An approximate orthogonal decomposition method for the solution of the generalized liouville equation

dc.contributor.authorDulov, Eugenespa
dc.contributor.authorSinitsyn, Alexandrespa
dc.date.accessioned2019-07-03T16:35:53Zspa
dc.date.available2019-07-03T16:35:53Zspa
dc.date.issued2007spa
dc.description.abstractWe consider an approximate integration method of the Cauchy problem for the generalized Liouville equation using symbolic and numeric computer computations. This method is based on the probability density function orthonormal series expansion in the small and initial time space domains. We are investigating several expansions and determine their convergence conditions to ensure the convergence of the asymptotic expansion to the solution of the considered problem.To illustrate the applicability of the introduced asymptotic orthogonal decompositions [18] we took the describing bidimensional integrable dispersive shallow water equation developed by Roberto Camassa and Darryl D. Holm, Los Alamos National Laboratory. Since CH-equation solutionsare represented by a superposition of arbitrary number of peakons (peaked solitons) [9],[16], one can compare the coincidence of the \peakon" solutions character provided by numerical modeling along some trajectories for truncated asymptotic series expansions obtained by symbolic computations.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/38094/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/73618
dc.language.isospaspa
dc.publisherBoletín de Matemáticasspa
dc.relationhttp://revistas.unal.edu.co/index.php/bolma/article/view/40465spa
dc.relation.ispartofUniversidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticasspa
dc.relation.ispartofBoletín de Matemáticasspa
dc.relation.ispartofseriesBoletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380
dc.relation.referencesDulov, Eugene and Sinitsyn, Alexandre (2007) An approximate orthogonal decomposition method for the solution of the generalized liouville equation. Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380 .spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.proposalLiouville equationspa
dc.subject.proposalorthonormal systemspa
dc.subject.proposaleigenfunctionspa
dc.subject.proposalstrong and weak convergencespa
dc.subject.proposalmean convergencespa
dc.subject.proposalCamassa- Holm equationspa
dc.subject.proposalHermite functions.spa
dc.titleAn approximate orthogonal decomposition method for the solution of the generalized liouville equationspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
40465-181993-1-PB.pdf
Tamaño:
3.02 MB
Formato:
Adobe Portable Document Format