finland: comparing the performance of kriging and generalized additive models', Theoretical and Applied Climatology 112(1-2). 99-111.spa
dc.relation.referencesBotero, L. & Mancera, J. (1996), 'Sintesis de los cambios de origen antropico ocurridos en los últimos 40 años en la Ciénaga Grande de Santa Marta, Colombia', Revista de la Academia Colombiana de Ciencias 20(78), 465-474.spa
dc.relation.referencesCarlin, B., Gelfand, A. E. & Banerjee, S. (2014), Hierarchical Modeling and Analysis for Spatial Data, Chapman and Hall/CRC, New York.spa
dc.relation.referencesCressie, N. (1993), Statistics for Spatial Data, John Wiley and Sons, New York.spa
dc.relation.referencesDavid, M. (2012), Geostatistical ore reserve estimation, Elsevier.spa
dc.relation.referencesFreier, L., Wiechert, W. & von Lieres, E. (2017), 'Kriging with trend functions nonlinear in their param- eters: Theory and application in enzyme kinetics', Engineering in Life Sciences 17(8), 916-922.spa
dc.relation.referencesHaining, R. (2003), Spatial Data Analysis: Theory and Practice, Cambridge University Press.spa
dc.relation.referencesHooks, T., Marx, D., Kachman, S., Pedersen, J. & Eigenberg, R. (2008), 'Analysis of covariance with spatially correlated secondary variables', Revista Colombiana de Estadistica 31(1), 95-109.spa
dc.relation.referencesIsaaks, E. & Srivastava, R. (1989), An Introduction to Applied Geostatistics, Oxford University Press, New York.spa
dc.relation.referencesLe, N. & Zidek, J. (2006), Statistical Analysis of Environmental Space-Time Processes, Springer Science & Business Media.spa
dc.relation.referencesLi, Y. (2010), 'Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information?', Geoderma 159(1-2), 63 75.spa
dc.relation.referencesLloyd, C. (2010), Local Models for Spatial Analysis, CRC press, Boca Ratón.spa
dc.relation.referencesPyrcz, M. & Deutsch, C. (2014), Geostatistical Reservoir Modeling. Second Edition, Oxford University Press, New York.spa
dc.relation.referencesSchabenberger, O. & Gotway, C. (2017), Statistical Methods for Spatial Data Analysis, Chapman and Hall/CRC, New York.spa
dc.relation.referencesStein, M. (1999), Statistical Interpolation of Spatial Data: Some Theory for Kriging, Springer, New York.spa
dc.relation.referencesWebster, O. & Oliver, M. (2007), Geostatistical for Environmental Scientists, John Wiley and Sons, New York.spa
dc.relation.referencesYakowitz, S. & Szidarovszky, F. (1985), 'A comparison of kriging with nonparametric regression methods', Journal of Multivariate Analysis 16, 21-53.spa
dc.relation.referencesZimmerman, D., Pavlik, C., Ruggles, A. & Armstrong, M. P. (1999), 'An experimental comparison of ordinary and universal kriging and inverse distance weighting', Mathematical Geology 31(4), 375-390.spa
dc.relation.referencesLevenshtein, V.I. (1966), 'Binary codes capable of correcting deletions, insertions, and reversals', Soviet Physics Doklady 10, 707-710.spa
dc.relation.referencesvan der Loo, M.P.J. & Forsythe (2014), 'The stringdist Package for Approximate String Matching', The R. Journal 6(1), 111-122.spa
dc.relation.referencesReckase, M.D (2009), Multidimensional Item Response Theory, Statistics for Social and Behavioral Sciences - Springer, New York.spa
dc.relation.referencesInternational Diabetes Federation (IDF), 2017. Diabetes Atlas. 8th edition. Brussels: Versión Online del Diabetes Atlas de la FID: www.diabetesatlas.org ISBN: 978-2-930229-87spa
dc.relation.referencesSaaristo T, Peltonen M, Lindstr öm J, Saarikoski L, Sundvall J, Eriksson JG, et al. Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diab Vasc Dis Res 2005; 2: 67 – 72.spa
dc.relation.referencesWinkler G, Hídvégi T, Vándorfi G, Balogh S, Jermendy G. Prevalence of undiagnosed abnormal glucose tolerance in adult patients cared for by general practitioners in Hungary. Results of a risk-stratified screening based on FINDRISC questionnaire. Med Sci Monit 2013; 19: 67-72.spa
dc.relation.referencesSchwarz PE, Schwarz PE, LindstroÈm J, Kissimova-Scarbeck K, Szybinski Z, Barengo NC, Peltonen M,et al. DE-PLAN project. The European perspective of type 2 diabetes prevention: diabetes in Europe±prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project. Exp ClinEndocrinol Diabetes 2008; 116:167±72. https://doi.org/10.1055/s-2007-992115 PMID: 18350480spa
dc.relation.referencesCos FX, Barengo NC, Costa B, Mundet-Tudurí X, Lindström J, Tuomilehto JO; Screening for people with abnormal glucose metabolism in the European DE-PLAN project. DE-PLAN Study Group. Diabetes Res Clin Pract. 2015 Jul;109(1):149-56. doi: 10.1016/j.diabres.2015.04.016. Epub 2015 Apr 20. PMID: 25931281.spa
dc.relation.referencesSagarra R, Costa B, Cabré JJ, Solà-Morales O, Barrio F;Lifestyle interventions for diabetes mellitus type 2 prevention.el Grupo de Investigación DE-PLAN-CAT/PREDICE.Rev Clin Esp (Barc). 2014 Mar;214(2):59-68. doi: 10.1016/j.rce.2013.10.005. Epub 2013 Nov 20. English, Spanish.PMID: 24267869.spa
dc.relation.referencesMakrilakis K, Liatis S, Grammatikou S, Perrea D, Katsilambros N.Implementation and effectiveness of the first community lifestyle intervention programme to prevent Type 2 diabetes in Greece. The DE-PLAN study. Diabet Med. 2010 Apr;27(4):459-65. doi: 10.1111/j.1464-5491.2010.02918.x. PMID: 20536519spa
dc.relation.referencesGilis-Januszewska A, LindstroÈm J, Tuomilehto J, Piwońska-Solska B, TopoÂr-Mądry R, Szybiński Z, Peltonen M, et al. Sustained diabetes risk reduction after real life and primary health care setting implementation of the diabetes in Europe prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project, BMC Public Health. 2017; 15;17(1):198.spa
dc.relation.referencesWHO Consultation on the Definition, Diagnosis and Classification of Diabetes Mellitus. WHO/NCD/NCM/21 April 2010.spa
dc.relation.referencesHESTON, S. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. The Review of Financial Studies, 6 (2), pp.327-343.spa
dc.relation.referencesBates, D., Mächler, M., Bolker, B. & Walker, S. (2015), 'Fitting linear mixed- effects models using lme4', Journal of Statistical Software 67(1), 1-48.spa
dc.relation.referencesChang, W., Cheng, J., Allaire, J., Xie, Y. & McPherson, J. (2019), shiny: Web Application Framework for R. R package version 1.3.2. *https://CRAN.R-project.org/package=shinyspa
dc.relation.referencesCullis, B. & Gleeson, A. (1991), 'Spatial analysis of field experiments-an extension to two dimensions', Biometrics pp. 1449-1460.spa
dc.relation.referencesCullis, B. R., Smith, A. B. & Coombes, N. E. (2006), 'On the design of early gen- eration variety trials with correlated data', Journal of agricultural, biological, and environmental statistics 11(4), 381.spa
dc.relation.referencesCurrie, I. D. & Durban, M. (2002), 'Flexible smoothing with p-splines: a unified approach', Statistical Modelling 2(4), 333-349.spa
dc.relation.referencesIsik, F., Holland, J. & Maltecca, C. (2017), Genetic data analysis for plant and animal breeding, Springer.spa
dc.relation.referencesPiepho, H., Möhring, J., Melchinger, A. & Büchse, A. (2008), 'Blup for phenotypic selection in plant breeding and variety testing', Euphytica 161(1-2), 209-228.spa
dc.relation.referencesPiepho, H. & Williams, E. (2010), 'Linear variance models for plant breeding trials', Plant breeding 129(1), 1-8.spa
dc.relation.referencesR Core Team (2018), R: A Language and Environment for Statistical Computing,spa
dc.relation.referencesR. Foundation for Statistical Computing, Vienna, Austria. *https://www.R-project.org/spa
dc.relation.referencesRobbins, K., Backlund, J. & Schnelle, K. (2012), 'Spatial corrections of unrepli- cated trials using a two-dimensional spline', Crop science 52(3), 1138-1144.spa
dc.relation.referencesRodriguez-Alvarez, M. X., Boer, M. P., van Eeuwijk, F. A. & Eilers, P. H. (2018), 'Correcting for spatial heterogeneity in plant breeding experiments with p- splines', Spatial Statistics 23, 52-71.spa
dc.relation.referencesWickham, H. et al. (2014), 'Tidy data', Journal of Statistical Software 59(10), 1-23.spa
dc.relation.references[1] J. D. J. Almeyda, El fenómeno de las tiendas de descuento en el mercado del retail colombiano, Universidad Militar Nueva Granada, 2016.spa
dc.relation.referencesL. G. Díaz Monroy y A. Morales Rivera, Estadística multivariada: inferencia y métodos, Universidad Nacional, 2012.spa
dc.relation.referencesC. Langrand y L. M. Pinzón, Análisis de datos métodos y ejemplos, Escuela Colombiana de Ingenie- ría, 2011.spa
dc.relation.referencesD. Peña, Estadística Modelos y Métodos, Ed. Alianza Editorial, Madrid, 2000.spa
dc.relation.referencesA. Kassambara, Practical Guide to Cluster Analysis in R, STHDA, 2017.spa
dc.relation.referencesJ. K. Lindsey, Applying Generalized Linear Models, Springer, 1996.spa
dc.relation.referencesG. A. Paula, Modelos de Regressão com apoio computacional, Universidade de São Paulo, 2013.spa
dc.relation.referencesBaronio, A. Vianco, A & Rabana, C. (2012) Una Introducción a la Econometria Espacial. Cátedra de Econometría.spa
dc.relation.referencesCelemin,J. (2009) Autocorrelación espacial e indicadores locales de asociación espacial. Importancia, estructura y aplicacion. Rev. Univ. geogr. vol.18 no.1 Bahia Blancaspa
dc.relation.referencesGunaratna, N. Liu, y & Park, J (2005) Spatial Autocorrelation. Universidad de Floridaspa
dc.relation.referencesSaid, E., & Valencia Cobos, J. (2014). Resultados de las Pruebas de Estado en la Región Caribe Colombiana 2009-2012. Informes Digitales OECC. Universidad del Atlántico.spa
dc.relation.referencesColosimo, E. A. & Giolo, S. R. (2006), Análise de Sobrevivencia Aplicada., ABE- Projeto Fisher, Brasil.spa
dc.relation.referencesDANE (2017), COLOMBIA - Estadisticas Vitales - EEVV - 2017., DANE-DCD-EEW- 2017, http://microdatos.dane.gov.co/index.php.spa
dc.relation.referencesFarrington, C. P. (2000), 'Residuals for proportional hazards models with interval- censored survival data.', International Biometric Society 56, 473-482.spa
dc.relation.referencesFay, M. P. & Shaw, P. A. (2010), ' Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The Interval R Package.', Journal of Statistical Softwa- re 36, i02.spa
dc.relation.referencesGómez G., Calle M. L., O. R. & K., L. (2009), 'Tutorial on methods for interval- censored data and their implementation in r.', Statistical Modelling 9, 259- 297.spa
dc.relation.referencesKalbfleisch, J. D. & Prentice, R. L. (2002), The Statistical Analysis of Failure Time Data., 2nd edition edn, John Wiley & Sons, New Jersey.spa
dc.relation.referencesKlein, J. P. & Moeschberger, M. L. (2003), Survival Analysis: Techniques for Censored and Truncated Data., 2nd edition edn, Springer, New York.spa
dc.relation.referencesMontesinos, A. (2011), Estudio del AIC y BIC en la Seleccion de Modelos de Vida con Datos Censurados., Tesis de maestría, CIMAT, Mexico, Centro de Inves- tigación en Matemáticas A. C.spa
dc.relation.referencesRuíz, M. y Rivero, A. L. (1992), Mortalidad Fetal en Colombia (1970- 1989)., Instituto Nacional de Salud, Bogota D.C.spa
dc.relation.referencesChong, E. (2018). Factores que inciden en el rendimiento académico de los estudiantes de la Universidad Politécnica del Valle de Toluca. Revista Latinoamericana de Estudios, XLVII(1), 91-108spa
dc.relation.referencesDepartamento Nacional de Planeación. (2019). Bases del Plan Nacional de Desarrollo. Bogota, D. C.: Departamento Nacional de Planeaciónspa
dc.relation.referencesEnríquez, C., Segura, Á., & Tovar, J. (2013). Factores de riesgo asociados a bajo rendimiento académico en escolares de Bogotá. Investigaciones Andina, 15(26), 654-666.spa
dc.relation.referencesGarbanzo, G. (2013). Factores asociados al rendimiento académico en estudiantes universitarios desde el nivel socioeconómico: Un estudio en la Universidad de Costa Rica. Revista Electrónica Educare, 17(3), 57-87spa
dc.relation.referencesHeinesen, E., & Pagés, J. (2005). The effect of school resources on Educational Attainment: Evidence from denmark. Revista Electrónica Educare., 57, 109spa
dc.relation.referencesIñiguez, T., & Marcaletti, F. (2018). Modelos lineales multinivel en spss y su aplicación en investigación educativa. Revista d'Innovació i Recerca en Educació, 26-40spa
dc.relation.referencesMEN. (18 de 12 de 2018). Ministerio de educación Nacional. Obtenido de Ministerio de educación Nacional: https://www.mineducacion.gov.co/1759/w3-article-244735.html?_noredirect=1spa
dc.relation.referencesMinisterio de Educación Nacional -MEN-. (20 de 10 de 2018). Ministerio de Educación Nacional. Obtenido de Ministerio de Educación Nacional: https://www.mineducacion.gov.co/1759/w3-article-377779.htmlspa
dc.relation.referencesMurillo, J. (2008). Los modelos multinivel como herramienta para la investigación educativa. Revista Internacional de Investigación en Educación , 45-62.spa
dc.relation.referencesPérez, M., Aguilar, F., Orlandoni, G., & Ramoni, J. (2016). Análisis estadístico de los resultados de las pruebas de estado para el ingreso a la educación superior en la Universidad de Santander, Colombia. Revista cientifica, 328-339.spa
dc.relation.referencesZambrano, J. (2013). Análisis multinivel del rendimiento escolar en matemáticas para cuarto grado de Educación Básica Primaria en Colombia. Sociedad y Economía, 205-235spa
dc.relation.referencesAbdi, H., y Valentin, D. (2007). Some new and easy ways to describe, compare, and evaluate products and assessors. In D. Valentin, D. Z. Nguyen, & L. Pelletier (Eds.), New trends in sensory evaluation of food and non-food products (pp. 5–15). Ho Chi Minh: Vietnam National University, Ho Chi Minh Publishing Housespa
dc.relation.referencesAlzate, J. (2003). Panorámica de la cocina colombiana. Turismo Y Sociedad, 2, 141-148. Recuperado a partir de https://revistas.uexternado.edu.co/index.php/tursoc/article/view/2217spa
dc.relation.referencesChessel, D. y Dufour, A. (2004). ADE4: Analisis of Evironmental Data: Exploratory and Eucluide an method multivariate. Lyon, Francia: Data analysis and graphical display.spa
dc.relation.referencesElizalde, M., y Pazmiño, J. (2015). Investigación y estudio de la yuca (Manihot esculenta crantz) y nuevas propuestas Gastronómicas. Recuperado a partir de http://repositorio.ug.edu.ec/handle/redug/14076spa
dc.relation.referencesFerratto, J. (2004). Importancia de la gestión de la calidad en frutas y hortalizas: Situación y perspectivas. Revista Agromensajes. Recuperado a partir de http://blog.fcagr.unr.edu.ar/Extension/Agromensajes/12/1AM12.htmspa
dc.relation.referencesLahne, J. (2016). Sensory science, the food industry, and the objetification of taste. Anthropology of food. Recuperado a partir de https://aof.revues.org/7956#quotationspa
dc.relation.referencesLawless, H., y Heymann, H. (2010). Sensory evaluation of food: principles and practices. New York (USA): Springer, Food science texts series, 23(2), 596.spa
dc.relation.referencesMondino, M., y Ferratto, J. (2006). El análisis sensorial, una herramienta para la evaluación de la calidad desde el consumidor. Revista agromensajes de la facultad. Recuperado a partir de http://www.fcagr.unr.edu.ar/Extension/Agromensajes/18/7AM18.htmspa
dc.relation.referencesPardo, C. y Del Campo, P. (2007). Combinación de métodos factoriales y de análisis de conglomerados en R: El paquete FactoClass. Revista Colombiana de Estadística, 30.spa
dc.relation.referencesPerrin, L., Symoneaux, R., Maître, I., Asselin, C., Jourjon, F., y Pagès, J. (2008). Comparison of three sensory methods for use with the Napping procedure: Case of ten wines from Loire Valley. Food Quality and Preference, (19), 1–11.spa
dc.relation.referencesR Development Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.orgspa
dc.relation.referencesRamírez, J. (2012). Análisis sensorial: pruebas orientadas al consumidor. Revista RECITEIA, 12(1), 83-102.spa
dc.relation.referencesRamírez-López, C. y Vélez-Ruiz, J. F. (2012). Quesos frescos: propiedades, métodos de determinación y factores que afectan su calidad. Revista Temas Selectos de Ingeniería de Alimentos (2), 131-148.spa
dc.relation.referencesSarmiento del Valle, S. (2014). Estrategias de internacionalización y globales para países en desarrollo y emergentes. Revista Dimensión Empresarial 12 (1), 111-138spa
dc.relation.referencesAguirre, J. (2014), 'Morbilidad por infecciones respiratorias agudas en menores de 5 años', Medisan 18(11), 1490-1498.spa
dc.relation.referencesFrances Griffiths, J. C. & Boardman, F. (2012), 'Social networks e the future for health care delivery', Social Science and Medicine 75(12), 2233-2241.spa
dc.relation.referencesGómez, M. & Ramírez, M. (2015), 'Prevalencia de tamizaje positivo para depresión y ansiedad en gestantes de alto riesgo obstétrico en una clínica de Medellín (Colombia), entre enero y agosto de 2013', Revista Colombiana de Obstetricia y Ginecología 66(2), 94-102.spa
dc.relation.referencesMartinez R., J. & Pereira P., M. (2016), 'Characterization of pregnant women high obstetrical risk (ARO) in the department of sucre (Colombia)', Salud Uninorte 32(3), 452-468.spa
dc.relation.referencesRenteria, R., Hurtado, R. & Urdinola, P. (2018), 'Morbi-Mortality of victims of internal conflict and poor population in the Risaralda province, Colombia', Workshop and international seminar on conplerity sciences 1(9).spa
dc.relation.referencesRiechmann, E., Barrios T., J. & Lopez Rodríguez, M. J. (2009), 'Diarrea aguda', Protocolo la Sociedad Española Gastroenterol Hepatol. y Nutrición Pediátrica 20.spa
dc.relation.referencesSacre-Hazouri, J. (2012), 'Rinosinusitis crónica en ninos', Revista Alergia de Mer- ico 59.spa
dc.relation.referencesUrdinola, P. (2015), Aplicaciones en demografía, first edn, Universidad Nacional de Colombia.spa
dc.relation.referencesWasserman, S. & Faust, K. (1994), Social network analysis: methods and applica- tions, first edn, Cambridge University.spa
dc.relation.referencesR Core Team (2018). R : A Language and Environmental for Statistical Computing, R Foundation for Statistical Compunting. Vienna, Austria. http: //wwww.R-project.orgspa
dc.relation.referencesR.A. Jhonson, D.W. Wichern (2007). Applied multivariate statistical analysis. Pearson Prentice Hall.spa
dc.relation.referencesChang, W., Cheng, J., Xie, Y., and McPherson, J. (2017). shiny: Web Application Framework for R. R package version 1.0.5spa
dc.relation.referencesDean, Attali [aut, cre] (R interface), Tristan, Edwards [aut] (swee- talert library). shinyalert: Easily Create Pretty Popup Messages in Shiny. R. package version 1.0.5spa
dc.relation.referencesJohn Fox [aut, cre], Sanford Weisberg [aut], Brad Price [aut], Da- niel Adler [ctb], Douglas Bates [ctb], Gabriel Baud-Bovy [ctb], Ben Bolker [ctb], Steve Ellison [ctb], David Firth [ctb], Michael Friendly [ctb], Gregor Gorjanc [ctb], Spencer Graves [ctb], Richard Heiber- ger [ctb], Rafael Laboissiere [ctb], Martin Maechler [ctb], Georges Monette [ctb], Duncan Murdoch [ctb], Henric Nilsson [ctb], Derek Ogle [ctb], Brian Ripley [ctb], William Venables [ctb], Steve Walker [ctb], David Winsemius [ctb], Achim Zeileis [ctb], R-Core [ctb]. car: Companion to Applied Regression. R package version 3.03spa
dc.relation.referencesSelcuk Korkmaz [aut, cre], Dincer Goksuluk [aut], Gokmen Zararsiz [aut]. MVN: Multivariate Normality Tests. R package version 5.7spa
dc.relation.referencesWilliam Revelle ORCID [aut, cre]. psych: Procedures for Psychological, Psychometric, and Personality Research. R. package version 1.8.12spa
dc.relation.referencesCardona, J., López, V. I. & Correa, J. C. (2012), 'Diseños óptimos bayesianos para estimación de parámetros en farmacocinética', Comunicaciones en Estadística 5(1), 97-112.spa
dc.relation.referencesChaloner, K. & Verdinelli, I. (1995), 'Bayesian experimental design: A review', Statistical Science pp. 273-304.spa
dc.relation.referencesHaines, L. M., Perevozskaya, I. & Rosenberger, W. F. (2003), 'Bayesian optimal designs for phase i clinical trials', Biometrics 59(3), 591-600.spa
dc.relation.referencesLindley, D. (1972), Bayesian Statistics, A Review, Vol. 2, SIAM.spa
dc.relation.referencesRyan, E., Drovandi, C. & Pettitt, A. (2015), 'Fully bayesian experimental design for pharmacokinetic studies', Entropy 17(3), 1063-1089.spa
dc.relation.referencesZhang, Y. (2006), Bayesian D-optimal design for generalized linear models, PhD thesis, Virginia Tech.spa
dc.relation.referencesAttinasi, L. C. (1986), Gettig in: Mexican American Student’s perceptions of their collage-going behavior with implications for their freshman year persistence in the University. ASHE, 1986 Annual Meeting Paper, San Antonio, TX, EE.UU. (ERIC No 268869).spa
dc.relation.referencesBOSHIER, R. (1973), "Educational participation and Dropout: a Theoretical Model." Adult Education, 23 (4), 255-282spa
dc.relation.referencesCAICEDO C., GUARINO (2005). COLOMBIA; Alto porcentaje de deserción universitaria; Estadística alcanza el 52%. El Diario La Prensa, Junio 20 de 2005 p.14.spa
dc.relation.referencesCAICEDO C., GUARINO (2005). COLOMBIA; Alto porcentaje de deserción universitaria; Estadística alcanza el 52%. El Diario La Prensa, Junio 20 de 2005 p.14.spa
dc.relation.referencesHACKMAN, J. y DYSINGER, W. S. (1970), "Commitment to College as a Factor in Student Attrition." Sociology of Education, , 43 (3), 311-324.spa
dc.relation.referencesPASCARELLA, E. T. y TERENZINI, P. (1977), "Patterns of Student-Faculty Informal Interaction beyond the Classroom and Voluntary Freshman Attrition." Journal of Higher Education, 48 (5), 540-562.spa
dc.relation.referencesSociedad para el Desarrollo de Sistemas, (1981). "Student Disengagement Revisited: Some Thoughts on the Limits of Theory and Practice in Student Attrition.", The Journal of Higher Education (próxima publicación).spa
dc.relation.referencesSPADY, W. (1970). Dropouts from Higher Education: An Interdisciplinary y Review and Synthesis. Interchange, 1, 64-65.spa
dc.relation.referencesSystem Development Corporation. (1981), Progress Report on the Evaluation of Special Service in Higher Education. Santa Monica: System Development Corporation.spa
dc.relation.referencesTINTO, V. (1975), "Dropout from Higher Education: A Theoretical Synthesis of Recent Research." Review of Educational Research, 43 (1), 89-125.spa
dc.relation.referencesPEÑA DANIEL (2002), “Análisis de datos Multivariantes”. htt://www.mcgraw-hill.es/olc/pena.spa
dc.relation.referencesSPDIES (2015), “Permanencia y graduación: una propuesta por la equidad en educación superior”, Boletín Educación Superior en cifras. Colombia.spa
dc.relation.referencesDÍAZ LUIS GUILLERMO (2002), “Estadística Multivariada: inferencia y métodos", Universidad nacional de Colombiaspa
dc.relation.referencesClínica Mar Caribe. (2019). Paciente con diagnóstico de cáncer en el 2018. Santa Marta D.T.C.H. Colombia.spa
dc.relation.referencesHernández-Hernández, D., Villegas-Sandoval, A., y Apresa-García, T. (2014). Detección de cáncer de mama en el IMSS: asociación entre uso de servicio y estadio diagnóstico. Gaceta Mexicana de Oncología, 13(4), 215-21.spa
dc.relation.referencesPardo, C., y Cabarcas, G. (2001). Métodos estadísticos multivariados en investigación social: Cursillo. In Simposio de estadística, Universidad Nacional, departamento de Estadística. Santa Marta, Colombia.spa
dc.relation.referencesCasas, Marta & Cepeda Cuervo, Edilberto. (2008). Modelos ARCH, GARCH y EGARCH: aplicaciones a series financieras. Cuadernos de economía (Santafé de Bogotá), ISSN 0121-4772, Nº. 48, 2008, pags. 287-319.spa
dc.relation.referencesRodríguez Pinzón, Heivar Yesid. (2010). Profundización teórica de modelos de volatilidad ARCH - GARCH y una aplicación al caso colombiano. Revista Comunicaciones en Estadistica. Nº. 2, Vol 2, 2008, pags. 147-167.spa
dc.relation.referencesAlonso, J., & Arcila, A. (2013). Empleo del comportamiento estacional para mejorar el pronóstico de un commodity: El caso del mercado internacional del azúcar.spa
dc.relation.referencesBarbosa, E. O. R. (2011), “Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interanual y cambio climático, en el sur oeste de la sabana de Bogotá”.spa
dc.relation.referencesBermúdez Rubio, D. et al. (n.d.), Modelamiento Bayesiano de caudal y precipitación aplicando modelos dinámicos y procesos de Poisson no homogéneos, Msc thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesBotero Botero, S. y Cano Cano, J. A. (2008), `Análisis de series de tiempo para la predicción de los precios de la energía en la bolsa de Colombia', Cuadernos de Economía 27(48), 173-208.spa
dc.relation.referencesConfecampo. (2008). Análisis del mercado de la papa en Colombia. Bogotá: Departamento Técnico, Confederación Empresarial del Campo de Colombia.spa
dc.relation.referencesDíaz et al. (2012). Uso del modelo Aquacrop para estimar rendimientos agrícolas en Colombia, en el marco del estudio de impactos económicos del cambio climático (EIECC).spa
dc.relation.referencesFAO. (2010). La volatilidad de precios en los mercados agrícolas. Perspectivas económicas y sociales. Informes de Política FAO.spa
dc.relation.referencesMADR - Universidad Nacional de Colombia - Corpoica. (2009). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la papa en Colombia. . Proyecto transición de la agricultura, 29.spa
dc.relation.referencesRondón, C. (2012). Análisis del comportamiento de los precios de la papa Parda Pastusa y Diacol Capiro en Colombia 1995-2011. Bogotá: Trabajo de grado. Facultad de Agronomía, Universidad Nacional de Colombiaspa
dc.relation.referencesBarrow, L. H. (2006). A brief history of inquiry: From Dewey to standards. Journal of Science Teacher Education, 17 (3), 265–278. doi:10.1007/s10972-006-9008-5spa
dc.relation.referencesBlumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26 (3–4), 369–398. doi:10.1080/00461520.1991.9653139spa
dc.relation.referencesBoud, D. (2001). Using journal writing to enhance reflective practice. New Directions for Adult and Continuing Education 2001, (90), 9–18. doi:10.1002/ace.16spa
dc.relation.referencesCorzo, J. (2005). Estadística no paramétrica: método basados en rangos. Universidad nacional de colombia. Facultad de ciencias. ISBN: 958-701-546-0spa
dc.relation.referencesDickinson J., Chakraborti S. Nonparametric Statistical Inference. 4ta edición. Estados Unidos. 1991.spa
dc.relation.referencesHelle, L., Tynjälä, P., & Olkinuora, E. (2006). Project-based learning in post-secondary education–Theory, practice and rubber sling shots. Higher Education, 51(2),287–314. doi:10.1007/s10734-004-6386-5spa
dc.relation.referencesWalpole R., Myers R., Myers S., Probabilidad y Estadística para ingenieros. 6ta edición. México. 1998.spa
dc.relation.referencesMartínez, A. (2010). ‘El Síndrome de Burnout. Evolución Conceptual y Estado Actual de la Cuestión’. Vivat Academia, núm. 112, septiembre, 2010, pp. 42-80. Universidad Complutense de Madrid. Madrid, Españaspa
dc.relation.referencesMarrau, C. (2004). ‘El síndrome de Burnout y sus posibles consecuencias en el trabajador docente’. Fundamentos en Humanidades, vol. V, núm. 10, 2º semestre, 2004, pp. 53-68 Universidad Nacional de San Luis. San Luis, Argentinaspa
dc.relation.referencesRodríguez, A. Pando, M. Aranda, M. Balcázar, C. & Partida, N. ‘Síndrome de Burnout en maestros de educación básica, nivel primario de Guadalajara’. Investigación en Salud, vol. V, núm. 1, abril, Centro Universitario de Ciencias de la Salud. Guadalajara, México.spa
dc.relation.referencesGil P. & Peiró J.M. (1997). ‘Desgaste psíquico en el trabajo: el síndrome de quemarse’. España, Síntesis Psicológica.spa
dc.relation.referencesDe La Fuente L. & De La Fuente E. (1997). ‘Burnout y satisfacción laboral. Indicadores de salud laboral en el ámbito sanitario’. Clínica y Salud, Vol. 8:481-94.spa
dc.relation.referencesDe La Fuente L. & De La Fuente E. (1997). ‘Burnout y satisfacción laboral. Indicadores de salud laboral en el ámbito sanitario’. Clínica y Salud, Vol. 8:481-94.spa
dc.relation.referencesCamacho, A. & Mayorga, D. (2017). Riesgos laborales psicosociales. Perspectiva organizacional, jurídica y social. Revista Prolegómenos Derechos y Valores, 20, 40, 159-172. Recuperado de: http://dx.doi.org/10.18359/prole.3047spa
dc.relation.referencesCamacho, A. & Mayorga, D. (2017). Riesgos laborales psicosociales. Perspectiva organizacional, jurídica y social. Revista Prolegómenos Derechos y Valores, 20, 40, 159-172. Recuperado de: http://dx.doi.org/10.18359/prole.3047spa
dc.relation.referencesMuñoz Rojas, D., Orellano, N. & Hernández, H. (2018). ‘Riesgo psicosocial: tendencias y nuevas orientaciones laborales’. Recuperado de: https://doi.org/10.17081/psico.21.40.3090spa
dc.relation.referencesR Core Team (2019). ‘R: Un lenguaje y entorno para la computación estadística. Fundación R para Informática Estadística’. Viena, Austria. Recuperado de: https://www.R-project.org/spa
dc.relation.referencesKassambara (2017). CA - Correspondence Analysis in R: Essentials. STHDA Statistical tools for high-throughput data análisis. Recuperado de: http://www.sthda.com/english/articles/31- principal-component-methods-in-r-practical-guide/113-ca-correspondence-analysis-in-ressentials/spa
dc.relation.referencesChessel, D., Dufour, A., & Thioulouse, J. (2004), ‘The ade4 Package - I: Onetable Methods’, R News 4(1), 5–10.spa
dc.relation.referencesPardo, C. & Del Campo, P. (2007). ‘Combinación de métodos factoriales y de análisis de conglomerados en R: el paquete FactoClass’. Revista Colombiana de Estadística, Volumen 30 No. 2. pp. 231 a 245spa
dc.relation.referencesMaslach, C. & Jackson, S. (1986). ‘Maslach Burnout Inventory (2a ed.)’. California: Consulting Psychologists Pressspa
dc.relation.referencesPaul E.Green, V. Srinivasan (1990). Conjoint Analysis in Marketing: New Developments with Implications for Research and Practicespa
dc.relation.referencesVithala R. Rao. (2014). Applied Conjoint Analysis. Springer.spa
dc.relation.referencesDouglas C. Montgomery. (2012) Design and Analysis of Experiments, eigth edition. Wiley.spa
dc.relation.referencesColeman, T., Stevenson, K., & Wilson, A. (2002). A new method for describing smokers' consulting behaviours which indicate their motivation to stop smoking: An exploration of validity and reliability. Family Practice, 19(2), 154-160. Doi:10.1093/fampra/19.2.154spa
dc.relation.referencesCastaño Castrillón, J. J., Páez Cala, M. L., Pinzón Montes, J. H., Rojo Bustamante, E., Sánchez Castrillón, G. A., Torres Ríos, J. M., Gallego Giraldo, C. A. (2010). Estudio descriptivo sobre tabaquismo en la comunidad estudiantil de la universidad de Manizales. 2007 -. Revista De La Facultad De Medicina; Vol. 56, Núm. 4 (2008) 2357-3848 0120-0011spa
dc.relation.referencesFernández, V. H., Beligoy, M. E., Lima, Y. V., & Barissi, P. F. (2015). Estudio transversal sobre tabaquismo y su relación con valores espirométricos en estudiantes de tercer año de medicina. Medwave, 15(03), e6124. Doi:10.5867/medwave.2015.03.6124spa
dc.relation.referencesFidler, J. A., Shahab, L., & West, R. (2011). Strength of urges to smoke as a measure of severity of cigarette dependence: Comparison with the fagerstrom test for nicotine dependence and its components. Addiction, 106(3), 631-638. Doi:10.1111/j.1360-0443.2010.03226.xspa
dc.relation.referencesGonzálvez, M. T., Espada, J. P., & Orgilés, M. (2015). Estado de ánimo y consumo de tabaco en una muestra de adolescentes españoles. Revista Latinoamericana de Psicología, 47(2), 86-92. Doi:10.1016/j.rlp.2015.05.001 Espada, & Orgilés (2015)spa
dc.relation.referencesHeatheron, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerström, K. (1991). The Fagerström test for nicotine dependence: A revision of the Fagerstrom tolerance questionnaire. British Journal of Addiction, 86(9), 1119-1127. Doi:10.1111/j.1360-0443.1991.tb01879.xspa
dc.relation.referencesKotz, D., Brown, J., & West, R. (2013). Predictive validity of the motivation to stop scale (MTSS): A single-item measure of motivation to stop smoking. Drug and Alcohol Dependence, 128(1), 15-19. Doi:10.1016/j.drugalcdep.2012.07.012spa
dc.relation.referencesRadzius, A., Gallo, J. J., Epstein, D. H., Gorelick, D. A., Cadet, J. L., Uhl, G. E., & Moolchan, E. T. (2003a). A factor analysis of the Fagerström test for nicotine dependence (FTND). Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, 5(2), 255-240.spa
dc.relation.referencesRichmond, R. L .. , Kehoe, L. A., & Webster, I. W. (1993). Multivariate models for predicting abstention following intervention to stop smoking by general practitioners. Addiction (Abingdon, England), 88(8), 1127-1135.spa
dc.relation.referencesMelo, O., Lopez, L., y Melo, S. (2017). Diseño de erperimentos: Metodos y aplicaciones. (Notas de clase - Universidad Nacional de Colombia)spa
dc.relation.referencesMontgomery, D. C. (2012). Design and analysis of erperiments (8.a ed.). John Wiley Sons.spa
dc.relation.referencesBulmaro. ¿Como se fabrican los borradores?, 7 2010 https://comohacer.eu/como-se-fabrican-los-borradores/. Visita- do por ultima vez: 24/02/2019spa
dc.relation.referencesGomez-Esteban, P.Inventos ingeniosos - la goma de borrar, 10 2007 https://eltamiz.com/2007/10/12/inventos-ingeniosos- la-goma-de-borrar/. Visitado por ultima vez:24/02/2019.spa
dc.relation.referencesMartinez O.O.M, Perez, L.A.L., and Martinez, S.E.M Diseño de experimenos: métodos y aplicaciones Universidad Nacional de Colombia, Facultad de cincias 2007.spa
dc.relation.referencesMontgomery, D. C. Design and Analysis of experimens, 8 ed. John Wiley and Sons, Inc., 201p.spa
dc.relation.referencesBarquero, K. (lunes de agosto de 2017). Costa Rica invierte en educación más que cualquier país de OCDE. La republica, pág. 2.spa
dc.relation.referencesBenedikt Frey, C., & Osborne, M. (2013). THE FUTURE OF EMPLOYMENT: HOW SUSCEPTIBLE ARE JOBS TO COMPUTERISATION? CREPAL.spa
dc.relation.referencesBenedikt Frey, C., & Osborne, M. (Enero de 2019). WILL ROBOTS TAKE MY JOB? Obtenido de WILL ROBOTS TAKE MY JOB?: https://willrobotstakemyjob.com/spa
dc.relation.referencesBravo, J. (24 de 1 de 2019). Carlos Alvarado pide ingreso de Costa Rica a red de cuarta revolución industrial. La Naciónspa
dc.relation.referencesEmol, E. (Octubre de 2018). emol Economía. Obtenido de emol Economía: https://www.emol.com/noticias/Economia/2017/09/12/874972/Costa-Rica-el-pais-de-la-OCDE-que-mas-porcentaje-del-PIB-invierte-en-educacion.htmlspa
dc.relation.referencesGutiérrez Coto, I., Kikut Valverde, L., Corrales Bolívar, K., & Picado Madrigal, C. (2018). Seguimiento de la condición laboral de las personas graduadas 2011-2013 de las universidades costarricenses. San José: CONAREspa
dc.relation.referencesMass, P. (24 de mayo de 2016). El mito del desempleo tecnológico. El economista, págs. http://www.eleconomista.com.ar/2016-05-el-mito-del-desempleo-tecnologico/.spa
dc.relation.referencesMinisterios de Ciencia, T. y. (Febrero de 2019). MICITT. Obtenido de MICITT: https://micit.go.cr/index.php?option=com_content&view=article&id=10448:micitt-y-conare-firman-declaracion-de-intenciones-para-fortalecer-ciencia-y-tecnologia&catid=40&Itemid=630spa
dc.relation.referencesOrganización para la Cooperación y el Desarrollo Económicos (OCDE). (2016). Análisis de la OCDE acerca de las políticas nacionales para educación: La educación en Costa Rica. San José: OCDE.spa
dc.relation.referencesOECD. (2 de Enero de 2019). OECD library. Obtenido de OECD library: https://www.oecd-ilibrary.org/science-and-technology/measurement-of-scientific-and-technological-activities_9789264065581-enspa
dc.relation.referencesOPES. (Noviembre de 2018). Observatorio Laboral de Profesiones. Obtenido de Conare: http://olap.conare.ac.cr/estadisticas/diplomasspa
dc.relation.referencesSchwab, K. (Noviembre de 2018). World Economic Forum. Obtenido de World Economic Forum: https://es.weforum.org/agenda/2018/11/los-forcejeos-de-la-globalizacion-4-0/spa
dc.relation.referencesSEMANA. (Enero de 2019). ¿Qué es la cuarta revolución industrial y por qué va a cambiar a la educación? Obtenido de SEMANA: https://www.semana.com/educacion/articulo/cuarta-revolucion-industrial-una-reforma-para-el-sistema-educativo/599090spa
dc.relation.referencesWikipedia, «Esperanza de vida,> Fundacion Wikipedia.inc, 5 06 2019. [En linea]. Available: https://es.wikipedia.org/wiki/Esperanza-de-vida.|spa
dc.relation.referencesA. Stacinopoulos, B. Rigby y A. Akantzilioton, <Instructions on how to use the GAMLSS package in R.,> 2008.spa
dc.relation.referencesUNDP,«Programa de las naciones unidas para el desarrollo,» 2019. [En línea]. Available: https://www.undp.org/content/undp/es/home/.spa
dc.relation.references«The WorldBank,»[En línea]. Available: http://datatopics.worldbank.org/world-development-indicators/themes.html.[Últimoacceso:Abril2019].spa
dc.relation.referencesR CoreTeam(2015).R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.spa
dc.relation.referencesCentro Hospitalario y Universitario de Albacete,"Encuesta de incidencia sobre el habito de fumar".spa
dc.relation.referencesCochran (1977)Sampling Techniques. John Wiley amp; Sons.spa
dc.relation.referencesGutierrez, H.S.(2016), Estrategias de Muestreo: Diseño de encuestas y estimacion de parametros, Ediciones de la U.spa
dc.relation.referencesGrupo de Investigación en Psicologia y Salud(2008-2009) Caracteriza- cion del consumo de cigarrillo en la comunidad universitaria. Pontificia Universidad Javeriana.spa
dc.relation.referencesHidiroglou, M. A., J. D. Drew, and G. B. Gray. (1993). A framework for measuring and reducing nonresponse in surveys. Survey Methodology 19: 81-94.spa
dc.relation.referencesLohr, S.(2000), Sampling: Design and Analysis, Thompson.spa
dc.relation.referencesS. Sarndal, C .- E. Bengt, and J. Wretman, (2003). Model Assisted Survey Sampling . Springer-Verlag GmbH.spa
dc.relation.referencesSchuman, H., y J. M. converse. (1981) the effects of black and white interviewers on blackresponses in 1968. public opinion quarterly 35:44-68spa
dc.relation.referencesStatistics Canada (1993). Standards and guidelines for reporting of nonresponse rates. Ottawa,Canada.spa
dc.relation.referencesSunter, A.(1977),'List sequential sampling with equal or unequal pro- babilities sampling without replacement Applied Statistics 26, 261-268.spa
dc.relation.referencesS. K. Thompson, (2012). Sampling . Wiley John + Sons.spa
dc.relation.referencesCaicedo, G. E. (2007), 'El fenómeno de el nino y su posible impacto en colombia', Reportes del emisor: Investigación e información económica 92.spa
dc.relation.referencesCaballero, S., G. (1986), Un Estimador del Parámetro g de la Distribución g de Tukey, Tesis de Maestría (Estadística), Universidad Nacional de Colombia, Facultad de Ciencias. Departamento de Estadística.spa
dc.relation.referencesCabarcas, G. & Pardo, C.-E. (2001), `Métodos estadísticos multivariados en investigación social', Simposio de Estadística.spa
dc.relation.referencesDireccion de Transito de Bucaramanga. (2017). Estructuracion de medidas para el mejoramiento de la movilidad en Bucaramanga. Bucaramanga.spa
dc.relation.referencesDirección de Tránsito de Bucaramanga. (2017). Estudio de alternativas de priorización para la seguridad vial de los motociclistas en la ciudad de Bucaramanga. Alcaldia de Bucaramanga.spa
dc.relation.referencesPerez M., Orlandoni G., Ramoni J., Fontecha F. (2018). Valoracion estadistica de la accidentalidad vial en la ciudad de Bucaramanga: un analisis multivariante. II Congreso Colombiano de Estadística Santiago de Cali, Valle del Cauca.spa
dc.relation.referencesRodriguez DA, Santana M, Pardo CF. (2015). La motocicleta en America Latina: caracterizacion de su uso e impactos en la movilidad en cinco ciudades de la región .: CAF.spa
dc.relation.referencesRStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.spa
dc.relation.referencesCEM (2012), Vocabulario internacional de metrología. Conceptos fundamentales y generales, y términos asociados., number JCGM 200:2012, Edicion en espanol 2012 - traduccion del Centro Espanol de Metrología, tercera edn.spa
dc.relation.referencesE.W. Rice, R.B. Baird, A. E. e. (2017), Standard Methods for the Eramination of Water and Wastewater, number 5530-c, 23rd edn.spa
dc.relation.referencesJCGM (2008a), Evaluation of measurement data - Guide to the erpression of uncertainty in measurement, number JCGM 100:2008. in 'Joint Committee for Guides in Metrology', first edn.spa
dc.relation.referencesJCGM (2008b), Evaluation of measurement data - Supplement 1 Propagation of distributions using a Monte Carlo method, number JCGM 101:2008. in 'Joint Committee for Guides in Metrology', first edn.spa
dc.relation.referencesJCGM (2012), Evaluation of measurement data - The role of measurement uncertainty in conformity assessmen, number JCGM 106:2012. in 'Joint Committee for Guides in Metrology', first edn.spa
dc.relation.referencesRubio-Clemente, A., Chica, E. L., Peñuela, G. A. et al. (2014), 'Aplicación del proceso fenton en el tratamiento de aguas residuales de origen petroquímico', Ingeniería y competitividad 16(2), 211- 223.spa
dc.relation.referencesBerek, J. S. & Hacker, N. F. (2010), Oncología ginecológica de Berek and Hacker, number 396-442., Wolters Kluwer, Lippincott Williams & Wilkins.spa
dc.relation.referencesChan, J. K., Cheung, M. K., Huh, W. K., Osann, K., Husain, A., Teng, N. N. & Kapp, D. S. (2006),‘Therapeutic role of lymph node resection in endometrioid corpus cancer: a study of 12,333patients’,Cancer 107 (8), 1823–1830spa
dc.relation.referencesS.Kumar, A.Mariani, J.N.Bakkum, K.C. Podratz. Risk factors that mitigate the role of paraaortic lymphadenectomy in uterine endometriod cancer.Gynecology Oncology 130(2013) 441-445spa
dc.relation.referencesPardo, C. & Cendales, R. (2018), ‘Estimaciones de incidencia y mortalidad para los principales cinco tipos de cáncer en colombia, 2007-2011.’, Colombia Medica 49spa
dc.relation.referencesTavassoli, F. (2003), ‘International agency for research on cancer, world health organization’, Pathology and Genetics of Tumours of the Breast and Female Genital Organsspa
dc.relation.referencesHosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.spa
dc.relation.referencesCardozo, J. C. H., Arias, A. C. S. & Espinel, J. A. S. (2016), 'Factores asociados a la exclusion educativa y laboral de los adolescentes colombianos', Economía del Caribe (17), 3.|spa
dc.relation.referencesHoyos, R. d., Rogers, H. & Székely, M. (2016), 'Ninis en américa latina: 20 millones de jóvenes en búsqueda de oportunidades'.spa
dc.relation.referencesMulero,J, (s.f.). Aplicaciones interactivas con Shiny. Universidad de Alicante. Análisis de regresión lineal.spa
dc.relation.referencesRStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. URL http://www.rstudio.com/.spa
dc.relation.referencesAmini M., MirMostafaee S.M.T.K. and Ahmani J. Log-gamma-generated families of distributions. Statistics 48(4), 913-932 (2014).spa
dc.relation.referencesDurrans S.R. Distributions of fractional order statistics in hydrology. Water Resources Research 28, 1649-1655 (1992).spa
dc.relation.referencesMartínez-Flórez G., Bolfarine H. and Gómez, H.W. The alpha-power tobit model. Communications in Statis- tics - Theory and Methods 42(4), 633-643 (2013).spa
dc.relation.referencesPewsey A., Gomez H.W. and Bolfarine H. Likelihood-based inference for power distributions. Test 21(4), 775-789 (2012).spa
dc.relation.referencesR Development Core Team. R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. (2019).spa
dc.relation.referencesTobin J. Estimation of relationship for limited dependent variables. Econometrica 26(1), 24-36 (1958).spa
dc.relation.referencesZhang D., Davidian M. and Ahmani J. Linear mixed models with flexible distributions of random effects for longitudinal data. Biometrics 57(3), 795-802 (2001).spa
dc.relation.referencesCenter, M.(2019),‘Quantgov’.[Web;accedidoel06-04-2019]. *URL https://quantgov.org/regdata-us/spa
dc.relation.referencesFeldman, R. & Sanger, J. (2007), The tert mining handbook: advanced approaches in analyzing unstructured data, Cambridge university press.spa
dc.relation.referencesImprenta Nacional de Colombia (2019). [Web; accedido el 06-04-2019]. *URL http://jacevedo.imprenta.gov.co/web/inc-movilspa
dc.relation.referencesNatural Language Processing with Python (2019). [Web; accedido el 06-04-2019]. *URL http://www.nltk.org/book/spa
dc.relation.referencesBhogal, S. K. & Variyam, R. T. (2019), 'Conditional duration models for high- frequency data: A review on recent developments', Journal of Economic Sur- veys 33(1), 252-273.spa
dc.relation.referencesBollerslev, T. (1986), 'Generalized autoregressive conditional heteroskedasticity', Journal of Economics 31(3), 307-327.spa
dc.relation.referencesBourguignon, M., Ghosh, I. & Cordeiro, G. M. (2016), 'General results for the transmuted family of distributions and new models', Journal of Probability and Statistics .spa
dc.relation.referencesCheung, L. (2014), High frequency data: Modeling durations via the acd and log acd models, Master's thesis, University of Connecticut.spa
dc.relation.referencesDey, S., Raheem, E. & Mukherjee, S. (2017), 'Statistical properties and different methods of estimation of transmuted rayleigh distribution', Revista Colom- biana de Estadística 40(1), 165-203.spa
dc.relation.referencesEngle, R. F. & Russell, J. R. (1998), 'Autoregressive conditional duration: A new model for irregularly spaced transaction data', Econometrica 66(5), 1127- 1162.spa
dc.relation.referenceskuen Tse, Y. & Yang, T. T. (2012), 'Estimation of high-frequency volatility: An autoregressive conditional duration approach', Journal of Business & Eco- nomic Statistics 30(4), 533-545.spa
dc.relation.referencesMerovci, F. (2013), 'Transmuted rayleigh distribution', Austrian Journal of Statis- tics .spa
dc.relation.referencesPathmanathan, D. N. K. H. & Peiris, S. (2010), 'On estimation of autoregressive conditional duration (acd) models based on different error distributions', Sri Lankan Journal of Applied Statistics pp. 251-269.spa
dc.relation.referencesPyrlik, V. (2013), 'Autoregressive conditional duration as a model for financial market crashes prediction', Physica A: Statistical Mechanics and its Applica- tions 392(23), 6041-6051.spa
dc.relation.referencesShaw, W. T. & Buckley, I. R. (2009), 'The alchemy of probability distributions: beyond gram-charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map', arXiv preprint arXiv:0901.0434 .spa
dc.relation.referencesTsay, R. S. (2005), Analysis of Financial Time Series, Vol. 543 of Wiley Series in Probability and Statistics, John Wiley & Sons.spa
dc.relation.referencesTsay, R. S. (2011), 'Acd.cmle r function'.spa
dc.relation.referencesAkwasi, M., Omari-Sasu, A., Kodzo, R, y Kena, N. (2017). On Two Random Variables and Archimedean Copulas. International Journal of Statistics and Applications, 7(4), 228-237.spa
dc.relation.referencesCruz, D.(2013). Cópulas: un nuevo enfoque para la modelización de campos aleatorios. Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesMolina, Ma. Métodos Estadísticos aplicados a problemas medioambientales, (Trabajo Final de Master). Universidad de Granada, Granada, Españaspa
dc.relation.referencesSchepsmeier, U., Stoeber, J., Brechmann, E., Graeler,B., Nagler, T. y Erhardt, T. (2018). VineCopula: Statistical Inference of Vine Copulas. R package version 2.1.8. https://CRAN.R-project.org/package=VineCopulaspa
dc.relation.referencesTeoría de cópulas y aplicaciones en simulación de riesgos financieros e ingeniería civil. Recuperado de: http://masteres.ugr.es/moea/pages/tfm0809/teora-decpulas-y-aplicaciones-en-simulacin-de-riesgos-_nancieros-e-ingeniera-civil/!spa
dc.relation.referencesHinton, G. E. (2002), 'Training products of experts by minimizing contrastive divergence', Neural computation 14(8), 1771-1800.spa
dc.relation.referencesHo, T. K. (1998), 'The random subspace method for constructing decision forests', IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 832 - 844.spa
dc.relation.referencesMontes, S. (2018), 'Colombia tiene a los ciudadanos con mayor morosidad en America Latina', Editorial La Republica.spa
dc.relation.referencesRobert, T. C. (1999), 'Combining probability distributions from experts in risk analysis', 19(2).spa
dc.relation.referencesRokach L., M. O. (2005), Data Mining and Knowldge Discovery Handbook, Springer.spa
dc.relation.referencesShumway, Robert H. ; Stoffer, David S. Time series analysis and its applications. With R examples. Third edition. Springer Texts in Statistics. Springer, New York, 2011. xii+596 pp. ISBN: 978-1- 4419-7864-6spa
dc.relation.referencesWei, William W. S. Time series analysis. Univariate and multivariate methods. Second edition. Addison Wesley/Pearson, Boston, MA, 2006. xxii+614 pp. ISBN: 0-321-32216-9spa
dc.relation.referencesR Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R Documentation. ARIMA Modelling of Time Series (arima {stats}).spa
dc.relation.referencesCataño, Duván. Clase Series de tiempo II. Universidad de Antioquia. Medellín, Antioquia. 9 de agosto del 2018.spa
dc.relation.referencesShapiro, S. S. ; Wilk, M. B. An analysis of variance test for normality: Complete samples. Biome- trika 52 1965 591-611.spa
dc.relation.referencesBox, G. E. P. ; Pierce, David A. Distribution of residual autocorrelations in autoregressive- integrated moving average time series models. J. Amer. Statist. Assoc. 65 1970 1509-1526.spa
dc.relation.referencesCleveland, W.S. (1994) The Elements of Graphing Data, Hobart Press ISBN 0-9634884-1-4spa
dc.relation.referencesBreusch, T. S. ; Pagan, A. R. A simple test for heteroscedasticity and random coefficient variation. Econometrica 47 (1979), no. 5, 1287-1294.spa
dc.relation.referencesBorges, R. (2004) Análisis de supervivencia básico utilizando el lenguaje R , Universidad central de Venezuela, Caracas Venezuelaspa
dc.relation.referencesCEDE. (2007). Investigación sobre Deserción en las Instituciones de Educación Superior en Colombia. Universidad de los Andes, Bogotá, Colombiaspa
dc.relation.referencesHernández, N. (2017) un modelo de deserción en los estudiantes de la facultad de ingeniería civil de la Universidad Santo Tomás (2010-2016), Universidad Santo Tomas, Bogotá Colombia.spa
dc.relation.referencesHernández N., Pineda, W., Fonseca, L (2018) Un modelo de Cox para explicar la deserción en los estudiantes de la facultad de ingeniería civil de la Universidad Santo Tomas (2010-2016), Simposio Internacional de Estadística, Bucaramanga, Colombia.spa
dc.relation.referencesKaplan, E. L.; Meier, P.(1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assn. 53:457–481, 1958.spa
dc.relation.referencesMEN. (2008). Deserción Estudiantil en la Educación Superior Colombiana. Bogotá: Ministerio de Educación Nacional.spa
dc.relation.referencesMontes, I., Almonacid, P., Gómez, S., Zuluaga F., y Tamayo, E. (2010), Análisis de la deserción estudiantil en los programas de pregrado de la Universidad EAFIT, Universidad EAFIT departamento de economía. Medellín Colombia.spa
dc.relation.referencesOcampo, A., Bermúdez, D., Fonseca, L. (2019). Modelo de Sobrevida para deserción en programas de Estadística y Diseño Gráfico – Universidad Santo Tomás. Congreso Internacional Pedagogía 2019. La Habana Cuba.spa
dc.relation.referencesOchoa, C. A. (2015). El modelo Lee-Carter para estimar y pronosticar mortalidad: una aplicación para Colombia. Universidad Nacional de Colombia, Sede Medellín.spa
dc.relation.referencesTinto, V (1975). Dropout from Higher Education: A Theoretical Synthesis of Recent Research. Review of Educational Research 45. Pp. 89-125.spa
dc.relation.referencesUniversidad Nacional (2002). Estudio de la deserción Estudiantil en la Educación Superior en Colombia. ICFES. Bogotá Colombia.spa
dc.relation.referencesRuiz, M. A., Pardo, A, San Martin, R. (2010), Modelos de Ecuaciones Estructurales, papeles del Psicólogo, Vol 31, 31(1),34-45, Consejo General de Colegios Oficiales de Psicólogos, Madrid, España. Recuperado de: http://www.redalyc.org/pdf/7\\78/77812441004.pdf.spa
dc.relation.referencesLara Hormigo A. (2014), Introducción a las ecuaciones estructurales en Amos y R.spa
dc.relation.referencesRomero, R; Babavita G. (2015), Modelo de lealtad a partir de un análisis de ecuaciones estructurales, Facultad de Estadística: Universidad Santo Tomas, Bogotáspa
dc.relation.referencesBatista, J., Coenders, G. (2000), Modelos de Ecuaciones Estructurales, Editorial La Muralla.spa
dc.relation.referencesMulero,J, (s.f.). Aplicaciones interactivas con Shiny. Universidad de Alicante. Análisis de regresión lineal.spa
dc.relation.referencesRStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. URL http://www.rstudio.com/.spa
dc.relation.referencesR Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.spa
dc.relation.referencesPalazon Bru A. (2016). Nuevos modelos predictivos de enfermedad cardivascular. Universidad de Alicante, Alicante, España.spa
dc.relation.referencesEDA of cardiovascular diseases data (2018) URL https://www.kaggle.com/sulianova/eda-cardiovascular-data#EDA-of-cadiovascular-diseases-dataspa
dc.relation.referencesFERNANDEZ, D. & GRAJALES, F. Una aplicacion del analisis bayesiano del modelo de Cox para tiempos de sobrevida con empates, 2016.spa
dc.relation.referencesGIRALDO, W. Simulación de sobrevida con empates para comparar modelos de riesgos pro- porcionales: propuesta y aplicación, 2015.spa
dc.relation.referencesGRAJALES, F. A Proposal to Compare Proportional Hazard Models with Tied Survival Time: Cox and Weibull. In XX simposio de estadistica (2010).spa
dc.relation.referencesTHERNEAU, T (2015). A Package for Survival Analysis in S. version 2.38, https://CRAN.R- project.org/package=survival.spa
dc.relation.referencesAGRESTI, A. (2015). Foundations of Linear and Generalized Linear Models.spa
dc.relation.referencesCIFUENTES, J. (2013). Predicción del resultado en la prueba SABER PRO para Economía a partir de la información disponible en el proceso de admisión. Tesis de Maestría en Economía, Pontificia Universidad Javeriana.spa
dc.relation.referencesMANNING, C. (2007). Generalized Linear Mixed Models. Recuperado de: https://nlp.stanford.edu/manning/courses/ling289/GLMM.pdfspa
dc.relation.referencesVALENS, M. (2007). Calidad de la educación superior en Colombia: un análisis multinivel con base en el ECAES de Economía 2004 Tesis de Pregrado en Economía, Universidad del Vallespa
dc.relation.referencesÁrea Metropolitana. (2017). Datos abiertos de movilidad, un viaje hacia el territorio inteligente | Área Metropolitana del Valle de Aburrá. Recuperado de http://datosabiertos.metropol.gov.co/historias/datos-abiertos-de-movilidad-en-el-valle-de-aburrá-un-viaje-hacia-el-territorio-inteligentespa
dc.relation.referencesBradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 30(7), 1145-1159.spa
dc.relation.referencesde Dios Ortuzar, J., & Willumsen, L. G. (2011). Modelling transport. John Wiley & Sons.spa
dc.relation.referencesHagenauer, J., & Helbich, M. (2017). A comparative study of machine learning classifiers for modeling travel mode choice. Expert Systems with Applications, 78, 273-282.spa
dc.relation.referencesMax Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan and Tyler Hunt. (2019). caret: Classification and Regression Training. R package version 6.0-84. https://CRAN.R-project.org/package=caretspa
dc.relation.referencesMcFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics. New York, NY: Academic Press.spa
dc.relation.referencesOmrani, H. (2015). Predicting travel mode of individuals by machine learning. Transportation Research Procedia, 10 (July), 840-849spa
dc.relation.referencesR Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.spa
dc.relation.referencesWinston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2018). shiny: Web Application Framework for R. R package version 1.1.0. https://CRAN.R project.org/package=shinyspa
dc.relation.referencesKalbfleisch, J & Prentice, R. (1980) The statistical analysis of failure time data. Wiley. New York.spa
dc.relation.referencesRamirez, J.(2011)"Comparison of Confidence Intervals for the survival function with censorship on the right".Colombian Journal of Statistics V. 34, 197 - 209.spa
dc.relation.referencesAl-Khulaifi, A. S. (2013), 'Exports and imports in qatar: Evidence from cointegration and error correction model', Asian Economic and Financial Review 3(9), 1122.|spa
dc.relation.referencesBolsa de Valores Colombia, M. (2019), 'Página web', Recuperado de www. buc. com. co .spa
dc.relation.referencesBreitung, J., Brüggemann, R. & Lütkepohl, H. (2004), 'Structural vector autoregressive modeling and impulse responses', Applied time series econometrics .spa
dc.relation.referencesEnders, W. (2008), Applied econometric time series, John Wiley & Sons.spa
dc.relation.referencesJohansen, S. (1988), 'Statistical analysis of cointegration vectors', Journal of economic dynamics and control 12(2-3), 231-254.spa
dc.relation.referencesLondono, W. (2005), Modelos de ecuaciones multiples modelos var y cointegración, Master's thesis, Universidad EAFIT.spa
dc.relation.referencesLütkepohl, H., Krätzig, M. & Phillips, P. C. (2004), Applied time series econometrics, Cambridge university press.spa
dc.relation.referencesNovales, A. (2011), 'Modelos vectoriales autoregresivos (var)', Universidad Complutense pp. 1-26.spa
dc.relation.referencesPfaff, B. et al. (2008), 'Var, svar and svec models: Implementation within r package vars', Journal of Statistical Software 27(4), 1-32.spa
dc.relation.referencesRios, O. A. (2015), 'La cointegración en series de tiempo, una aplicación a la relacion entre el pib y el nivel de exportaciones en colombia'.spa
dc.relation.referencesSyczewska, E. M. et al. (2010), Empirical power of the kwiatkowski-phillips-schmidt-shin test, Technical report.spa
dc.relation.referencesPedroni, P. (1999). “Critical Values for Cointegration Test in Heterogeneous Panels with Multiple Regressors”. Oxford Bulletin of Economics y Statistics, Special Issue 0305-9049.spa
dc.relation.referencesPedroni, P. (2000). “Fully modified OLS for heterogeneous cointegrated panels”. Advances in Econometrics, Vol 15, pp. 93 – 130spa
dc.relation.referencesPedroni, P. (2004). “Panel Cointegration: asymptotic y finite sample propierties of pooled time series with an application to the PPP hypothesis: New Results”. Econometric Theory, vol 20, pp. 597 - 627.spa
dc.relation.referencesRigby R.A. and Stasinopoulos D.M. (2005). Generalized Additive models for location, scale and shape. Appl. Statist., 54, part 3, pp 507-554.spa
dc.relation.referencesP. Montgomery. (2002).Introducción al Análisis de Regresión lineal. 1ª ed. Ed. Ediciones CECSA. México DF. México. 2002. pp 65-80.spa
dc.relation.referencesStasinopoulos. & Rigby, R. (2007), Generalized additive models for location, scale and shape (GAMLSS) in R. Journal of Statistical Software 23(7), 1–46.spa
dc.relation.referencesLedoit, O. & Wolf, M. (2004), 'Honey, i shrunk the sample covariance matrix', The Journal of Portafolio Management 30(4), 110 - 119.spa
dc.relation.referencesLeung, A., Zhang, H. & Zamar, R. (2016), 'Robust regression estimation and infe- rence in the presence of cellwise and casewise contamination', Computational Statistics & Data Analysis 99, 1 - 11.spa
dc.relation.referencesMaronna, R. A. & Zamar, R. H. (2002), 'Robust Estimates of Location and Dis- persion for High-Dimensional Datasets', Technometrics 44(4), 307 - 317.spa
dc.relation.referencesMyers, R., Montgomery, D., Vining, G. & Robinson, T. (2012), The Generalized Linear Model, John Wiley & Sons, Inc.spa
dc.relation.referencesPeña, D. & Prieto, F. J. (2001), 'Multivariate Outlier Detection and Robust Co- variance Matrix Estimation', Technometrics 43(3), 286 - 300.spa
dc.relation.referencesPena, D. & Prieto, F. J. (2007), 'Combining Random and Specific Directions for Outlier Detection and Robust Estimation in High-Dimensional Multivariate Data', Journal of Computational and Graphical Statistics 16(1), 228 - 254.spa
dc.relation.referencesRousseeuw, P. J. (1984), 'Least Median of Squares Regression', Journal of the American Statistical Association 79(388), 871 - 880.spa
dc.relation.referencesRousseeuw, P. J. & Leroy, A. (1987), Robust regression and outlier detection, Wiley Series in Probability and Mathematical Statistics, Wiley, New York.spa
dc.relation.referencesRousseeuw, P. J., Van Aelst, S., Van Driessen, K. & Agulló, J. (2004), 'Robust multivariate regression', Technometrics 46(3), 293 - 305.spa
dc.relation.referencesR Core Team (2018), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *https://www.R-project.org/ Rigby,spa
dc.relation.referencesStasinopoulos, D. M. y R.A. Rigby (2005), ‘Generalized additive models for location, scale and shape,(with discussion)’, Applied Statistics 54, 507–554.spa
dc.relation.referencesLiliana Blanco Castaneda, Viswanathan Arunachalam, and Selvamuthu Dharmaraja. Introduction to probability and stochastic processes with applications. Wiley Online Library, 2012.spa
dc.relation.referencesAlan L Montgomery, Shibo Li, Kannan Srinivasan, and John C Liechty. Modeling online browsing and path analysis using clickstream data. Marketing science, 23(4):579-595, 2004.spa
dc.relation.referencesR. Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2013.spa
dc.relation.referencesMichael Scholz et al. R. package clickstream: analyzing clickstream data with markov chains. Journal of Statistical Software, 74(4):1-17, 2016.spa
dc.relation.referencesInternational Diabetes Federation (IDF), 2017. Diabetes Atlas. 8th edition. Brussels: Versión Online del Diabetes Atlas de la FID: www.diabetesatlas.org ISBN: 978-2-930229-87.spa
dc.relation.referencesSaaristo T, Peltonen M, Lindstr öm J, Saarikoski L, Sundvall J, Eriksson JG, et al. Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diab Vasc Dis Res 2005; 2: 67 - 72.spa
dc.relation.referencesWinkler G, Hídvégi T, Vándorfi G, Balogh S, Jermendy G. Prevalence of undiagnosed abnormal glucose tolerance in adult patients cared for by general practitioners in Hungary. Results of a risk-stratified screening based on FINDRISC questionnaire. Med Sci Monit 2013; 19: 67-72.spa
dc.relation.referencesSchwarz PE, Schwarz PE, LindstroÈm J, Kissimova-Scarbeck K, Szybinski Z, Barengo NC, Peltonen M,et al. DE-PLAN project. The European perspective of type 2 diabetes prevention: diabetes in Europe#prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project. Exp ClinEndocrinol Diabetes 2008; 116:167±72. https://doi.org/10.1055/s-2007- 992115 PMID: 18350480spa
dc.relation.referencesCos FX, Barengo NC, Costa B, Mundet-Tuduri X, Lindström J, Tuomilehto JO; Screening for people with abnormal glucose metabolism in the European DE-PLAN project. DE-PLAN Study Group. Diabetes Res Clin Pract. 2015 Jul; 109(1):149-56. doi: 10.1016/j.diabres.2015.04.016. Epub 2015 Apr 20. PMID: 25931281.spa
dc.relation.referencesSagarra R, Costa B, Cabré JJ, Solà-Morales O, Barrio F;Lifestyle interventions for diabetes mellitus type 2 prevention.el Grupo de Investigacion DE-PLAN-CAT/PREDICE.Rev Clin Esp (Barc). 2014 Mar;214(2):59-68. doi: 10.1016/j.rce.2013.10.005. Epub 2013 Nov 20. English, Spanish.PMID: 24267869.spa
dc.relation.referencesMakrilakis K, Liatis S, Grammatikou S, Perrea D, Katsilambros N.Implementation and effectiveness of the first community lifestyle intervention programme to prevent Type 2 diabetes in Greece. The DE-PLAN study. Diabet Med. 2010 Apr;27(4):459-65. doi: 10.1111/j.1464- 5491.2010.02918.x. PMID: 20536519.spa
dc.relation.referencesGilis-Januszewska A, LindstroÈm J, Tuomilehto J, Piwońska-Solska B, TopoÂr-Mądry R, Szybiński Z, Peltonen M, et al. Sustained diabetes risk reduction after real life and primary health care setting implementation of the diabetes in Europe prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project, BMC Public Health. 2017; 15;17(1):198.spa
dc.relation.referencesWHO Consultation on the Definition, Diagnosis and Classification of Diabetes Mellitus. WHO/NCD/NCM/21 April 2010.spa
dc.relation.referencesValensi P et al . Pre-diabetes essential action: a European perspective . Diabetes Metab 2005 ; 31 (6) : 606-620spa
dc.relation.referencesZimmet P , Alberti KG, Shaw J . Global and societal implications of the diabetes epidemic . Nature 2001 ; 414 (6865) : 782- 787spa
dc.relation.referencesLindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 2003;26:725-31.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalModelos estadísticosspa
dc.subject.proposalTécnicas estadísticas específicasspa
dc.subject.proposalDatos funcionales y espacialesspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalMachine Learningeng
dc.subject.proposalControl de calidadspa
dc.subject.proposalComputación estadísticaspa
dc.subject.proposalMétodos bayesianosspa
dc.subject.proposalMinería de textospa
dc.subject.proposalPredicción de precipitacionesspa
dc.subject.unescoAnálisis estadísticospa
dc.subject.unescoStatistical analysiseng
dc.subject.unescoModelo matemáticospa
dc.subject.unescoMathematical modelseng
dc.subject.unescoModelo de simulaciónspa
dc.subject.unescoSimulation modelseng
dc.subject.unescoAnálisis de datosspa
dc.subject.unescoData analysiseng
dc.subject.unescoAnálisis de regresiónspa
dc.subject.unescoRegression analysiseng
dc.subject.unescoProcesamiento de datosspa
dc.subject.unescoData processingeng
dc.subject.unescoContaminación atmosféricaspa
dc.subject.unescoAir pollutioneng
dc.subject.unescoCambio climáticospa
dc.subject.unescoClimate changeeng
dc.subject.unescoEpidemiologíaspa
dc.subject.unescoEpidemiologyeng
dc.subject.unescoPolítica de la saludspa
dc.subject.unescoHealth policyeng
dc.subject.unescoDeserción escolarspa
dc.subject.unescoDropping outeng
dc.subject.unescoEvaluación formativaspa
dc.subject.unescoFormative evaluationeng
dc.subject.unescoCrecimiento económicospa
dc.subject.unescoEconomic growtheng
dc.subject.unescoGasto públicospa
dc.subject.unescoPublic expenditureeng
dc.subject.unescoMicrocréditospa
dc.subject.unescoMicrocrediteng
dc.subject.unescoGestión de riesgosspa
dc.subject.unescoRisk managementeng
dc.subject.unescoCartografíaspa
dc.subject.unescoCartographyeng
dc.subject.unescoPlanificación urbanaspa
dc.subject.unescoUrban planningeng
dc.subject.unescoInvestigación aplicadaeng
dc.subject.unescoApplied researcheng
dc.subject.unescoMétodo experimentalspa
dc.subject.unescoExperimental methodseng
dc.title29° Simposio Internacional de estadísticaspa
dc.typeLibrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.redcolhttp://purl.org/redcol/resource_type/LIBspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Memorias_Simposio_29_-_2019-1.pdf
Tamaño:
54.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Memorias Simposio Internacional de Estadística

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia para publicación de obras en el Repositorio Institucional UNAL_SIE 2019.pdf
Tamaño:
712.48 KB
Formato:
Adobe Portable Document Format
Descripción: